summaryrefslogtreecommitdiff
path: root/ggml/src/iqk/iqk_quantize.cpp
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2025-01-27 18:53:47 +0200
committerGitHub <noreply@github.com>2025-01-27 18:53:47 +0200
commitf725576345582144dfebd7f1e6c8ac93eb1eb0ca (patch)
tree12de4f7a7c4c9c75e1df955764200102e901a29d /ggml/src/iqk/iqk_quantize.cpp
parentd9c4ea48d1e41d8f7215ff1c094d75e7229b65e2 (diff)
Minor performance improvements (#179)
* Try interleaving 8 rows for iq4_xs On Zen4, PP-512 goes up from ~260 t/s to 288 t/s for L3-8B. TG-128 reaches max. performance at 2 threads and is slightly higher than 4 interleaved rows (14.48 t/s vs 13.11 t/s @ 2 threads and 14/28 t/s @ 4 threads). * Try interleaving 8 iq4_xs rows It is also faster on AVX2. This is the NEON implementation. It is tiny bit faster than 4 interleaved rows (~0.5%). So, this looks like a winner given the Zen4/AVX2 improvement without associated NEON egression. * Cleanup * 8-rows interleaved q8_0 (AVX2) * 8-rows interleaved q8_0 (Zen4) * 8-rows interleaved q8_0 (Zen4) - slightly better PP-512 is now 284 t/s compared to 257 t/s for 4-rows interleaved. TG-128 reaches peak of 8.16 t/s at just 2 threads compared to 7.95 t/s @ 4 threads before. * 8-rows interleaved q8_0 (NEON) PP-512 is slightly better (138 t/s vs 132.5 t/s), TG-128 is about the same. * FA: repack Q8_0 to Q8_0_R8 * Remove special purpose mul_mat_q8_0_r4_q8_1_128 (Zen4) * FA: repack Q8_0 to Q8_0_R8 (NEON) Very slightly faster than the general purpose gemm, slightly slower than the D = 128 special case gemm mul_mat_q8_0_r4_q8_0_128. Still removing mul_mat_q8_0_r4_q8_0_128 as we simply don't have enough vector registers to hold 8 interleaved rows, so there is no point to have the special purpose implementation. * q4_0_r8 (AVX2) * q4_0_r8 (NEON) Tiny bit faster PP (~128 vs ~126 t/s), same TG. * q4_0_r8 (Zen4) Somehow only marginally faster? 268 t/s vs 261 t/s * q4_0_r8 (Zen4) - slightly better 282 t/s for a pure q4_0 L3-8B quantization. * Apply platform specific modifications when repacking E.g., on NEON it is useful to pre-apply q ^ 0x88 to q4_0. This results in a ~3% performance improvement. Hence, * Changed the signature of the repack_X functions to take a bool argument indicating if the repacking is done online and, if so, apply modifications as appropriate while repacking. * Added iqk_modify_tensor to apply modifications to models that have already been repacked while loading the model. Caveat: just like rtr, this needs to have mmap disabled (else one would need to move the data to a not mmap-ed buffer, so much more complicated). * Apply platform specific modifications when repacking On Zen4 we can pre-convert the signed quants in q8_0_r4 and q8_k_r8 to unsigned thus avoiding these operations in matrix multiplications. With this change we hit PP-512 = 382.40 t/s (q8_k_r8) PP-512 = 306.92 t/s (q8_0_r4) for L3-8B on a Ryzen-7950X using q8_0 KV-cache. * Process up to 16 columns per kernel call for q8_k_r8 This brings PP-512 up to 389 t/s. * Be able to load Deepseek-v2-Lite --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/iqk/iqk_quantize.cpp')
-rw-r--r--ggml/src/iqk/iqk_quantize.cpp305
1 files changed, 204 insertions, 101 deletions
diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp
index 59a36c5c..c1e7771f 100644
--- a/ggml/src/iqk/iqk_quantize.cpp
+++ b/ggml/src/iqk/iqk_quantize.cpp
@@ -43,6 +43,15 @@ constexpr int popcount(uint32_t x) { return __builtin_popcount(x); }
constexpr int popcount(uint64_t x) { return __builtin_popcountll(x); }
#endif
+#if defined __x86_64__
+#if defined HAVE_FANCY_SIMD
+ #undef HAVE_FANCY_SIMD
+#endif
+#if defined(__AVX512F__) && defined(__AVX512VNNI__) && defined(__AVX512VL__) && defined(__AVX512BW__) && defined(__AVX512DQ__)
+ #define HAVE_FANCY_SIMD
+#endif
+#endif
+
namespace {
inline int nearest_int(float fval) {
@@ -3541,7 +3550,7 @@ void quantize_row_iq4_nl_r4(const float * x, void * y, int64_t k) {
quantize_iq4_nl_r4(x, y, 4, k/4, nullptr);
}
-static void repack_iq4_nl(int nrows, int n_per_row, const block_iq4_nl * x, block_iq4_nl_r4 * y) {
