diff options
author | Shijie <821898965@qq.com> | 2024-04-16 23:40:48 +0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-04-16 18:40:48 +0300 |
commit | f4dea7da1841a92d2788b0535063abf2f0e28461 (patch) | |
tree | c7a729d974e4315c71c78eea84fa08dda920b649 /gguf-py/gguf/tensor_mapping.py | |
parent | 8a56075b07a8b571bf95a912ffdce4c928c2b414 (diff) |
llama : add qwen2moe (#6074)
* support qwen2moe
* fix-review
* metal : support unary ops for nelements % 4 != 0
* metal : require contiguousness for float4 unary kernels
* metal : require contiguousness for float4 unary kernels (cont)
* fix-review
* names : for brevity "SHARED_EXP" -> "SHEXP"
* llama : reuse build_moe_ffn()
* llama : add model type name
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'gguf-py/gguf/tensor_mapping.py')
-rw-r--r-- | gguf-py/gguf/tensor_mapping.py | 34 |
1 files changed, 27 insertions, 7 deletions
diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index ec6fcbb8..10de36fa 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -208,10 +208,15 @@ class TensorNameMap: MODEL_TENSOR.FFN_GATE_INP: ( "layers.{bid}.feed_forward.gate", # mixtral "model.layers.{bid}.block_sparse_moe.gate", # mixtral + "model.layers.{bid}.mlp.gate", # qwen2moe "transformer.decoder_layer.{bid}.router", # Grok "transformer.blocks.{bid}.ffn.router.layer", # dbrx ), + MODEL_TENSOR.FFN_GATE_INP_SHEXP: ( + "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe + ), + # Feed-forward up MODEL_TENSOR.FFN_UP: ( "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox @@ -236,9 +241,14 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_UP_EXP: ( - "layers.{bid}.feed_forward.experts.w3", # mixtral (merged) - "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged) - "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx + "layers.{bid}.feed_forward.experts.w3", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged) + "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx + "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged) + ), + + MODEL_TENSOR.FFN_UP_SHEXP: ( + "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe ), # AWQ-activation gate @@ -260,6 +270,11 @@ class TensorNameMap: "layers.{bid}.feed_forward.experts.w1", # mixtral (merged) "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged) "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx + "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged) + ), + + MODEL_TENSOR.FFN_GATE_SHEXP: ( + "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe ), # Feed-forward down @@ -285,9 +300,14 @@ class TensorNameMap: ), MODEL_TENSOR.FFN_DOWN_EXP: ( - "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) - "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) - "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx + "layers.{bid}.feed_forward.experts.w2", # mixtral (merged) + "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged) + "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx + "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged) + ), + + MODEL_TENSOR.FFN_DOWN_SHEXP: ( + "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe ), MODEL_TENSOR.ATTN_Q_NORM: ( @@ -366,7 +386,7 @@ class TensorNameMap: if tensor not in MODEL_TENSORS[arch]: continue # TODO: make this configurable - n_experts = 8 + n_experts = 60 for xid in range(n_experts): tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid) self.mapping[tensor_name] = (tensor, tensor_name) |