diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /ggml/src/llamafile/sgemm.cpp | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'ggml/src/llamafile/sgemm.cpp')
-rw-r--r-- | ggml/src/llamafile/sgemm.cpp | 1028 |
1 files changed, 1028 insertions, 0 deletions
diff --git a/ggml/src/llamafile/sgemm.cpp b/ggml/src/llamafile/sgemm.cpp new file mode 100644 index 00000000..9d56af78 --- /dev/null +++ b/ggml/src/llamafile/sgemm.cpp @@ -0,0 +1,1028 @@ +// Copyright 2024 Mozilla Foundation +// +// Permission is hereby granted, free of charge, to any person obtaining +// a copy of this software and associated documentation files (the +// "Software"), to deal in the Software without restriction, including +// without limitation the rights to use, copy, modify, merge, publish, +// distribute, sublicense, and/or sell copies of the Software, and to +// permit persons to whom the Software is furnished to do so, subject to +// the following conditions: +// +// The above copyright notice and this permission notice shall be +// included in all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +// +// _ _ ___ _ _ ___ +// | |_(_)_ _ _ _| _ ) | /_\ / __| +// | _| | ' \ || | _ \ |__ / _ \\__ \. +// \__|_|_||_\_, |___/____/_/ \_\___/ +// |__/ +// +// BASIC LINEAR ALGEBRA SUBPROGRAMS +// +// +// This file implements multithreaded CPU matrix multiplication for the +// common contiguous use case C = Aᵀ * B. These kernels are designed to +// have excellent performance[1] for matrices that fit in the CPU cache +// without imposing any overhead such as cache filling or malloc calls. +// +// This implementation does not guarantee any upper bound with rounding +// errors, which grow along with k. Our goal's to maximally exploit the +// hardware for performance, and then use whatever resources remain for +// improving numerical accuracy. +// +// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online]. +// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024]. + +#if defined(__GNUC__) +#pragma GCC diagnostic ignored "-Wpedantic" +#pragma GCC diagnostic ignored "-Wignored-attributes" +#endif + +#include "sgemm.h" +#include "ggml-impl.h" +#include "ggml-quants.h" + +#ifdef _MSC_VER +#define NOINLINE __declspec(noinline) +#else +#define NOINLINE __attribute__((__noinline__)) +#endif + +#if defined(__ARM_NEON) || defined(__AVX512F__) +#define VECTOR_REGISTERS 32 +#else +#define VECTOR_REGISTERS 16 +#endif + +#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) + +namespace { + +inline float unhalf(ggml_fp16_t d) { + return GGML_FP16_TO_FP32(d); +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// VECTORIZED ARITHMETIC OPERATIONS + +#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); } +inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); } +inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); } +#endif // __SSE__ + +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); } +inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); } +inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); } +#endif // __AVX__ + +#if defined(__AVX512F__) +inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); } +inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); } +inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); } +#endif // __AVX512F__ + +#if defined(__ARM_NEON) +inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); } +inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); } +inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); } +#endif // __ARM_NEON + +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) +inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); } +inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); } +inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); } +#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// VECTORIZED FUSED MULTIPLY ADD + +/** + * Computes a * b + c. + */ +template <typename T, typename U> +inline U madd(T a, T b, U c) { + return add(mul(a, b), c); +} + +#if defined(__FMA__) +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +template <> +inline __m256 madd(__m256 a, __m256 b, __m256 c) { + return _mm256_fmadd_ps(a, b, c); +} +#endif +#if defined(__AVX512F__) +template <> +inline __m512 madd(__m512 a, __m512 b, __m512 c) { + return _mm512_fmadd_ps(a, b, c); +} +#endif +#endif + +#if defined(__ARM_FEATURE_FMA) +template <> +inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) { + return vfmaq_f32(c, b, a); +} +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) +template <> +inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) { + return vfmaq_f16(c, b, a); +} +#endif +#endif + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// VECTORIZED HORIZONTAL SUM + +#if defined(__ARM_NEON) +inline float hsum(float32x4_t x) { + return vaddvq_f32(x); +} +#endif // __ARM_NEON + +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) +inline float hsum(float16x8_t x) { + return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)), + vcvt_f32_f16(vget_high_f16(x)))); +} +#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC + +#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +inline float hsum(__m128 x) { +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) + x = _mm_add_ps(x, _mm_movehl_ps(x, x)); + x = _mm_add_ss(x, _mm_movehdup_ps(x)); +#else + __m128 t; + t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1)); + x = _mm_add_ps(x, t); + t = _mm_movehl_ps(t, x); + x = _mm_add_ss(x, t); +#endif + return _mm_cvtss_f32(x); +} +#endif + +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +inline float hsum(__m256 x) { + return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1), + _mm256_castps256_ps128(x))); +} +#endif // __AVX__ + +#if defined(__AVX512F__) +inline float hsum(__m512 x) { + return _mm512_reduce_add_ps(x); +} +#endif // __AVX512F__ + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// VECTORIZED MEMORY LOADING + +template <typename T, typename U> T load(const U *); + +#if defined(__ARM_NEON) +template <> inline float32x4_t load(const float *p) { + return vld1q_f32(p); +} +#if !defined(_MSC_VER) +template <> inline float16x8_t load(const ggml_fp16_t *p) { + return vld1q_f16((const float16_t *)p); +} +template <> inline float32x4_t load(const ggml_fp16_t *p) { + return vcvt_f32_f16(vld1_f16((const float16_t *)p)); +} +#endif // _MSC_VER +#endif // __ARM_NEON + +#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +template <> inline __m128 load(const float *p) { + return _mm_loadu_ps(p); +} +#endif // __SSE__ + +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +template <> inline __m256 load(const float *p) { + return _mm256_loadu_ps(p); +} +#endif // __AVX__ + +#if defined(__F16C__) +template <> inline __m256 load(const ggml_fp16_t *p) { + return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p)); +} +#endif // __F16C__ + +#if defined(__AVX512F__) +template <> inline __m512 load(const float *p) { + return _mm512_loadu_ps(p); +} +template <> inline __m512 load(const ggml_fp16_t *p) { + return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p)); +} +#endif // __AVX512F__ + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// FLOATING POINT MATRIX MULTIPLICATION + +template <int KN, typename D, typename V, typename TA, typename TB, typename TC> +class tinyBLAS { + public: + tinyBLAS(int64_t k, + const TA *A, int64_t lda, + const TB *B, int64_t ldb, + TC *C, int64_t ldc, + int ith, int nth) + : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + } + + void matmul(int64_t m, int64_t n) { + mnpack(0, m, 0, n); + } + + private: + NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t mc, nc, mp, np; + switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) { +#if VECTOR_REGISTERS == 32 + case 0x55: + mc = 5; + nc = 5; + gemm<5, 5>(m0, m, n0, n); + break; + case 