summaryrefslogtreecommitdiff
path: root/gguf-py/scripts/gguf_dump.py
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /gguf-py/scripts/gguf_dump.py
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'gguf-py/scripts/gguf_dump.py')
-rwxr-xr-xgguf-py/scripts/gguf_dump.py454
1 files changed, 454 insertions, 0 deletions
diff --git a/gguf-py/scripts/gguf_dump.py b/gguf-py/scripts/gguf_dump.py
new file mode 100755
index 00000000..1b654654
--- /dev/null
+++ b/gguf-py/scripts/gguf_dump.py
@@ -0,0 +1,454 @@
+#!/usr/bin/env python3
+from __future__ import annotations
+
+import logging
+import argparse
+import os
+import re
+import sys
+from pathlib import Path
+from typing import Any
+
+import numpy as np
+
+# Necessary to load the local gguf package
+if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
+ sys.path.insert(0, str(Path(__file__).parent.parent))
+
+from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
+
+logger = logging.getLogger("gguf-dump")
+
+
+def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
+ host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
+ if reader.byte_order == 'S':
+ file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
+ else:
+ file_endian = host_endian
+ return (host_endian, file_endian)
+
+
+# For more information about what field.parts and field.data represent,
+# please see the comments in the modify_gguf.py example.
+def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
+ host_endian, file_endian = get_file_host_endian(reader)
+ print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
+ print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
+ for n, field in enumerate(reader.fields.values(), 1):
+ if not field.types:
+ pretty_type = 'N/A'
+ elif field.types[0] == GGUFValueType.ARRAY:
+ nest_count = len(field.types) - 1
+ pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
+ else:
+ pretty_type = str(field.types[-1].name)
+
+ log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
+ if len(field.types) == 1:
+ curr_type = field.types[0]
+ if curr_type == GGUFValueType.STRING:
+ log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
+ elif field.types[0] in reader.gguf_scalar_to_np:
+ log_message += ' = {0}'.format(field.parts[-1][0])
+ print(log_message) # noqa: NP100
+ if args.no_tensors:
+ return
+ print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
+ for n, tensor in enumerate(reader.tensors, 1):
+ prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
+ print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
+
+
+def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
+ import json
+ host_endian, file_endian = get_file_host_endian(reader)
+ metadata: dict[str, Any] = {}
+ tensors: dict[str, Any] = {}
+ result = {
+ "filename": args.model,
+ "endian": file_endian,
+ "metadata": metadata,
+ "tensors": tensors,
+ }
+ for idx, field in enumerate(reader.fields.values()):
+ curr: dict[str, Any] = {
+ "index": idx,
+ "type": field.types[0].name if field.types else 'UNKNOWN',
+ "offset": field.offset,
+ }
+ metadata[field.name] = curr
+ if field.types[:1] == [GGUFValueType.ARRAY]:
+ curr["array_types"] = [t.name for t in field.types][1:]
+ if not args.json_array:
+ continue
+ itype = field.types[-1]
+ if itype == GGUFValueType.STRING:
+ curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
+ else:
+ curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
+ elif field.types[0] == GGUFValueType.STRING:
+ curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
+ else:
+ curr["value"] = field.parts[-1].tolist()[0]
+ if not args.no_tensors:
+ for idx, tensor in enumerate(reader.tensors):
+ tensors[tensor.name] = {
+ "index": idx,
+ "shape": tensor.shape.tolist(),
+ "type": tensor.tensor_type.name,
+ "offset": tensor.field.offset,
+ }
+ json.dump(result, sys.stdout)
+
+
+def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
+ # JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
+
+ # Alignment Utility Function
+ def strAlign(padding: int, alignMode: str | None, strVal: str):
+ if alignMode == 'center':
+ return strVal.center(padding)
+ elif alignMode == 'right':
+ return strVal.rjust(padding - 1) + ' '
+ elif alignMode == 'left':
+ return ' ' + strVal.ljust(padding - 1)
+ else: # default left
+ return ' ' + strVal.ljust(padding - 1)
+
+ def dashAlign(padding: int, alignMode: str | None):
+ if alignMode == 'center':
+ return ':' + '-' * (padding - 2) + ':'
+ elif alignMode == 'right':
+ return '-' * (padding - 1) + ':'
+ elif alignMode == 'left':
+ return ':' + '-' * (padding - 1)
+ else: # default left
+ return '-' * (padding)
+
+ # Calculate Padding For Each Column Based On Header and Data Length
+ rowsPadding = {}
+ for index, columnEntry in enumerate(header_map):
+ padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
+ headerPadCount = len(columnEntry['header_name']) + 2
+ rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
+
+ # Render Markdown Header
+ rows = []
+ rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
+ rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
+
+ # Render Tabular Data
+ for item in data:
+ rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
+
+ # Convert Tabular String Rows Into String
+ tableString = ""
+ for row in rows:
+ tableString += f'|{row}|\n'
+
+ return tableString
+
+
+def element_count_rounded_notation(count: int) -> str:
+ if count > 1e15 :
+ # Quadrillion
+ scaled_amount = count * 1e-15
+ scale_suffix = "Q"
+ elif count > 1e12 :
+ # Trillions
+ scaled_amount = count * 1e-12
+ scale_suffix = "T"
+ elif count > 1e9 :
+ # Billions
+ scaled_amount = count * 1e-9
+ scale_suffix = "B"
+ elif count > 1e6 :
+ # Millions
+ scaled_amount = count * 1e-6
+ scale_suffix = "M"
+ elif count > 1e3 :
+ # Thousands
+ scaled_amount = count * 1e-3
+ scale_suffix = "K"
+ else:
+ # Under Thousands
+ scaled_amount = count
+ scale_suffix = ""
+ return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
+
+
+def translate_tensor_name(name):
+ words = name.split(".")
