diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /gguf-py/gguf/tensor_mapping.py | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'gguf-py/gguf/tensor_mapping.py')
-rw-r--r-- | gguf-py/gguf/tensor_mapping.py | 192 |
1 files changed, 170 insertions, 22 deletions
diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 350035bd..9aa2209e 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -10,7 +10,7 @@ class TensorNameMap: # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx + "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais "transformer.word_embeddings", # falcon "word_embeddings", # bloom "model.embed_tokens", # llama-hf @@ -24,6 +24,9 @@ class TensorNameMap: "backbone.embedding", # mamba "backbone.embeddings", # mamba-hf "transformer.in_out_embed", # Grok + "embedding.word_embeddings", # chatglm + "transformer.token_embeddings", # openelm + "shared", # t5 ), # Token type embeddings @@ -36,6 +39,7 @@ class TensorNameMap: "word_embeddings_layernorm", # bloom "embeddings.LayerNorm", # bert "emb_ln", # nomic-bert + "transformer.norm", # openelm ), # Position embeddings @@ -48,16 +52,17 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx + "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 + "output_layer", # chatglm ), # Output norm MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox - "transformer.ln_f", # gpt2 gpt-j falcon + "transformer.ln_f", # gpt2 gpt-j falcon jais "model.norm", # llama-hf baichuan internlm2 "norm", # llama-pth "transformer.norm_f", # mpt dbrx @@ -68,11 +73,14 @@ class TensorNameMap: "model.norm_f", # mamba-qbert "backbone.norm_f", # mamba "transformer.rms_norm", # Grok + "encoder.final_layernorm", # chatglm + "transformer.norm", # openelm ), # Rope frequencies MODEL_TENSOR.ROPE_FREQS: ( "rope.freqs", # llama-pth + "rotary_pos_emb.inv_freq", # chatglm ), } @@ -80,7 +88,7 @@ class TensorNameMap: # Attention norm MODEL_TENSOR.ATTN_NORM: ( "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b "h.{bid}.input_layernorm", # bloom @@ -97,6 +105,8 @@ class TensorNameMap: "backbone.layers.{bid}.norm", # mamba "transformer.decoder_layer.{bid}.rms_norm", # Grok "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx + "encoder.layers.{bid}.input_layernorm", # chatglm + "transformer.layers.{bid}.attn_norm", # openelm ), # Attention norm 2 @@ -108,7 +118,7 @@ class TensorNameMap: # Attention query-key-value MODEL_TENSOR.ATTN_QKV: ( "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox - "transformer.h.{bid}.attn.c_attn", # gpt2 qwen + "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais "transformer.blocks.{bid}.attn.Wqkv", # mpt "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx "transformer.h.{bid}.self_attention.query_key_value", # falcon @@ -118,7 +128,9 @@ class TensorNameMap: "h.{bid}.attn.c_attn", # gpt2 "transformer.h.{bid}.mixer.Wqkv", # phi2 "encoder.layers.{bid}.attn.Wqkv", # nomic-bert - "model.layers.{bid}.self_attn.qkv_proj" # phi3 + "model.layers.{bid}.self_attn.qkv_proj", # phi3 + "encoder.layers.{bid}.self_attention.query_key_value", # chatglm + "transformer.layers.{bid}.attn.qkv_proj", # openelm ), # Attention query @@ -129,7 +141,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.q_proj", # gpt-j "model.layers.layers.{bid}.self_attn.q_proj", # plamo "model.layers.{bid}.attention.wq", # internlm2 - "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok + "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok ), # Attention key @@ -141,7 +153,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.k", # refact "model.layers.layers.{bid}.self_attn.k_proj", # plamo "model.layers.{bid}.attention.wk", # internlm2 - "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok + "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok ), # Attention value @@ -159,7 +171,7 @@ class TensorNameMap: # Attention output MODEL_TENSOR.ATTN_OUT: ( "gpt_neox.layers.{bid}.attention.dense", # gptneox - "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen + "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom @@ -176,6 +188,8 @@ class TensorNameMap: "encoder.layers.{bid}.attn.out_proj", # nomic-bert "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx + "encoder.layers.{bid}.self_attention.dense", # chatglm + "transformer.layers.{bid}.attn.out_proj", # openelm ), # Attention output norm @@ -186,6 +200,10 @@ class TensorNameMap: "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx ), + MODEL_TENSOR.ATTN_POST_NORM: ( + "model.layers.{bid}.post_attention_layernorm", # gemma2 + ), + # Rotary embeddings MODEL_TENSOR.ATTN_ROT_EMBD: ( "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf @@ -197,7 +215,7 @@ class TensorNameMap: # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 refact qwen + "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais "h.{bid}.post_attention_layernorm", # bloom "transformer.blocks.{bid}.norm_2", # mpt "model.layers.{bid}.post_attention_layernorm", # llama-hf @@ -207,6 +225,18 @@ class TensorNameMap: "h.{bid}.ln_2", # gpt2 "model.layers.{bid}.ffn_norm", # internlm2 "transformer.decoder_layer.{bid}.rms_norm_2", # Grok + "encoder.layers.{bid}.post_attention_layernorm", # chatglm + "transformer.layers.{bid}.ffn_norm", # openelm + ), + + # Post feed-forward norm + MODEL_TENSOR.FFN_PRE_NORM: ( + "model.layers.{bid}.pre_feedforward_layernorm", # gemma2 + ), + + # Post feed-forward norm + MODEL_TENSOR.FFN_POST_NORM: ( + "model.layers.{bid}.post_feedforward_layernorm", # gemma2 ), MODEL_TENSOR.FFN_GATE_INP: ( @@ -224,7 +254,7 @@ class TensorNameMap: # Feed-forward up MODEL_TENSOR.FFN_UP: ( "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox - "transformer.h.{bid}.mlp.c_fc", # gpt2 + "transformer.h.{bid}.mlp.c_fc", # gpt2 jais "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "h.