diff options
author | compilade <git@compilade.net> | 2024-05-08 18:16:38 -0400 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-05-08 18:16:38 -0400 |
commit | f98eb31c517c95960df1d0abc48002787f145f3b (patch) | |
tree | de51a7b79fa5e6488ed4f76b5d0867d6c23d3c51 /gguf-py/gguf/gguf_reader.py | |
parent | bc4bba364fb96d908f2698e908648df5e6f55e02 (diff) |
convert-hf : save memory with lazy evaluation (#7075)
* convert-hf : begin refactoring write_tensor
* convert : upgrade to sentencepiece v0.2.0
* convert-hf : remove unused n_dims in extra_*_tensors
* convert-hf : simplify MoE weights stacking
* convert-hf : flake8 linter doesn't like semicolons
* convert-hf : allow unusual model part names
For example, loading `model-00001-of-00001.safetensors` now works.
* convert-hf : fix stacking MoE expert tensors
`torch.stack` and `torch.cat` don't do the same thing.
* convert-hf : fix Mamba conversion
Tested to work even with a SentencePiece-based tokenizer.
* convert : use a string for the SentencePiece tokenizer path
* convert-hf : display tensor shape
* convert-hf : convert norms to f32 by default
* convert-hf : sort model part names
`os.listdir` is said to list files in arbitrary order.
Sorting the file names should let "model-00009-of-00042.safetensors"
be loaded before "model-00010-of-00042.safetensors".
* convert-hf : use an ABC for Model again
It seems Protocol can't be used as a statically type-checked ABC,
because its subclasses also can't be instantiated. (why did it seem to work?)
At least there's still a way to throw an error when forgetting to define
the `model_arch` property of any registered Model subclasses.
* convert-hf : use a plain class for Model, and forbid direct instantiation
There are no abstract methods used anyway,
so using ABC isn't really necessary.
* convert-hf : more consistent formatting of cmdline args
* convert-hf : align the message logged for converted tensors
* convert-hf : fix Refact conversion
* convert-hf : save memory with lazy evaluation
* convert-hf : flake8 doesn't like lowercase L as a variable name
* convert-hf : remove einops requirement for InternLM2
* convert-hf : faster model parts loading
Instead of pre-loading them all into a dict, iterate on the tensors
in the model parts progressively as needed in Model.write_tensors
Conversion for some architectures relies on checking for the presence
of specific tensor names, so for multi-part models, the weight map is read
from the relevant json file to quickly get these names up-front.
* convert-hf : minor changes for consistency
* gguf-py : add tqdm as a dependency
It's small, and used for a progress bar
in GGUFWriter.write_tensors_to_file
Diffstat (limited to 'gguf-py/gguf/gguf_reader.py')
-rw-r--r-- | gguf-py/gguf/gguf_reader.py | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/gguf-py/gguf/gguf_reader.py b/gguf-py/gguf/gguf_reader.py index db8525d8..21b089f8 100644 --- a/gguf-py/gguf/gguf_reader.py +++ b/gguf-py/gguf/gguf_reader.py @@ -65,7 +65,7 @@ class ReaderTensor(NamedTuple): class GGUFReader: # I - same as host, S - swapped - byte_order: Literal['I' | 'S'] = 'I' + byte_order: Literal['I'] | Literal['S'] = 'I' alignment: int = GGUF_DEFAULT_ALIGNMENT # Note: Internal helper, API may change. @@ -83,7 +83,7 @@ class GGUFReader: GGUFValueType.BOOL: np.bool_, } - def __init__(self, path: os.PathLike[str] | str, mode: Literal['r' | 'r+' | 'c'] = 'r'): + def __init__(self, path: os.PathLike[str] | str, mode: Literal['r'] | Literal['r+'] | Literal['c'] = 'r'): self.data = np.memmap(path, mode = mode) offs = 0 if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC: @@ -128,7 +128,7 @@ class GGUFReader: return self.tensors[idx] def _get( - self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I' | 'S' | '<'] = None, + self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I'] | Literal['S'] | Literal['<'] = None, ) -> npt.NDArray[Any]: count = int(count) itemsize = int(np.empty([], dtype = dtype).itemsize) @@ -250,7 +250,7 @@ class GGUFReader: raise ValueError(f'Found duplicated tensor with name {tensor_name}') tensor_names.add(tensor_name) ggml_type = GGMLQuantizationType(raw_dtype[0]) - n_elems = np.prod(dims) + n_elems = int(np.prod(dims)) block_size, type_size = GGML_QUANT_SIZES[ggml_type] n_bytes = n_elems * type_size // block_size data_offs = int(start_offs + offset_tensor[0]) |