+static void repack_iq4_nl(int nrows, int n_per_row, const block_iq4_nl * x, block_iq4_nl_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK4_NL == 0);
int nblock = n_per_row/QK4_NL;
@@ -3569,7 +3578,7 @@ size_t quantize_iq4_nl_r4(const float * src, void * dst, int64_t nrows, int64_t
char * qrow = (char *)dst;
for (int row = 0; row < nrows; row += 4) {
quantize_iq4_nl(src, qtmp.data(), 4, n_per_row, imatrix);
- repack_iq4_nl(4, n_per_row, (const block_iq4_nl *)qtmp.data(), (block_iq4_nl_r4 *)qrow);
+ repack_iq4_nl(4, n_per_row, (const block_iq4_nl *)qtmp.data(), (block_iq4_nl_r4 *)qrow, false);
src += 4*n_per_row;
qrow += 4*row_size_nl;
}
@@ -3615,77 +3624,89 @@ void vec_dot_iq4_nl_r4_q8_0(int n, float * s, size_t bs, const void * vx, size_t
//
// ========================================= q4_0_r4
//
-void quantize_row_q4_0_r4_ref(const float * x, block_iq4_nl_r4 * y, int64_t k) {
- // we assume we are called with 4 rows
- quantize_q4_0_r4(x, (void *)y, 4, k/4, nullptr);
+void quantize_row_q4_0_r4_ref(const float * x, block_iq4_nl_r8 * y, int64_t k) {
+ // we assume we are called with 8 rows
+ quantize_q4_0_r4(x, (void *)y, 8, k/8, nullptr);
}
void quantize_row_q4_0_r4(const float * x, void * y, int64_t k) {
- // we assume we are called with 4 rows
- quantize_q4_0_r4(x, y, 4, k/4, nullptr);
+ // we assume we are called with 8 rows
+ quantize_q4_0_r4(x, y, 8, k/8, nullptr);
}
-static void repack_q4_0(int nrows, int n_per_row, const block_q4_0 * x, block_iq4_nl_r4 * y) {
- GGML_ASSERT(nrows%4 == 0);
- GGML_ASSERT(n_per_row%QK4_NL == 0);
- int nblock = n_per_row/QK4_NL;
- const block_q4_0 * x4[4];
- for (int row = 0; row < nrows; row += 4) {
- for (int k = 0; k < 4; ++k) x4[k] = x + nblock*k;
+static void repack_q4_0(int nrows, int n_per_row, const block_q4_0 * x, block_iq4_nl_r8 * y, [[maybe_unused]] bool online) {
+ GGML_ASSERT(nrows%8 == 0);
+ GGML_ASSERT(n_per_row%QK4_0 == 0);
+ int nblock = n_per_row/QK4_0;
+ const block_q4_0 * x8[8];
+ for (int row = 0; row < nrows; row += 8) {
+ for (int k = 0; k < 8; ++k) x8[k] = x + nblock*k;
for (int ib = 0; ib < nblock; ++ib) {
- //for (int k = 0; k < 4; ++k) y[ib].d[k] = x4[k][ib].d;
- //for (int k = 0; k < 4; ++k) for (int i = 0; i < 4; ++i) {
- // y[ib].qs[4*k+i+ 0] = (x4[k][ib].qs[i+0] & 0xf) | ((x4[k][ib].qs[i+ 8] & 0x0f) << 4); // 0....3 + 8...11 from each row
- // y[ib].qs[4*k+i+16] = (x4[k][ib].qs[i+0] >> 4) | ((x4[k][ib].qs[i+ 8] & 0xf0)); // 16...19 + 24...27 from each row
- // y[ib].qs[4*k+i+32] = (x4[k][ib].qs[i+4] & 0xf) | ((x4[k][ib].qs[i+12] & 0x0f) << 4); // 4....7 + 12...15 from each row
- // y[ib].qs[4*k+i+48] = (x4[k][ib].qs[i+4] >> 4) | ((x4[k][ib].qs[i+12] & 0xf0)); // 20...23 + 28...31 from each row
- //}
- for (int k = 0; k < 4; ++k) {
- y[ib].d[k] = x4[k][ib].d;
+ for (int k = 0; k < 8; ++k) {
+ y[ib].d[k] = x8[k][ib].d;
for (int l = 0; l < 4; ++l) {
- // l = 0 -> 0, 8 with shift 0 -> 4*(l/2), 4*(l/2)+8 with shift 4*(l%2)
- // l = 1 -> 0, 8 with shift 4
- // l = 2 -> 4, 12 with shift 0
- // l = 3 -> 4, 12 with shift 4
for (int i = 0; i < 4; ++i) {
- y[ib].qs[4*k+i+16*l] = ((x4[k][ib].qs[i+4*(l/2)] >> 4*(l%2)) & 0xf) | (((x4[k][ib].qs[i+4*(l/2)+8] >> 4*(l%2)) & 0xf) << 4);
+ y[ib].qs[32*l+4*k+i] = x8[k][ib].qs[4*l + i];
}
}
}
+#ifdef __ARM_NEON
+ if (online) {
+ for (int l = 0; l < 8; ++l) {
+ auto v = vld1q_u8(y[ib].qs + 16*l);
+ vst1q_u8(y[ib].qs + 16*l, veorq_u8(v, vdupq_n_u8(0x88)));
+ }
+ }
+#endif
}
- x += 4*nblock;
+ x += 8*nblock;
y += nblock;
}
}
+#ifdef __ARM_NEON
+static void modify_q4_0_r4(int64_t k, char * cy) {
+ auto y = (block_iq4_nl_r8 *)cy;
+ int nb = k/(32*8);
+ for (int ib = 0; ib < nb; ++ib) {
+ auto v1 = vld1q_u8_x4(y[ib].qs);
+ auto v2 = vld1q_u8_x4(y[ib].qs+64);
+ for (int j = 0; j < 4; ++j) {
+ v1.val[j] = veorq_u8(v1.val[j], vdupq_n_u8(0x88));
+ v2.val[j] = veorq_u8(v2.val[j], vdupq_n_u8(0x88));
+ }
+ vst1q_u8_x4(y[ib].qs+ 0, v1);
+ vst1q_u8_x4(y[ib].qs+64, v2);
+ }
+}
+#endif
size_t quantize_q4_0_r4(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
- GGML_ASSERT(nrows%4 == 0);
+ GGML_ASSERT(nrows%8 == 0);
auto row_size_nl = ggml_row_size(GGML_TYPE_IQ4_NL, n_per_row);
