summaryrefslogtreecommitdiff
path: root/gguf-py/gguf/quants.py
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /gguf-py/gguf/quants.py
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'gguf-py/gguf/quants.py')
-rw-r--r--gguf-py/gguf/quants.py2
1 files changed, 1 insertions, 1 deletions
diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py
index b22eec16..16e0a9aa 100644
--- a/gguf-py/gguf/quants.py
+++ b/gguf-py/gguf/quants.py
@@ -43,7 +43,7 @@ def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.
osize *= dim
out = np.empty(shape=osize, dtype=otype)
# compute over groups of 16 rows (arbitrary, but seems good for performance)
- n_groups = rows.shape[0] // 16
+ n_groups = (rows.shape[0] // 16) or 1
np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
return out.reshape(oshape)