+
+ # Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
+ abbreviation_dictionary = {
+ 'token_embd': 'Token embedding',
+ 'pos_embd': 'Position embedding',
+ 'output_norm': 'Output normalization',
+ 'output': 'Output',
+ 'attn_norm': 'Attention normalization',
+ 'attn_norm_2': 'Attention normalization',
+ 'attn_qkv': 'Attention query-key-value',
+ 'attn_q': 'Attention query',
+ 'attn_k': 'Attention key',
+ 'attn_v': 'Attention value',
+ 'attn_output': 'Attention output',
+ 'ffn_norm': 'Feed-forward network normalization',
+ 'ffn_up': 'Feed-forward network "up"',
+ 'ffn_gate': 'Feed-forward network "gate"',
+ 'ffn_down': 'Feed-forward network "down"',
+ 'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
+ 'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
+ 'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
+ 'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
+ 'ssm_in': 'State space model input projections',
+ 'ssm_conv1d': 'State space model rolling/shift',
+ 'ssm_x': 'State space model selective parametrization',
+ 'ssm_a': 'State space model state compression',
+ 'ssm_d': 'State space model skip connection',
+ 'ssm_dt': 'State space model time step',
+ 'ssm_out': 'State space model output projection',
+ 'blk': 'Block',
+ 'enc': 'Encoder',
+ 'dec': 'Decoder',
+ }
+
+ expanded_words = []
+ for word in words:
+ word_norm = word.strip().lower()
+ if word_norm in abbreviation_dictionary:
+ expanded_words.append(abbreviation_dictionary[word_norm].title())
+ else:
+ expanded_words.append(word.title())
+
+ return ' '.join(expanded_words)
+
+
+def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
+ host_endian, file_endian = get_file_host_endian(reader)
+ markdown_content = ""
+ markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
+ markdown_content += f'- Endian: {file_endian} endian\n'
+ markdown_content += '\n'
+ markdown_content += '## Key Value Metadata Store\n\n'
+ markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
+ markdown_content += '\n'
+
+ kv_dump_table: list[dict[str, str | int]] = []
+ for n, field in enumerate(reader.fields.values(), 1):
+ if not field.types:
+ pretty_type = 'N/A'
+ elif field.types[0] == GGUFValueType.ARRAY:
+ nest_count = len(field.types) - 1
+ pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
+ else:
+ pretty_type = str(field.types[-1].name)
+
+ def escape_markdown_inline_code(value_string):
+ # Find the longest contiguous sequence of backticks in the string then
+ # wrap string with appropriate number of backticks required to escape it
+ max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0)
+ inline_code_marker = '`' * (max_backticks + 1)
+
+ # If the string starts or ends with a backtick, add a space at the beginning and end
+ if value_string.startswith('`') or value_string.endswith('`'):
+ value_string = f" {value_string} "
+
+ return f"{inline_code_marker}{value_string}{inline_code_marker}"
+
+ total_elements = len(field.data)
+ value = ""
+ if len(field.types) == 1:
+ curr_type = field.types[0]
+ if curr_type == GGUFValueType.STRING:
+ truncate_length = 60
+ value_string = str(bytes(field.parts[-1]), encoding='utf-8')
+ if len(value_string) > truncate_length:
+ head = escape_markdown_inline_code(value_string[:truncate_length // 2])
+ tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
+ value = "{head}...{tail}".format(head=head, tail=tail)
+ else:
+ value = escape_markdown_inline_code(value_string)
+ elif curr_type in reader.gguf_scalar_to_np:
+ value = str(field.parts[-1][0])
+ else:
+ if field.types[0] == GGUFValueType.ARRAY:
+ curr_type = field.types[1]
+ array_elements = []
+
+ if curr_type == GGUFValueType.STRING:
+ render_element = min(5, total_elements)
+ for element_pos in range(render_element):
+ truncate_length = 30
+ value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8')
+ if len(value_string) > truncate_length:
+ head = escape_markdown_inline_code(value_string[:truncate_length // 2])
+ tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
+ value = "{head}...{tail}".format(head=head, tail=tail)
+ else:
+ value = escape_markdown_inline_code(value_string)
+ array_elements.append(value)
+
+ elif curr_type in reader.gguf_scalar_to_np:
+ render_element = min(7, total_elements)
+ for element_pos in range(render_element):
+ array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0]))
+
+ value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]'
+
+ kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
+
+ kv_dump_table_header_map = [
+ {'key_name':'n', 'header_name':'POS', 'align':'right'},
+ {'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
+ {'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
+ {'key_name':'field_name', 'header_name':'Key', 'align':'left'},
+ {'key_name':'value', 'header_name':'Value', 'align':'left'},
+ ]
+
+ markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
+
+ markdown_content += "\n"
+
+ if not args.no_tensors:
+ # Group tensors by their prefix and maintain order
+ tensor_prefix_order: list[str] = []
+ tensor_name_to_key: dict[str, int] = {}
+ tensor_groups: dict[str, list[ReaderTensor]] = {}
+ total_elements = sum(tensor.n_elements for tensor in reader.tensors)
+
+ # Parsing Tensors Record
+ for key, tensor in enumerate(reader.tensors):
+ tensor_components = tensor.name.split('.')