0x45: + mc = 4; + nc = 5; + gemm<4, 5>(m0, m, n0, n); + break; + case 0x54: + mc = 5; + nc = 4; + gemm<5, 4>(m0, m, n0, n); + break; + case 0x44: + mc = 4; + nc = 4; + gemm<4, 4>(m0, m, n0, n); + break; + case 0x53: + mc = 5; + nc = 3; + gemm<5, 3>(m0, m, n0, n); + break; + case 0x35: + mc = 3; + nc = 5; + gemm<3, 5>(m0, m, n0, n); + break; + case 0x43: + mc = 4; + nc = 3; + gemm<4, 3>(m0, m, n0, n); + break; +#else + case 0x55: + case 0x54: + case 0x53: + case 0x45: + case 0x44: + case 0x43: + mc = 4; + nc = 3; + gemm<4, 3>(m0, m, n0, n); + break; + case 0x35: +#endif + case 0x34: + mc = 3; + nc = 4; + gemm<3, 4>(m0, m, n0, n); + break; + case 0x52: + mc = 5; + nc = 2; + gemm<5, 2>(m0, m, n0, n); + break; + case 0x33: + mc = 3; + nc = 3; + gemm<3, 3>(m0, m, n0, n); + break; + case 0x25: + mc = 2; + nc = 5; + gemm<2, 5>(m0, m, n0, n); + break; + case 0x42: + mc = 4; + nc = 2; + gemm<4, 2>(m0, m, n0, n); + break; + case 0x24: + mc = 2; + nc = 4; + gemm<2, 4>(m0, m, n0, n); + break; + case 0x32: + mc = 3; + nc = 2; + gemm<3, 2>(m0, m, n0, n); + break; + case 0x23: + mc = 2; + nc = 3; + gemm<2, 3>(m0, m, n0, n); + break; + case 0x51: + mc = 5; + nc = 1; + gemm<5, 1>(m0, m, n0, n); + break; + case 0x41: + mc = 4; + nc = 1; + gemm<4, 1>(m0, m, n0, n); + break; + case 0x22: + mc = 2; + nc = 2; + gemm<2, 2>(m0, m, n0, n); + break; + case 0x15: + mc = 1; + nc = 5; + gemm<1, 5>(m0, m, n0, n); + break; + case 0x14: + mc = 1; + nc = 4; + gemm<1, 4>(m0, m, n0, n); + break; + case 0x31: + mc = 3; + nc = 1; + gemm<3, 1>(m0, m, n0, n); + break; + case 0x13: + mc = 1; + nc = 3; + gemm<1, 3>(m0, m, n0, n); + break; + case 0x21: + mc = 2; + nc = 1; + gemm<2, 1>(m0, m, n0, n); + break; + case 0x12: + mc = 1; + nc = 2; + gemm<1, 2>(m0, m, n0, n); + break; + case 0x11: + mc = 1; + nc = 1; + gemm<1, 1>(m0, m, n0, n); + break; + default: + return; + } + mp = m0 + (m - m0) / mc * mc; + np = n0 + (n - n0) / nc * nc; + mnpack(mp, m, n0, np); + mnpack(m0, m, np, n); + } + + template <int RM, int RN> + NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t ytiles = (m - m0) / RM; + int64_t xtiles = (n - n0) / RN; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; + if (end > tiles) + end = tiles; + for (int64_t job = start; job < end; ++job) { + int64_t ii = m0 + job / xtiles * RM; + int64_t jj = n0 + job % xtiles * RN; + D Cv[RN][RM] = {}; + for (int64_t l = 0; l < k; l += KN) + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) + Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l), + load<V>(B + ldb * (jj + j) + l), + Cv[j][i]); + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) + C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); + } + } + + const TA *const A; + const TB *const B; + TC *const C; + const int64_t k; + const int64_t lda; + const int64_t ldb; + const int64_t ldc; + const int ith; + const int nth; +}; + +////////////////////////////////////////////////////////////////////////////////////////// +// QUANT ZERO MATRIX MULTIPLICATION + +#if defined(__ARM_FEATURE_DOTPROD) +template <typename TA> +class tinyBLAS_Q0_ARM { + public: + tinyBLAS_Q0_ARM(int64_t k, + const TA *A, int64_t lda, + const block_q8_0 *B, int64_t ldb, + float *C, int64_t ldc, + int ith, int nth) + : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + } + + void matmul(int64_t m, int64_t n) { + mnpack(0, m, 0, n); + } + + private: + NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t mc, nc, mp, np; + switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) { + case 0x33: + mc = 3; + nc = 3; + gemm<3, 3>(m0, m, n0, n); + break; + case 0x32: + mc = 3; + nc = 2; + gemm<3, 2>(m0, m, n0, n); + break; + case 0x23: + mc = 2; + nc = 3; + gemm<2, 3>(m0, m, n0, n); + break; + case 0x22: + mc = 2; + nc = 2; + gemm<2, 2>(m0, m, n0, n); + break; + case 0x31: + mc = 3; + nc = 1; + gemm<3, 1>(m0, m, n0, n); + break; + case 0x13: + mc = 1; + nc = 3; + gemm<1, 