{bid}.mlp.dense_h_to_4h", # bloom @@ -246,6 +276,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.c_fc", # starcoder2 "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 "model.layers.{bid}.residual_mlp.w3", # arctic + "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -270,6 +301,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.gate_proj", # llama-hf refact "layers.{bid}.feed_forward.w1", # llama-pth "transformer.h.{bid}.mlp.w2", # qwen + "transformer.h.{bid}.mlp.c_fc2", # jais "model.layers.layers.{bid}.mlp.gate_proj", # plamo "model.layers.{bid}.feed_forward.w1", # internlm2 "encoder.layers.{bid}.mlp.fc12", # nomic-bert @@ -293,7 +325,7 @@ class TensorNameMap: # Feed-forward down MODEL_TENSOR.FFN_DOWN: ( "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox - "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen + "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "h.{bid}.mlp.dense_4h_to_h", # bloom @@ -311,8 +343,10 @@ class TensorNameMap: "encoder.layers.{bid}.mlp.fc2", # nomic-bert "model.layers.{bid}.mlp.c_proj", # starcoder2 "encoder.layer.{bid}.mlp.wo", # jina-bert-v2 + "transformer.layers.{bid}.ffn.proj_2", # openelm "model.layers.{bid}.residual_mlp.w2", # arctic "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2 + "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm ), MODEL_TENSOR.FFN_DOWN_EXP: ( @@ -332,7 +366,8 @@ class TensorNameMap: "model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.q_norm", # cohere "transformer.blocks.{bid}.attn.q_ln", # sea-lion - "encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2 + "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2 + "transformer.layers.{bid}.attn.q_norm", # openelm ), MODEL_TENSOR.ATTN_K_NORM: ( @@ -340,7 +375,8 @@ class TensorNameMap: "model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.k_norm", # cohere "transformer.blocks.{bid}.attn.k_ln", # sea-lion - "encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2 + "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2 + "transformer.layers.{bid}.attn.k_norm", # openelm ), MODEL_TENSOR.ROPE_FREQS: ( @@ -421,6 +457,120 @@ class TensorNameMap: MODEL_TENSOR.FFN_SUB_NORM: ( "model.layers.{bid}.mlp.ffn_layernorm", # bitnet ), + + MODEL_TENSOR.DEC_ATTN_NORM: ( + "decoder.block.{bid}.layer.0.layer_norm", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_Q: ( + "decoder.block.{bid}.layer.0.SelfAttention.q", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_K: ( + "decoder.block.{bid}.layer.0.SelfAttention.k", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_V: ( + "decoder.block.{bid}.layer.0.SelfAttention.v", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_OUT: ( + "decoder.block.{bid}.layer.0.SelfAttention.o", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_REL_B: ( + "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_NORM: ( + "decoder.block.{bid}.layer.1.layer_norm", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_Q: ( + "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_K: ( + "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_V: ( + "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_OUT: ( + "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: ( + "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5 + ), + + MODEL_TENSOR.DEC_FFN_NORM: ( + "decoder.block.{bid}.layer.2.layer_norm", # t5 + ), + + MODEL_TENSOR.DEC_FFN_GATE: ( + "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5 + ), + + MODEL_TENSOR.DEC_FFN_UP: ( + "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5 + "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5 + ), + + MODEL_TENSOR.DEC_FFN_DOWN: ( + "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5 + ), + + MODEL_TENSOR.DEC_OUTPUT_NORM: ( + "decoder.final_layer_norm", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_NORM: ( + "encoder.block.{bid}.layer.0.layer_norm", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_Q: ( + "encoder.block.{bid}.layer.0.SelfAttention.q", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_K: ( + "encoder.block.{bid}.layer.0.SelfAttention.k", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_V: ( + "encoder.block.{bid}.layer.0.SelfAttention.v", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_OUT: ( + "encoder.block.{bid}.layer.0.SelfAttention.o", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_REL_B: ( + "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5 + ), + + MODEL_TENSOR.ENC_FFN_NORM: ( + "encoder.block.{bid}.layer.1.layer_norm", # t5 + ), + + MODEL_TENSOR.ENC_FFN_GATE: ( + "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5 + ), + + MODEL_TENSOR.ENC_FFN_UP: ( + "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5 + "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5 + ), + + MODEL_TENSOR.ENC_FFN_DOWN: ( + "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5 + ), + + MODEL_TENSOR.ENC_OUTPUT_NORM: ( + "encoder.final_layer_norm", # t5 + ), } # architecture-specific block mappings @@ -452,14 +602,12 @@ class TensorNameMap: for tensor, keys in self.block_mappings_cfg.items(): if tensor not in MODEL_TENSORS[arch]: continue - # TODO: make this configurable - n_experts = 160 - for xid in range(n_experts): - tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid) - self.mapping[tensor_name] = (tensor, tensor_name) - for key in keys: - key = key.format(bid = bid, xid = xid) - self.mapping[key] = (tensor, tensor_name) + + tensor_name = TENSOR_NAMES[tensor].format(bid = bid) + self.mapping[tensor_name] = (tensor, tensor_name) + for key in keys: + key = key.format(bid = bid) + self.mapping[key] = (tensor, tensor_name) def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: result = self.mapping.get(key) |