- std::vector<char> qtmp(4*row_size_nl);
+ std::vector<char> qtmp(8*row_size_nl);
char * qrow = (char *)dst;
- for (int row = 0; row < nrows; row += 4) {
- quantize_q4_0(src, qtmp.data(), 4, n_per_row, imatrix);
- repack_iq4_nl(4, n_per_row, (const block_iq4_nl *)qtmp.data(), (block_iq4_nl_r4 *)qrow);
- src += 4*n_per_row;
- qrow += 4*row_size_nl;
+ for (int row = 0; row < nrows; row += 8) {
+ quantize_q4_0(src, qtmp.data(), 8, n_per_row, imatrix);
+ repack_q4_0(8, n_per_row, (const block_q4_0 *)qtmp.data(), (block_iq4_nl_r8 *)qrow, false);
+ src += 8*n_per_row;
+ qrow += 8*row_size_nl;
}
return nrows*row_size_nl;
}
-void dequantize_row_q4_0_r4(const block_iq4_nl_r4 * x, float * y, int64_t k) {
- // we assume we are called with 4 rows
- int n_per_row = k/4;
+void dequantize_row_q4_0_r4(const block_iq4_nl_r8 * x, float * y, int64_t k) {
+ // we assume we are called with 8 rows
+ int n_per_row = k/8;
int nb = n_per_row/QK4_0;
- float * yk[4];
- for (int k = 0; k < 4; ++k) yk[k] = y + k*n_per_row;
+ float * yk[8];
+ for (int k = 0; k < 8; ++k) yk[k] = y + k*n_per_row;
for (int ib = 0; ib < nb; ++ib) {
- for (int k = 0; k < 4; ++k) {
+ for (int k = 0; k < 8; ++k) {
float scale = GGML_FP16_TO_FP32(x[ib].d[k]);
for (int l = 0; l < 4; ++l) {
- int ll = 16*(l%2) + 4*(l/2);
for (int i = 0; i < 4; ++i) {
- yk[k][QK4_0*ib+i+ll+0] = scale * ((x[ib].qs[4*k+i+16*l] & 0xf) - 8);
- yk[k][QK4_0*ib+i+ll+8] = scale * ((x[ib].qs[4*k+i+16*l] >> 4) - 8);
+ yk[k][QK4_0*ib+4*l+i+ 0] = scale * ((x[ib].qs[32*l+4*k+i] & 0xf) - 8);
+ yk[k][QK4_0*ib+4*l+i+16] = scale * ((x[ib].qs[32*l+4*k+i] >> 4) - 8);
}
}
}
@@ -3719,7 +3740,7 @@ void quantize_row_q8_0_r4(const float * x, void * y, int64_t k) {
quantize_q8_0_r4(x, y, 8, k/8, nullptr);
}
-static void repack_q8_0(int nrows, int n_per_row, const block_q8_0 * x, block_q8_0_r8 * y) {
+static void repack_q8_0(int nrows, int n_per_row, const block_q8_0 * x, block_q8_0_r8 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%8 == 0);
GGML_ASSERT(n_per_row%QK8_0 == 0);
int nblock = n_per_row/QK8_0;
@@ -3734,12 +3755,33 @@ static void repack_q8_0(int nrows, int n_per_row, const block_q8_0 * x, block_q8
y[ib].qs[32*l+4*k+i+128] = x8[k][ib].qs[i+4*l+16];
}
}
+#ifdef HAVE_FANCY_SIMD
+ if (online) {
+ for (int l = 0; l < 4; ++l) {
+ auto v = _mm512_add_epi8(_mm512_loadu_si512((const __m512i *)y[ib].qs + l), _mm512_set1_epi8(127));
+ _mm512_storeu_si512((__m512i *)y[ib].qs + l, v);
+ }
+ }
+#endif
}
x += 8*nblock;
y += nblock;
}
}
+#ifdef HAVE_FANCY_SIMD
+static void modify_q8_0_r4(int64_t k, char * cy) {
+ auto y = (block_iq4_nl_r8 *)cy;
+ int nb = k/(32*8);
+ for (int ib = 0; ib < nb; ++ib) {
+ for (int l = 0; l < 4; ++l) {
+ auto v = _mm512_add_epi8(_mm512_loadu_si512((const __m512i *)y[ib].qs + l), _mm512_set1_epi8(127));
+ _mm512_storeu_si512((__m512i *)y[ib].qs + l, v);
+ }
+ }
+}
+#endif
+
size_t quantize_q8_0_r4(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) {
GGML_ASSERT(nrows%8 == 0);
auto row_size_0 = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
@@ -3747,7 +3789,7 @@ size_t quantize_q8_0_r4(const float * src, void * dst, int64_t nrows, int64_t n_
char * qrow = (char *)dst;
for (int row = 0; row < nrows; row += 8) {
quantize_q8_0(src, qtmp.data(), 8, n_per_row, imatrix);
- repack_q8_0(8, n_per_row, (const block_q8_0 *)qtmp.data(), (block_q8_0_r8 *)qrow);
+ repack_q8_0(8, n_per_row, (const block_q8_0 *)qtmp.data(), (block_q8_0_r8 *)qrow, false);
src += 8*n_per_row;
qrow += 8*row_size_0;
}
@@ -3810,7 +3852,7 @@ static inline void convert_q5_0(const block_q5_0& x, uint8_t * L) {
}
}
-static void repack_q5_0(int nrows, int n_per_row, const block_q5_0 * x, block_q5_0_r4 * y) {
+static void repack_q5_0(int nrows, int n_per_row, const block_q5_0 * x, block_q5_0_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK5_0 == 0);
int nblock = n_per_row/QK5_0;
@@ -3844,7 +3886,7 @@ size_t quantize_q5_0_r4(const float * src, void * dst, int64_t nrows, int64_t n_
char * qrow = (char *)dst;
for (int row = 0; row < nrows; row += 4) {
quantize_q5_0(src, qtmp.data(), 4, n_per_row, imatrix);
- repack_q5_0(4, n_per_row, (const block_q5_0 *)qtmp.data(), (block_q5_0_r4 *)qrow);