3>(m0, m, n0, n); + break; + case 0x21: + mc = 2; + nc = 1; + gemm<2, 1>(m0, m, n0, n); + break; + case 0x12: + mc = 1; + nc = 2; + gemm<1, 2>(m0, m, n0, n); + break; + case 0x11: + mc = 1; + nc = 1; + gemm<1, 1>(m0, m, n0, n); + break; + default: + return; + } + mp = m0 + (m - m0) / mc * mc; + np = n0 + (n - n0) / nc * nc; + mnpack(mp, m, n0, np); + mnpack(m0, m, np, n); + } + + template <int RM, int RN> + NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t ytiles = (m - m0) / RM; + int64_t xtiles = (n - n0) / RN; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; + if (end > tiles) + end = tiles; + for (int64_t job = start; job < end; ++job) { + int64_t ii = m0 + job / xtiles * RM; + int64_t jj = n0 + job % xtiles * RN; + float32x4_t Cv[RN][RM] = {}; + for (int64_t l = 0; l < k; ++l) + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) + Cv[j][i] = vmlaq_n_f32(Cv[j][i], + vcvtq_f32_s32(vdotq_s32( + vdotq_s32(vdupq_n_s32(0), + load_lo(A + lda * (ii + i) + l), + load_lo(B + ldb * (jj + j) + l)), + load_hi(A + lda * (ii + i) + l), + load_hi(B + ldb * (jj + j) + l))), + unhalf(A[lda * (ii + i) + l].d) * + unhalf(B[ldb * (jj + j) + l].d)); + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) + C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); + } + } + + inline int8x16_t load_lo(const block_q8_0 *b) { + return vld1q_s8(b->qs); + } + + inline int8x16_t load_hi(const block_q8_0 *b) { + return vld1q_s8(b->qs + 16); + } + + inline int8x16_t load_lo(const block_q4_0 *b) { + return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs), + vdupq_n_u8(0x0f))), + vdupq_n_s8(0x8)); + } + + inline int8x16_t load_hi(const block_q4_0 *b) { + return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)), + vdupq_n_s8(0x8)); + } + + const TA *const A; + const block_q8_0 *const B; + float *const C; + const int64_t k; + const int64_t lda; + const int64_t ldb; + const int64_t ldc; + const int ith; + const int nth; +}; +#endif // __ARM_FEATURE_DOTPROD + +#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) +template <typename TA, typename TB, typename TC> +class tinyBLAS_Q0_AVX { + public: + tinyBLAS_Q0_AVX(int64_t k, + const TA *A, int64_t lda, + const TB *B, int64_t ldb, + TC *C, int64_t ldc, + int ith, int nth) + : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + } + + void matmul(int64_t m, int64_t n) { + mnpack(0, m, 0, n); + } + + private: + void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t mc, nc, mp, np; + switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) { +#if VECTOR_REGISTERS == 32 + case 0x44: + mc = 4; + nc = 4; + gemm<4, 4>(m0, m, n0, n); + break; + case 0x43: + mc = 4; + nc = 3; + gemm<4, 3>(m0, m, n0, n); + break; + case 0x34: + mc = 3; + nc = 4; + gemm<3, 4>(m0, m, n0, n); + break; + case 0x33: + mc = 3; + nc = 3; + gemm<3, 3>(m0, m, n0, n); + break; + case 0x42: + mc = 4; + nc = 2; + gemm<4, 2>(m0, m, n0, n); + break; + case 0x24: + mc = 2; + nc = 4; + gemm<2, 4>(m0, m, n0, n); + break; +#else + case 0x44: + case 0x43: + case 0x42: + mc = 4; + nc = 2; + gemm<4, 2>(m0, m, n0, n); + break; + case 0x34: + case 0x24: + mc = 2; + nc = 4; + gemm<2, 4>(m0, m, n0, n); + break; + case 0x33: +#endif + case 0x32: + mc = 3; + nc = 2; + gemm<3, 2>(m0, m, n0, n); + break; + case 0x23: + mc = 2; + nc = 3; + gemm<2, 3>(m0, m, n0, n); + break; + case 0x41: + mc = 4; + nc = 1; + gemm<4, 1>(m0, m, n0, n); + break; + case 0x22: + mc = 2; + nc = 2; + gemm<2, 2>(m0, m, n0, n); + break; + case 0x14: + mc = 1; + nc = 4; + gemm<1, 4>(m0, m, n0, n); + break; + case 0x31: + mc = 3; + nc = 1; + gemm<3, 1>(m0, m, n0, n); + break; + case 0x13: + mc = 1; + nc = 3; + gemm<1, 3>(m0, m, n0, n); + break; + case 0x21: + mc = 2; + nc = 1; + gemm<2, 1>(m0, m, n0, n); + break; + case 0x12: + mc = 1; + nc = 2; + gemm<1, 2>(m0, m, n0, n); + break; + case 0x11: + mc = 1; + nc = 1; + gemm<1, 1>(m0, m, n0, n); + break; + default: + return; + } + mp = m0 + (m - m0) / mc * mc; + np = n0 + (n - n0) / nc * nc; + mnpack(mp, m, n0, np); + mnpack(m0, m, np, n); + } + + template <int RM, int RN> + NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { + int64_t ytiles = (m - m0) / RM; + int64_t xtiles = (n - n0) / RN; + int64_t tiles = xtiles * ytiles; + int64_t duty = (tiles + nth - 1) / nth; + int64_t start = duty * ith; + int64_t end = start + duty; + if (end > tiles) + end = tiles; + for (int64_t job = start; job < end; ++job) { + int64_t ii = m0 + job / xtiles * RM; + int64_t jj = n0 + job % xtiles * RN; + __m256 Cv[RN][RM] = {}; + for (int64_t l = 0; l < k; ++l) + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) { +#if defined(__AVX2__) + __m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l), + load(A + lda * (ii + i) + l)), + _mm256_sign_epi8(load(B + ldb * (jj + j) + l), + load(A + lda * (ii + i) + l))); +#else + __m128i ali0 = load0(A + lda * (ii + i) + l); + __m128i ali1 = load1(A + lda * (ii + i) + l); + __m128i blj0 = load0(B + ldb * (jj + j) + l); + __m128i blj1 = load1(B + ldb * (jj + j) + l); + + __m128i sepAA0 = _mm_sign_epi8(ali0, ali0); + __m128i sepAA1 = _mm_sign_epi8(ali1, ali1); + __m128i sepBA0 = _mm_sign_epi8(blj0, ali0); + __m128i sepBA1 = _mm_sign_epi8(blj1, ali1); + + // updot + const __m128i oneFill = _mm_set1_epi16(1); + __m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0); + __m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1); + __m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0))); +#endif + Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) * + unhalf(B[ldb * (jj + j) + l].d)), + udTmp, + Cv[j][i]); + } + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) + C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); + } + } + + inline __m256i load(const block_q8_0 *b) { + return _mm256_loadu_si256((const __m256i *)b->qs); + } + + inline __m128i load0(const block_q8_0 *b) { + return _mm_loadu_si128((const __m128i *)b->qs); + } + + inline __m128i load1(const block_q8_0 *b) { + return _mm_loadu_si128(((const __m128i *)b->qs) + 1); + } + + inline __m256i load(const block_q4_0 *b) { + return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8)); + } + + inline __m128i load0(const block_q4_0 *b) { + const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs)); + return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8)); + } + + inline __m128i load1(const block_q4_0 *b) { + const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs)); + return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8)); + } + + inline __m256 updot(__m256i u, __m256i s) { + __m256i res; +#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__)) + res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s); +#else + res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s)); +#endif + return _mm256_cvtepi32_ps(res); + } + + static inline __m256i denibble(const uint8_t *p) { + __m128i x = _mm_loadu_si128((const __m128i *)p); + return _mm256_and_si256(_mm256_set1_epi8(15), + _mm256_insertf128_si256(_mm256_castsi128_si256(x), + _mm_srli_epi16(x, 4), 1)); + } + + const TA *const A; + const TB *const B; + TC *const C; + const int64_t k; + const int64_t lda; + const int64_t ldb; + const int64_t ldc; + const int ith; + const int nth; +}; +#endif // __AVX__ + +} // namespace + +/** + * Performs optimized matrix multiplication on CPU. + * + * This subroutine may compute C = Aᵀ * B with column major ordering. + * Despite its name, this isn't a generalized implementation. Work is + * only performed when a handwritten kernel is written and available. + * Otherwise the caller should fall back to a general matmul routine. + * + * For example, for single-threaded single-precision GEMM you can say + * + * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc, + * 0, 1, + * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32); + * + * @param m is