diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2024-12-03 12:59:22 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-12-03 12:59:22 +0100 |
commit | c5bf589367cd609f4c0ff73a6534bbde7902abe8 (patch) | |
tree | fa17f82c717d535222c1843fc9fca2d66f4d6ea7 /ggml/src/iqk/iqk_quantize.cpp | |
parent | ccec00939a30aa7762a232ac4dcadba985ef9ee4 (diff) |
Q5_0_R4 (#121)
* Adding q5_0_r4
We get PP-512(LLaMA-3.1-8B) = 256.7 t/s on a Ryzen-7950X.
We even get TG-128 improvement to 11.7 t/s from 11.1 t/s.
* q5_0_r4: NEON
We get PP-512(LLaMA-3.1-8B) = 99.6 t/s on M2-Max,
up from 71.0 t/s for Q5_0. The difference to mainline llama.cpp
is no longer funny: they get 26.5 t/s for Q5_0.
For TG, we are nor able to fully saturate memory bandwidth
and arrive at 22.1 t/s @ 8 threads. Mainline llama.cpp gets
20.6 t/s for Q5_0.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 142 |
1 files changed, 126 insertions, 16 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index 811a9fe9..eafb2887 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -3224,12 +3224,24 @@ static void repack_q4_0(int nrows, int n_per_row, const block_q4_0 * x, block_iq for (int row = 0; row < nrows; row += 4) { for (int k = 0; k < 4; ++k) x4[k] = x + nblock*k; for (int ib = 0; ib < nblock; ++ib) { - for (int k = 0; k < 4; ++k) y[ib].d[k] = x4[k][ib].d; - for (int k = 0; k < 4; ++k) for (int i = 0; i < 4; ++i) { - y[ib].qs[4*k+i+ 0] = (x4[k][ib].qs[i+0] & 0xf) | ((x4[k][ib].qs[i+ 8] & 0x0f) << 4); // 0....3 + 8...11 from each row - y[ib].qs[4*k+i+16] = (x4[k][ib].qs[i+0] >> 4) | ((x4[k][ib].qs[i+ 8] & 0xf0)); // 16...19 + 24...27 from each row - y[ib].qs[4*k+i+32] = (x4[k][ib].qs[i+4] & 0xf) | ((x4[k][ib].qs[i+12] & 0x0f) << 4); // 4....7 + 12...15 from each row - y[ib].qs[4*k+i+48] = (x4[k][ib].qs[i+4] >> 4) | ((x4[k][ib].qs[i+12] & 0xf0)); // 20...23 + 28...31 from each row + //for (int k = 0; k < 4; ++k) y[ib].d[k] = x4[k][ib].d; + //for (int k = 0; k < 4; ++k) for (int i = 0; i < 4; ++i) { + // y[ib].qs[4*k+i+ 0] = (x4[k][ib].qs[i+0] & 0xf) | ((x4[k][ib].qs[i+ 8] & 0x0f) << 4); // 0....3 + 8...11 from each row + // y[ib].qs[4*k+i+16] = (x4[k][ib].qs[i+0] >> 4) | ((x4[k][ib].qs[i+ 8] & 0xf0)); // 16...19 + 24...27 from each row + // y[ib].qs[4*k+i+32] = (x4[k][ib].qs[i+4] & 0xf) | ((x4[k][ib].qs[i+12] & 0x0f) << 4); // 4....7 + 12...15 from each row + // y[ib].qs[4*k+i+48] = (x4[k][ib].qs[i+4] >> 4) | ((x4[k][ib].qs[i+12] & 0xf0)); // 20...23 + 28...31 from each row + //} + for (int k = 0; k < 4; ++k) { + y[ib].d[k] = x4[k][ib].d; + for (int l = 0; l < 4; ++l) { + // l = 0 -> 0, 8 with shift 0 -> 4*(l/2), 4*(l/2)+8 with shift 4*(l%2) + // l = 1 -> 0, 8 with shift 4 + // l = 2 -> 4, 12 with shift 0 + // l = 3 -> 4, 12 with shift 4 + for (int i = 0; i < 4; ++i) { + y[ib].qs[4*k+i+16*l] = ((x4[k][ib].qs[i+4*(l/2)] >> 4*(l%2)) & 0xf) | (((x4[k][ib].qs[i+4*(l/2)+8] >> 4*(l%2)) & 0xf) << 4); + } + } } } x += 4*nblock; @@ -3254,21 +3266,18 @@ size_t quantize_q4_0_r4(const float * src, void * dst, int64_t nrows, int64_t n_ void dequantize_row_q4_0_r4(const block_iq4_nl_x4 * x, float * y, int64_t k) { // we assume we are called with 4 rows int n_per_row = k/4; - int nb = n_per_row/QK4_NL; + int nb = n_per_row/QK4_0; float * yk[4]; for (int k = 0; k < 4; ++k) yk[k] = y + k*n_per_row; for (int ib = 0; ib < nb; ++ib) { for (int k = 0; k < 4; ++k) { float scale = GGML_FP16_TO_FP32(x[ib].d[k]); - for (int i = 0; i < 4; ++i) { - yk[k][QK4_NL*ib+i+ 0] = scale * ((x[ib].qs[4*k+i+ 0] & 0xf) - 8); - yk[k][QK4_NL*ib+i+ 8] = scale * ((x[ib].qs[4*k+i+ 0] >> 4) - 8); - yk[k][QK4_NL*ib+i+16] = scale * ((x[ib].qs[4*k+i+16] & 0xf) - 8); - yk[k][QK4_NL*ib+i+24] = scale * ((x[ib].qs[4*k+i+16] >> 4) - 