+ repack_q5_0(4, n_per_row, (const block_q5_0 *)qtmp.data(), (block_q5_0_r4 *)qrow, false);
src += 4*n_per_row;
qrow += 4*row_size_0;
}
@@ -3907,7 +3949,7 @@ static inline void convert_q6_0(const block_q6_0& x, uint8_t * L) {
}
}
-static void repack_q6_0(int nrows, int n_per_row, const block_q6_0 * x, block_q6_0_r4 * y) {
+static void repack_q6_0(int nrows, int n_per_row, const block_q6_0 * x, block_q6_0_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK5_0 == 0);
int nblock = n_per_row/QK6_0;
@@ -3941,7 +3983,7 @@ size_t quantize_q6_0_r4(const float * src, void * dst, int64_t nrows, int64_t n_
char * qrow = (char *)dst;
for (int row = 0; row < nrows; row += 4) {
quantize_q6_0(src, qtmp.data(), 4, n_per_row, imatrix);
- repack_q6_0(4, n_per_row, (const block_q6_0 *)qtmp.data(), (block_q6_0_r4 *)qrow);
+ repack_q6_0(4, n_per_row, (const block_q6_0 *)qtmp.data(), (block_q6_0_r4 *)qrow, false);
src += 4*n_per_row;
qrow += 4*row_size_0;
}
@@ -3994,7 +4036,7 @@ void quantize_row_iq4_xs_r4(const float * x, void * y, int64_t k) {
quantize_iq4_xs_r4(x, y, 8, k/8, nullptr);
}
-static void repack_iq4_xs(int nrows, int n_per_row, const block_iq4_xs * x, block_iq4_xs_r4 * y) {
+static void repack_iq4_xs(int nrows, int n_per_row, const block_iq4_xs * x, block_iq4_xs_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%8 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -4034,7 +4076,7 @@ size_t quantize_iq4_xs_r4(const float * src, void * dst, int64_t nrows, int64_t
std::vector<char> qtmp(8*row_size);
for (int row = 0; row < nrows; row += 8) {
quantize_iq4_xs(src, (void *)qtmp.data(), 8, n_per_row, imatrix);
- repack_iq4_xs(8, n_per_row, (const block_iq4_xs *)qtmp.data(), (block_iq4_xs_r4 *)qcur);
+ repack_iq4_xs(8, n_per_row, (const block_iq4_xs *)qtmp.data(), (block_iq4_xs_r4 *)qcur, false);
qcur += 8*row_size;
src += 8*n_per_row;
}
@@ -4086,7 +4128,7 @@ void quantize_row_iq4_ks_r4(const float * x, void * y, int64_t k) {
quantize_iq4_ks_r4(x, y, 4, k/4, nullptr);
}
-static void repack_iq4_ks(int nrows, int n_per_row, const block_iq4_ks * x, block_iq4_ks_r4 * y) {
+static void repack_iq4_ks(int nrows, int n_per_row, const block_iq4_ks * x, block_iq4_ks_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
auto row_size = ggml_row_size(GGML_TYPE_IQ4_KS, n_per_row);
@@ -4128,7 +4170,7 @@ size_t quantize_iq4_ks_r4(const float * src, void * dst, int64_t nrows, int64_t
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq4_ks(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq4_ks(4, n_per_row, (const block_iq4_ks *)qtmp.data(), (block_iq4_ks_r4 *)qcur);
+ repack_iq4_ks(4, n_per_row, (const block_iq4_ks *)qtmp.data(), (block_iq4_ks_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -4187,7 +4229,7 @@ void quantize_row_iq2_bn_r4(const float * x, void * y, int64_t k) {
}
namespace {
-void repack_iq2_bn(int nrows, int n_per_row, const char * x, char * y) {
+void repack_iq2_bn(int nrows, int n_per_row, const char * x, char * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_IQ1BN == 0);
int nblock = n_per_row/QK_IQ1BN;
@@ -4256,7 +4298,7 @@ size_t quantize_iq2_bn_r4(const float * src, void * dst, int64_t nrows, int64_t
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq2_bn(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq2_bn(4, n_per_row, qtmp.data(), qcur);
+ repack_iq2_bn(4, n_per_row, qtmp.data(), qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -4330,7 +4372,7 @@ inline void convert_q4_k(const block_q4_K& x, uint8_t * L, uint8_t * Ld, uint8_t
}
}
-static void repack_q4_k(int nrows, int n_per_row, const block_q4_K * x, block_q4_k_r4 * y) {
+static void repack_q4_k(int nrows, int n_per_row, const block_q4_K * x, block_q4_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -4371,7 +4413,7 @@ size_t quantize_q4_k_r4(const float * src, void * dst, int64_t nrows, int64_t n_
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_q4_K(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_q4_k(4, n_per_row, (const block_q4_K *)qtmp.data(), (block_q4_k_r4 *)qcur);