+
+ # Classify Tensor Group
+ tensor_group_name = "base"
+ if tensor_components[0] == 'blk':
+ tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
+ elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
+ tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
+ elif tensor_components[0] in ['enc', 'dec']:
+ tensor_group_name = f"{tensor_components[0]}"
+
+ # Check if new Tensor Group
+ if tensor_group_name not in tensor_groups:
+ tensor_groups[tensor_group_name] = []
+ tensor_prefix_order.append(tensor_group_name)
+
+ # Record Tensor and Tensor Position
+ tensor_groups[tensor_group_name].append(tensor)
+ tensor_name_to_key[tensor.name] = key
+
+ # Tensors Mapping Dump
+ markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
+ markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
+ markdown_content += '\n'
+
+ for group in tensor_prefix_order:
+ tensors = tensor_groups[group]
+ group_elements = sum(tensor.n_elements for tensor in tensors)
+ markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
+
+ markdown_content += "\n"
+
+ markdown_content += "### Tensor Data Offset\n"
+ markdown_content += '\n'
+ markdown_content += 'This table contains the offset and data segment relative to start of file\n'
+ markdown_content += '\n'
+
+ tensor_mapping_table: list[dict[str, str | int]] = []
+ for key, tensor in enumerate(reader.tensors):
+ data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
+ data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
+ tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})
+
+ tensors_mapping_table_header_map = [
+ {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
+ {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
+ {'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'},
+ {'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'},
+ ]
+
+ markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
+ markdown_content += "\n"
+
+ for group in tensor_prefix_order:
+ tensors = tensor_groups[group]
+ group_elements = sum(tensor.n_elements for tensor in tensors)
+ group_percentage = group_elements / total_elements * 100
+ markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
+
+ # Precalculate column sizing for visual consistency
+ prettify_element_est_count_size: int = 1
+ prettify_element_count_size: int = 1
+ prettify_dimension_max_widths: dict[int, int] = {}
+ for tensor in tensors:
+ prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
+ prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
+ for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
+ prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
+
+ # Generate Tensor Layer Table Content
+ tensor_dump_table: list[dict[str, str | int]] = []
+ for tensor in tensors:
+ human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
+ pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
+ element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
+ element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
+ type_name_string = f"{tensor.tensor_type.name}"
+ tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
+
+ tensor_dump_table_header_map = [
+ {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
+ {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
+ {'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
+ {'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
+ {'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
+ {'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
+ ]
+
+ markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
+
+ markdown_content += "\n"
+ markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
+ markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
+ markdown_content += "\n\n"
+
+ print(markdown_content) # noqa: NP100
+
+
+def main() -> None:
+ parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
+ parser.add_argument("model", type=str, help="GGUF format model filename")
+ parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
+ parser.add_argument("--json", action="store_true", help="Produce JSON output")
+ parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
+ parser.add_argument("--data-offset", action="store_true", help="Start of data offset")
+ parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
+ parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
+ parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
+
+ args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
+
+ logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
+
+ if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
+ logger.info(f'* Loading: {args.model}')
+
+ reader = GGUFReader(args.model, 'r')
+
+ if args.json:
+ dump_metadata_json(reader, args)
+ elif args.markdown:
+ dump_markdown_metadata(reader, args)
+ elif args.data_offset:
+ print(reader.data_offset) # noqa: NP100
+ elif args.data_alignment:
+ print(reader.alignment) # noqa: NP100
+ else:
+ dump_metadata(reader, args)
+
+
+if __name__ == '__main__':
+ main()