8); - yk[k][QK4_NL*ib+i+ 4] = scale * ((x[ib].qs[4*k+i+32] & 0xf) - 8); - yk[k][QK4_NL*ib+i+12] = scale * ((x[ib].qs[4*k+i+32] >> 4) - 8); - yk[k][QK4_NL*ib+i+20] = scale * ((x[ib].qs[4*k+i+48] & 0xf) - 8); - yk[k][QK4_NL*ib+i+28] = scale * ((x[ib].qs[4*k+i+48] >> 4) - 8); + for (int l = 0; l < 4; ++l) { + int ll = 16*(l%2) + 4*(l/2); + for (int i = 0; i < 4; ++i) { + yk[k][QK4_0*ib+i+ll+0] = scale * ((x[ib].qs[4*k+i+16*l] & 0xf) - 8); + yk[k][QK4_0*ib+i+ll+8] = scale * ((x[ib].qs[4*k+i+16*l] >> 4) - 8); + } } } } @@ -3365,3 +3374,104 @@ void vec_dot_q8_0_r4_q8_0(int n, float * s, size_t bs, const void * vx, size_t b GGML_UNUSED(bx); GGML_UNUSED(by); } + +// +// ========================================= q5_0_r4 +// +void quantize_row_q5_0_r4_ref(const float * x, block_q5_0_r4 * y, int64_t k) { + // we assume we are called with 4 rows + quantize_q5_0_r4(x, (void *)y, 4, k/4, nullptr); +} + +void quantize_row_q5_0_r4(const float * x, void * y, int64_t k) { + // we assume we are called with 4 rows + quantize_q5_0_r4(x, y, 4, k/4, nullptr); +} + +static inline void convert_q5_0(const block_q5_0& x, uint8_t * L) { + uint32_t qh; + memcpy(&qh, x.qh, sizeof(qh)); + + for (int j = 0; j < QK5_0/2; ++j) { + const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; + + L[j ] = (x.qs[j] & 0x0F) | xh_0; + L[j + QK4_0/2] = (x.qs[j] >> 4) | xh_1; + } +} + +static void repack_q5_0(int nrows, int n_per_row, const block_q5_0 * x, block_q5_0_r4 * y) { + GGML_ASSERT(nrows%4 == 0); + GGML_ASSERT(n_per_row%QK5_0 == 0); + int nblock = n_per_row/QK5_0; + const block_q5_0 * x4[4]; + uint8_t L[QK5_0]; + for (int row = 0; row < nrows; row += 4) { + for (int k = 0; k < 4; ++k) x4[k] = x + nblock*k; + for (int ib = 0; ib < nblock; ++ib) { + std::memset(y[ib].qh, 0, QK5_0/2); + for (int k = 0; k < 4; ++k) { + y[ib].d[k] = x4[k][ib].d; + convert_q5_0(x4[k][ib], L); + for (int l = 0; l < 4; ++l) { + int l1 = 4*(l/2) + 16*(l%2), l2 = l1 + 8; + for (int i = 0; i < 4; ++i) { + y[ib].qs[4*k+i+16*l] = (L[i + l1] & 0xf) | ((L[i + l2] & 0xf) << 4); + y[ib].qh[4*k+i] |= ((L[i + l1] >> 4) | ((L[i + l2] >> 4) << 4)) << l; + } + } + } + } + x += 4*nblock; + y += nblock; + } +} + +size_t quantize_q5_0_r4(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + GGML_ASSERT(nrows%4 == 0); + auto row_size_0 = ggml_row_size(GGML_TYPE_Q5_0, n_per_row); + std::vector<char> qtmp(4*row_size_0); + char * qrow = (char *)dst; + for (int row = 0; row < nrows; row += 4) { + quantize_q5_0(src, qtmp.data(), 4, n_per_row, imatrix); + repack_q5_0(4, n_per_row, (const block_q5_0 *)qtmp.data(), (block_q5_0_r4 *)qrow); + src += 4*n_per_row; + qrow += 4*row_size_0; + } + return nrows*row_size_0; +} + +void dequantize_row_q5_0_r4(const block_q5_0_r4 * x, float * y, int64_t k) { + // we assume we are called with 4 rows + int n_per_row = k/4; + int nb = n_per_row/QK8_0; + float * yk[4]; + for (int k = 0; k < 4; ++k) yk[k] = y + k*n_per_row; + for (int ib = 0; ib < nb; ++ib) { + for (int k = 0; k < 4; ++k) { + float d = GGML_FP16_TO_FP32(x[ib].d[k]); + float m = -16*d; + for (int l = 0; l < 4; ++l) { + int ll = 16*(l%2) + 4*(l/2); + for (int i = 0; i < 4; ++i) { + yk[k][QK4_0*ib+i+ll+0] = d * ((x[ib].qs[4*k+i+16*l] & 0xf) | (((x[ib].qh[4*k+i] >> (l+0)) & 1) << 4)) + m; + yk[k][QK4_0*ib+i+ll+8] = d * ((x[ib].qs[4*k+i+16*l] >> 4) | (((x[ib].qh[4*k+i] >> (l+4)) & 1) << 4)) + m; + } + } + } + } +} + +void vec_dot_q5_0_r4_q8_0(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { +#if GGML_USE_IQK_MULMAT + if (iqk_mul_mat(1, 1, n, GGML_TYPE_Q5_0_R4, vx, 0, GGML_TYPE_Q8_0, vy, 0, s, 0, 0, 1)) { + return; + } +#endif + GGML_ASSERT(n%QK4_NL == 0); + GGML_ASSERT(nrc == 1); + GGML_UNUSED(bs); + GGML_UNUSED(bx); + GGML_UNUSED(by); +} |