+ repack_q4_k(4, n_per_row, (const block_q4_K *)qtmp.data(), (block_q4_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -4448,7 +4490,7 @@ inline void convert_q6_k(const block_q6_K& x, uint8_t * L) {
}
}
-static void repack_q6_k(int nrows, int n_per_row, const block_q6_K * x, block_q6_k_r4 * y) {
+static void repack_q6_k(int nrows, int n_per_row, const block_q6_K * x, block_q6_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -4487,7 +4529,7 @@ size_t quantize_q6_k_r4(const float * src, void * dst, int64_t nrows, int64_t n_
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_q6_K(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_q6_k(4, n_per_row, (const block_q6_K *)qtmp.data(), (block_q6_k_r4 *)qcur);
+ repack_q6_k(4, n_per_row, (const block_q6_K *)qtmp.data(), (block_q6_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -4562,7 +4604,7 @@ inline void convert_q5_k(const block_q5_K& x, uint8_t * L, uint8_t * Ld, uint8_t
}
}
-static void repack_q5_k(int nrows, int n_per_row, const block_q5_K * x, block_q5_k_r4 * y) {
+static void repack_q5_k(int nrows, int n_per_row, const block_q5_K * x, block_q5_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -4605,7 +4647,7 @@ size_t quantize_q5_k_r4(const float * src, void * dst, int64_t nrows, int64_t n_
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_q5_K(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_q5_k(4, n_per_row, (const block_q5_K *)qtmp.data(), (block_q5_k_r4 *)qcur);
+ repack_q5_k(4, n_per_row, (const block_q5_K *)qtmp.data(), (block_q5_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -4698,7 +4740,7 @@ inline void convert_q3_k(const block_q3_K& x, uint8_t * L, uint8_t * Ld) {
}
}
-static void repack_q3_k(int nrows, int n_per_row, const block_q3_K * x, block_q3_k_r4 * y) {
+static void repack_q3_k(int nrows, int n_per_row, const block_q3_K * x, block_q3_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -4741,7 +4783,7 @@ size_t quantize_q3_k_r4(const float * src, void * dst, int64_t nrows, int64_t n_
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_q3_K(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_q3_k(4, n_per_row, (const block_q3_K *)qtmp.data(), (block_q3_k_r4 *)qcur);
+ repack_q3_k(4, n_per_row, (const block_q3_K *)qtmp.data(), (block_q3_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -4820,7 +4862,7 @@ inline void convert_q2_k(const block_q2_K& x, uint8_t * L) {
}
}
-static void repack_q2_k(int nrows, int n_per_row, const block_q2_K * x, block_q2_k_r4 * y) {
+static void repack_q2_k(int nrows, int n_per_row, const block_q2_K * x, block_q2_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -4857,7 +4899,7 @@ size_t quantize_q2_k_r4(const float * src, void * dst, int64_t nrows, int64_t n_
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_q2_K(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_q2_k(4, n_per_row, (const block_q2_K *)qtmp.data(), (block_q2_k_r4 *)qcur);
+ repack_q2_k(4, n_per_row, (const block_q2_K *)qtmp.data(), (block_q2_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -4919,7 +4961,7 @@ void quantize_row_iq4_k_r4(const float * x, void * y, int64_t k) {
quantize_iq4_k_r4(x, y, 4, k/4, nullptr);
}
-static void repack_iq4_k(int nrows, int n_per_row, const block_iq4_k * x, block_iq4_k_r4 * y) {
+static void repack_iq4_k(int nrows, int n_per_row, const block_iq4_k * x, block_iq4_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -4972,7 +5014,7 @@ size_t quantize_iq4_k_r4(const float * src, void * dst, int64_t nrows, int64_t n
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq4_k(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq4_k(4, n_per_row, (const block_iq4_k *)qtmp.data(), (block_iq4_k_r4 *)qcur);
+ repack_iq4_k(4, n_per_row, (const block_iq4_k *)qtmp.data(), (block_iq4_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -5053,7 +5095,7 @@ inline void convert_iq5_k(const block_iq5_k& x, uint8_t * L) {
}
}
-static void repack_iq5_k(int nrows, int n_per_row, const block_iq5_k * x, block_iq5_k_r4 * y) {
+static void repack_iq5_k(int nrows, int n_per_row, const block_iq5_k * x, block_iq5_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5108,7 +5150,7 @@ size_t quantize_iq5_k_r4(const float * src, void * dst, int64_t nrows, int64_t n