rows in `A` and `C` + * @param n is cols in `B` and `C` + * @param k is cols in `A` and rows in `B` + * @param A is first input matrix (always transposed) + * @param lda is row stride of `A` + * @param B is second input matrix (never transposed) + * @param ldb is row stride of `B` + * @param C is input/output array of output matrices + * @param ldc is row stride of `C` + * @param ith is thread id (must be less than `nth`) + * @param nth is number of threads (must be greater than zero) + * @param Atype is GGML data type of `A` + * @param Btype is GGML data type of `B` + * @param Ctype is GGML data type of `C` + * @return true if this function was able to service the matmul request + */ + +bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C, + int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) { + + assert(m >= 0); + assert(n >= 0); + assert(k >= 0); + assert(lda >= k); + assert(ldb >= k); + assert(ldc >= m); + assert(nth > 0); + assert(ith < nth); + + if (Ctype != GGML_TYPE_F32) + return false; + + switch (Atype) { + + case GGML_TYPE_F32: { + if (Btype != GGML_TYPE_F32) + return false; +#if defined(__AVX512F__) + if (k % 16) + return false; + tinyBLAS<16, __m512, __m512, float, float, float> tb{ + k, (const float *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#elif defined(__AVX__) || defined(__AVX2__) + if (k % 8) + return false; + tinyBLAS<8, __m256, __m256, float, float, float> tb{ + k, (const float *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#elif defined(__ARM_NEON) + if (n < 4) + return false; + if (k % 4) + return false; + tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ + k, (const float *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#else + return false; +#endif + } + + case GGML_TYPE_F16: { +#if defined(__AVX512F__) + if (k % 16) + return false; + if (Btype != GGML_TYPE_F32) + return false; + tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{ + k, (const ggml_fp16_t *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__) + if (k % 8) + return false; + if (Btype != GGML_TYPE_F32) + return false; + tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{ + k, (const ggml_fp16_t *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) + if (n < 8) + return false; + if (k % 8) + return false; + if (Btype != GGML_TYPE_F16) + return false; + tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ + k, (const ggml_fp16_t *)A, lda, + (const ggml_fp16_t *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#elif defined(__ARM_NEON) && !defined(_MSC_VER) + if (k % 4) + return false; + if (Btype != GGML_TYPE_F32) + return false; + tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ + k, (const ggml_fp16_t *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#else + return false; +#endif + } + + case GGML_TYPE_Q8_0: { + if (Btype != GGML_TYPE_Q8_0) + return false; +#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) + tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{ + k, (const block_q8_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#elif defined(__ARM_FEATURE_DOTPROD) + tinyBLAS_Q0_ARM<block_q8_0> tb{ + k, (const block_q8_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#else + return false; +#endif + } + + case GGML_TYPE_Q4_0: { + if (Btype != GGML_TYPE_Q8_0) + return false; +#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__) + tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{ + k, (const block_q4_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#elif defined(__ARM_FEATURE_DOTPROD) + tinyBLAS_Q0_ARM<block_q4_0> tb{ + k, (const block_q4_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n); + return true; +#else + return false; +#endif + } + + default: + return false; + } + + (void)m; + (void)n; + (void)k; + (void)A; + (void)lda; + (void)B; + (void)ldb; + (void)C; + (void)ldc; + (void)ith; + (void)nth; + (void)Atype; + (void)Btype; + (void)Ctype; +} |