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq5_k(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq5_k(4, n_per_row, (const block_iq5_k *)qtmp.data(), (block_iq5_k_r4 *)qcur);
+ repack_iq5_k(4, n_per_row, (const block_iq5_k *)qtmp.data(), (block_iq5_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -5169,7 +5211,7 @@ void quantize_row_q8_k_r8(const float * x, void * y, int64_t k) {
quantize_q8_k_r8(x, y, 8, k/8, nullptr);
}
-static void repack_q8_k(int nrows, int n_per_row, const block_q8_K * x, block_q8_k_r8 * y) {
+static void repack_q8_k(int nrows, int n_per_row, const block_q8_K * x, block_q8_k_r8 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%8 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5183,11 +5225,31 @@ static void repack_q8_k(int nrows, int n_per_row, const block_q8_K * x, block_q8
for (int i = 0; i < 4; ++i) y[ibl].qs[32*ib + 4*k + i] = x8[k][ibl].qs[4*ib+i];
}
}
+#ifdef HAVE_FANCY_SIMD
+ if (online) {
+ for (int l = 0; l < 32; ++l) {
+ auto v = _mm512_xor_si512(_mm512_loadu_si512((const __m512i *)y[ibl].qs + l), _mm512_set1_epi8(-128));
+ _mm512_storeu_si512((__m512i *)y[ibl].qs + l, v);
+ }
+ }
+#endif
}
x += 8*nblock;
y += nblock;
}
}
+#ifdef HAVE_FANCY_SIMD
+static void modify_q8_k_r8(int64_t k, char * cy) {
+ auto y = (block_q8_k_r8 *)cy;
+ int nb = k/(256*8);
+ for (int ib = 0; ib < nb; ++ib) {
+ for (int l = 0; l < 32; ++l) {
+ auto v = _mm512_xor_si512(_mm512_loadu_si512((const __m512i *)y[ib].qs + l), _mm512_set1_epi8(-128));
+ _mm512_storeu_si512((__m512i *)y[ib].qs + l, v);
+ }
+ }
+}
+#endif
size_t quantize_q8_k_r8(const float * src, void * dst, int64_t nrows, int64_t n_per_row, [[maybe_unused]] const float * imatrix) {
GGML_ASSERT(nrows%8 == 0);
@@ -5198,7 +5260,7 @@ size_t quantize_q8_k_r8(const float * src, void * dst, int64_t nrows, int64_t n_
std::vector<char> qtmp(8*row_size_0);
for (int row = 0; row < nrows; row += 8) {
quantize_row_q8_K32(src, (void *)qtmp.data(), 8*n_per_row);
- repack_q8_k(8, n_per_row, (const block_q8_K *)qtmp.data(), (block_q8_k_r8 *)qcur);
+ repack_q8_k(8, n_per_row, (const block_q8_K *)qtmp.data(), (block_q8_k_r8 *)qcur, false);
qcur += 8*row_size_1;
src += 8*n_per_row;
}
@@ -5247,7 +5309,7 @@ inline ggml_bf16_t to_bf16(const float& x) {
inline ggml_bf16_t to_bf16(const ggml_half& x) { return to_bf16(GGML_FP16_TO_FP32(x)); }
inline ggml_bf16_t to_bf16(const ggml_bf16_t& x) { return x; }
template <typename T>
-void repack_bf16(int nrows, int n_per_row, const T * x, ggml_bf16_t * y) {
+void repack_bf16(int nrows, int n_per_row, const T * x, ggml_bf16_t * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%16 == 0);
GGML_ASSERT(n_per_row%2 == 0);
for (int row = 0; row < nrows; row += 16) {
@@ -5265,11 +5327,11 @@ void repack_bf16(int nrows, int n_per_row, const T * x, ggml_bf16_t * y) {
}
void repack_f32_bf16_r16(const void * src, void * dst, int64_t nrows, int64_t n_per_row) {
- repack_bf16(nrows, n_per_row, (const float *)src, (ggml_bf16_t *)dst);
+ repack_bf16(nrows, n_per_row, (const float *)src, (ggml_bf16_t *)dst, false);
}
void repack_bf16_bf16_r16(const void * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row) {
- repack_bf16(nrows, n_per_row, (const ggml_bf16_t *)src, (ggml_bf16_t *)dst);
+ repack_bf16(nrows, n_per_row, (const ggml_bf16_t *)src, (ggml_bf16_t *)dst, false);
}
//
@@ -5301,7 +5363,7 @@ inline void convert_iq3_k(const block_iq3_k& x, uint8_t * L) {
}
}
-static void repack_iq3_k(int nrows, int n_per_row, const block_iq3_k * x, block_iq3_k_r4 * y) {
+static void repack_iq3_k(int nrows, int n_per_row, const block_iq3_k * x, block_iq3_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5355,7 +5417,7 @@ size_t quantize_iq3_k_r4(const float * src, void * dst, int64_t nrows, int64_t n
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq3_k(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq3_k(4, n_per_row, (const block_iq3_k *)qtmp.data(), (block_iq3_k_r4 *)qcur);
+ repack_iq3_k(4, n_per_row, (const block_iq3_k *)qtmp.data(), (block_iq3_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -5435,7 +5497,7 @@ inline void convert_iq2_k(const block_iq2_k& x, uint8_t * L) {
}
}
-static void repack_iq2_k(int nrows, int n_per_row, const block_iq2_k * x, block_iq2_k_r4 * y) {
+static void repack_iq2_k(int nrows, int n_per_row, const block_iq2_k * x, block_iq2_k_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5480,7 +5542,7 @@ size_t quantize_iq2_k_r4(const float * src, void * dst, int64_t nrows, int64_t n
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq2_k(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq2_k(4, n_per_row, (const block_iq2_k *)qtmp.data(), (block_iq2_k_r4 *)qcur);
+ repack_iq2_k(4, n_per_row, (const block_iq2_k *)qtmp.data(), (block_iq2_k_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -5532,15 +5594,6 @@ void vec_dot_iq2_k_r4_q8_k(int n, float * s, size_t bs, const void * vx, size_t
}
namespace {
-struct Repack {
- using repack_func = void (*) (int nrows, int n_per_row, const char * src, char * dst);
- ggml_type new_type;
- int num_rows;
- repack_func repack;
-};
-}
-
-namespace {
inline uint8_t scrambled_sign(uint8_t s) {
static const uint8_t k_table[128] = {
0x00, 0x7f, 0x7e, 0x01, 0x7c, 0x03, 0x02, 0x7d, 0x78, 0x07, 0x06, 0x79, 0x04, 0x7b, 0x7a, 0x05,
@@ -5568,7 +5621,7 @@ void quantize_row_iq2_xxs_r4(const float * x, void * y, int64_t k) {
quantize_iq2_xxs_r4(x, y, 4, k/4, nullptr);
}
-static void repack_iq2_xxs(int nrows, int n_per_row, const block_iq2_xxs * x, block_iq2_xxs_r4 * y) {
+static void repack_iq2_xxs(int nrows, int n_per_row, const block_iq2_xxs * x, block_iq2_xxs_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5609,7 +5662,7 @@ size_t quantize_iq2_xxs_r4(const float * src, void * dst, int64_t nrows, int64_t
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq2_xxs(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq2_xxs(4, n_per_row, (const block_iq2_xxs *)qtmp.data(), (block_iq2_xxs_r4 *)qcur);
+ repack_iq2_xxs(4, n_per_row, (const block_iq2_xxs *)qtmp.data(), (block_iq2_xxs_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -5668,7 +5721,7 @@ void quantize_row_iq2_xs_r4(const float * x, void * y, int64_t k) {
quantize_iq2_xs_r4(x, y, 4, k/4, nullptr);
}
-static void repack_iq2_xs(int nrows, int n_per_row, const block_iq2_xs * x, block_iq2_xs_r4 * y) {
+static void repack_iq2_xs(int nrows, int n_per_row, const block_iq2_xs * x, block_iq2_xs_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5701,7 +5754,7 @@ size_t quantize_iq2_xs_r4(const float * src, void * dst, int64_t nrows, int64_t
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq2_xs(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq2_xs(4, n_per_row, (const block_iq2_xs *)qtmp.data(), (block_iq2_xs_r4 *)qcur);
+ repack_iq2_xs(4, n_per_row, (const block_iq2_xs *)qtmp.data(), (block_iq2_xs_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -5755,7 +5808,7 @@ void quantize_row_iq2_s_r4(const float * x, void * y, int64_t k) {
quantize_iq2_s_r4(x, y, 4, k/4, nullptr);
}
-static void repack_iq2_s(int nrows, int n_per_row, const block_iq2_s * x, block_iq2_s_r4 * y) {
+static void repack_iq2_s(int nrows, int n_per_row, const block_iq2_s * x, block_iq2_s_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5789,7 +5842,7 @@ size_t quantize_iq2_s_r4(const float * src, void * dst, int64_t nrows, int64_t n
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq2_s(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq2_s(4, n_per_row, (const block_iq2_s *)qtmp.data(), (block_iq2_s_r4 *)qcur);
+ repack_iq2_s(4, n_per_row, (const block_iq2_s *)qtmp.data(), (block_iq2_s_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -5845,7 +5898,7 @@ void quantize_row_iq3_xxs_r4(const float * x, void * y, int64_t k) {
namespace {
}
-static void repack_iq3_xxs(int nrows, int n_per_row, const block_iq3_xxs * x, block_iq3_xxs_r4 * y) {
+static void repack_iq3_xxs(int nrows, int n_per_row, const block_iq3_xxs * x, block_iq3_xxs_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5886,7 +5939,7 @@ size_t quantize_iq3_xxs_r4(const float * src, void * dst, int64_t nrows, int64_t
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq3_xxs(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq3_xxs(4, n_per_row, (const block_iq3_xxs *)qtmp.data(), (block_iq3_xxs_r4 *)qcur);
+ repack_iq3_xxs(4, n_per_row, (const block_iq3_xxs *)qtmp.data(), (block_iq3_xxs_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -5945,7 +5998,7 @@ void quantize_row_iq3_s_r4(const float * x, void * y, int64_t k) {
quantize_iq3_s_r4(x, y, 4, k/4, nullptr);
}
-static void repack_iq3_s(int nrows, int n_per_row, const block_iq3_s * x, block_iq3_s_r4 * y) {
+static void repack_iq3_s(int nrows, int n_per_row, const block_iq3_s * x, block_iq3_s_r4 * y, [[maybe_unused]] bool online) {
GGML_ASSERT(nrows%4 == 0);
GGML_ASSERT(n_per_row%QK_K == 0);
int nblock = n_per_row/QK_K;
@@ -5991,7 +6044,7 @@ size_t quantize_iq3_s_r4(const float * src, void * dst, int64_t nrows, int64_t n
std::vector<char> qtmp(4*row_size);
for (int row = 0; row < nrows; row += 4) {
quantize_iq3_s(src, (void *)qtmp.data(), 4, n_per_row, imatrix);
- repack_iq3_s(4, n_per_row, (const block_iq3_s *)qtmp.data(), (block_iq3_s_r4 *)qcur);
+ repack_iq3_s(4, n_per_row, (const block_iq3_s *)qtmp.data(), (block_iq3_s_r4 *)qcur, false);
qcur += 4*row_size;
src += 4*n_per_row;
}
@@ -6036,6 +6089,56 @@ void vec_dot_iq3_s_r4_q8_k(int n, float * s, size_t bs, const void * vx, size_t
//================================================
+namespace {
+struct Repack {
+ using repack_func = void (*) (int nrows, int n_per_row, const char * src, char * dst, bool online);
+ ggml_type new_type;
+ int num_rows;
+ repack_func repack;
+};
+struct Modify {
+ using modify_func_t = void (*)(int64_t k, char * src_dst);
+ modify_func_t mod_func;
+ int nrows;
+};
+}
+
+bool iqk_modify_tensor(struct ggml_tensor * tensor) {
+ static const std::unordered_map<ggml_type, Modify> k_mod_map = {
+#ifdef __ARM_NEON
+ { GGML_TYPE_Q4_0_R4, {modify_q4_0_r4, 8} },
+#endif
+#ifdef HAVE_FANCY_SIMD
+ { GGML_TYPE_Q8_0_R4, {modify_q8_0_r4, 8} },
+ { GGML_TYPE_Q8_K_R8, {modify_q8_k_r8, 8} },
+#endif
+ };
+ auto it = k_mod_map.find(tensor->type);
+ if (it == k_mod_map.end()) return false;
+
+ auto& m = it->second;
+ int nrows = ggml_nrows(tensor);
+ int nchunks = nrows/m.nrows;
+ int max_thread = std::max(1, int(std::thread::hardware_concurrency()/2));
+ int nthread = std::min(nchunks, max_thread);
+ auto row_size = ggml_row_size(tensor->type, tensor->ne[0]);
+ std::atomic<int> counter(0);
+ auto compute = [&counter, &m, tensor, row_size, nchunks] () {
+ int64_t n_per_call = m.nrows*tensor->ne[0];
+ while (true) {
+ int row = counter.fetch_add(1);
+ if (row >= nchunks) break;
+ m.mod_func(n_per_call, (char *)tensor->data + row_size*row*m.nrows);
+ }
+ };
+ std::vector<std::thread> workers(nthread-1);
+ for (auto& w : workers) w = std::thread(compute);
+ compute();
+ for (auto& w : workers) w.join();
+
+ return true;
+}
+
void iqk_repack_tensor(struct ggml_tensor * tensor) {
constexpr int kChunk = 8;
if (!tensor) return;
@@ -6061,7 +6164,7 @@ void iqk_repack_tensor(struct ggml_tensor * tensor) {
{ GGML_TYPE_Q4_K, { GGML_TYPE_Q4_K_R4, 4, (Repack::repack_func)repack_q4_k} },
{ GGML_TYPE_Q5_K, { GGML_TYPE_Q5_K_R4, 4, (Repack::repack_func)repack_q5_k} },
{ GGML_TYPE_Q6_K, { GGML_TYPE_Q6_K_R4, 4, (Repack::repack_func)repack_q6_k} },
- { GGML_TYPE_Q4_0, { GGML_TYPE_Q4_0_R4, 4, (Repack::repack_func)repack_q4_0} },
+ { GGML_TYPE_Q4_0, { GGML_TYPE_Q4_0_R4, 8, (Repack::repack_func)repack_q4_0} },
{ GGML_TYPE_Q5_0, { GGML_TYPE_Q5_0_R4, 4, (Repack::repack_func)repack_q5_0} },
{ GGML_TYPE_Q6_0, { GGML_TYPE_Q6_0_R4, 4, (Repack::repack_func)repack_q6_0} },
{ GGML_TYPE_Q8_0, { GGML_TYPE_Q8_0_R4, 8, (Repack::repack_func)repack_q8_0} },
@@ -6099,7 +6202,7 @@ void iqk_repack_tensor(struct ggml_tensor * tensor) {
int last_row = std::min(first_row + chunkSize*r.num_rows, nrows);
for (int row = first_row; row < last_row; row += r.num_rows) {
std::memcpy(qtmp.data(), data + row*row_size, r.num_rows*row_size);
- r.repack(r.num_rows, n_per_row, qtmp.data(), data + row*row_size);
+ r.repack(r.num_rows, n_per_row, qtmp.data(), data + row*row_size, true);
}
}
};