diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /gguf-py | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'gguf-py')
-rw-r--r-- | gguf-py/README.md | 19 | ||||
-rw-r--r-- | gguf-py/gguf/__init__.py | 2 | ||||
-rw-r--r-- | gguf-py/gguf/constants.py | 569 | ||||
-rw-r--r-- | gguf-py/gguf/gguf_reader.py | 35 | ||||
-rw-r--r-- | gguf-py/gguf/gguf_writer.py | 445 | ||||
-rw-r--r-- | gguf-py/gguf/lazy.py | 71 | ||||
-rw-r--r-- | gguf-py/gguf/metadata.py | 503 | ||||
-rw-r--r-- | gguf-py/gguf/quants.py | 2 | ||||
-rw-r--r-- | gguf-py/gguf/tensor_mapping.py | 192 | ||||
-rw-r--r-- | gguf-py/gguf/utility.py | 69 | ||||
-rw-r--r-- | gguf-py/pyproject.toml | 3 | ||||
-rw-r--r-- | gguf-py/scripts/__init__.py | 17 | ||||
-rwxr-xr-x | gguf-py/scripts/gguf_convert_endian.py (renamed from gguf-py/scripts/gguf-convert-endian.py) | 0 | ||||
-rwxr-xr-x | gguf-py/scripts/gguf_dump.py (renamed from gguf-py/scripts/gguf-dump.py) | 80 | ||||
-rwxr-xr-x | gguf-py/scripts/gguf_hash.py | 102 | ||||
-rwxr-xr-x | gguf-py/scripts/gguf_new_metadata.py (renamed from gguf-py/scripts/gguf-new-metadata.py) | 2 | ||||
-rwxr-xr-x | gguf-py/scripts/gguf_set_metadata.py (renamed from gguf-py/scripts/gguf-set-metadata.py) | 0 | ||||
-rw-r--r-- | gguf-py/tests/__init__.py | 1 | ||||
-rw-r--r-- | gguf-py/tests/test_gguf.py | 7 | ||||
-rwxr-xr-x | gguf-py/tests/test_metadata.py | 203 |
20 files changed, 1941 insertions, 381 deletions
diff --git a/gguf-py/README.md b/gguf-py/README.md index a04c2275..24af96a1 100644 --- a/gguf-py/README.md +++ b/gguf-py/README.md @@ -3,7 +3,7 @@ This is a Python package for writing binary files in the [GGUF](https://github.com/ggerganov/ggml/pull/302) (GGML Universal File) format. -See [convert-llama-hf-to-gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert-hf-to-gguf.py) +See [convert_hf_to_gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py) as an example for its usage. ## Installation @@ -15,13 +15,13 @@ pip install gguf [examples/writer.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/examples/writer.py) — Generates `example.gguf` in the current directory to demonstrate generating a GGUF file. Note that this file cannot be used as a model. -[scripts/gguf-dump.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-dump.py) — Dumps a GGUF file's metadata to the console. +[scripts/gguf_dump.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_dump.py) — Dumps a GGUF file's metadata to the console. -[scripts/gguf-set-metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-set-metadata.py) — Allows changing simple metadata values in a GGUF file by key. +[scripts/gguf_set_metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_set_metadata.py) — Allows changing simple metadata values in a GGUF file by key. -[scripts/gguf-convert-endian.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-convert-endian.py) — Allows converting the endianness of GGUF files. +[scripts/gguf_convert_endian.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_convert_endian.py) — Allows converting the endianness of GGUF files. -[scripts/gguf-new-metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf-new-metadata.py) — Copies a GGUF file with added/modified/removed metadata values. +[scripts/gguf_new_metadata.py](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/scripts/gguf_new_metadata.py) — Copies a GGUF file with added/modified/removed metadata values. ## Development Maintainers who participate in development of this package are advised to install it in editable mode: @@ -78,6 +78,13 @@ python -m build python -m twine upload dist/* ``` +## Run Unit Tests + +From root of this repository you can run this command to run all the unit tests + +```bash +python -m unittest discover ./gguf-py -v +``` + ## TODO -- [ ] Add tests - [ ] Include conversion scripts as command line entry points in this package. diff --git a/gguf-py/gguf/__init__.py b/gguf-py/gguf/__init__.py index ea5146b1..243defc4 100644 --- a/gguf-py/gguf/__init__.py +++ b/gguf-py/gguf/__init__.py @@ -5,3 +5,5 @@ from .gguf_writer import * from .quants import * from .tensor_mapping import * from .vocab import * +from .utility import * +from .metadata import * diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 4cc3e35f..e343c2ef 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -19,18 +19,60 @@ GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h class Keys: class General: - ARCHITECTURE = "general.architecture" - QUANTIZATION_VERSION = "general.quantization_version" - ALIGNMENT = "general.alignment" - NAME = "general.name" - AUTHOR = "general.author" - VERSION = "general.version" - URL = "general.url" - DESCRIPTION = "general.description" - LICENSE = "general.license" - SOURCE_URL = "general.source.url" - SOURCE_HF_REPO = "general.source.huggingface.repository" - FILE_TYPE = "general.file_type" + TYPE = "general.type" + ARCHITECTURE = "general.architecture" + QUANTIZATION_VERSION = "general.quantization_version" + ALIGNMENT = "general.alignment" + FILE_TYPE = "general.file_type" + + # Authorship Metadata + NAME = "general.name" + AUTHOR = "general.author" + VERSION = "general.version" + ORGANIZATION = "general.organization" + + FINETUNE = "general.finetune" + BASENAME = "general.basename" + + DESCRIPTION = "general.description" + QUANTIZED_BY = "general.quantized_by" + + SIZE_LABEL = "general.size_label" + + # Licensing details + LICENSE = "general.license" + LICENSE_NAME = "general.license.name" + LICENSE_LINK = "general.license.link" + + # Typically represents the converted GGUF repo (Unless native) + URL = "general.url" # Model Website/Paper + DOI = "general.doi" + UUID = "general.uuid" + REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...) + + # Model Source during conversion + SOURCE_URL = "general.source.url" # Model Website/Paper + SOURCE_DOI = "general.source.doi" + SOURCE_UUID = "general.source.uuid" + SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...) + + # Base Model Source. There can be more than one source if it's a merged + # model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in + # tracing linage of models as it is finetuned or merged over time. + BASE_MODEL_COUNT = "general.base_model.count" + BASE_MODEL_NAME = "general.base_model.{id}.name" + BASE_MODEL_AUTHOR = "general.base_model.{id}.author" + BASE_MODEL_VERSION = "general.base_model.{id}.version" + BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization" + BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper + BASE_MODEL_DOI = "general.base_model.{id}.doi" + BASE_MODEL_UUID = "general.base_model.{id}.uuid" + BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...) + + # Array based KV stores + TAGS = "general.tags" + LANGUAGES = "general.languages" + DATASETS = "general.datasets" class LLM: VOCAB_SIZE = "{arch}.vocab_size" @@ -49,6 +91,9 @@ class Keys: EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale" POOLING_TYPE = "{arch}.pooling_type" LOGIT_SCALE = "{arch}.logit_scale" + DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id" + ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping" + FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping" class Attention: HEAD_COUNT = "{arch}.attention.head_count" @@ -62,6 +107,8 @@ class Keys: CAUSAL = "{arch}.attention.causal" Q_LORA_RANK = "{arch}.attention.q_lora_rank" KV_LORA_RANK = "{arch}.attention.kv_lora_rank" + REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count" + SLIDING_WINDOW = "{arch}.attention.sliding_window" class Rope: DIMENSION_COUNT = "{arch}.rope.dimension_count" @@ -73,6 +120,11 @@ class Keys: SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier" + class Split: + LLM_KV_SPLIT_NO = "split.no" + LLM_KV_SPLIT_COUNT = "split.count" + LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count" + class SSM: CONV_KERNEL = "{arch}.ssm.conv_kernel" INNER_SIZE = "{arch}.ssm.inner_size" @@ -80,129 +132,175 @@ class Keys: TIME_STEP_RANK = "{arch}.ssm.time_step_rank" class Tokenizer: - MODEL = "tokenizer.ggml.model" - PRE = "tokenizer.ggml.pre" - LIST = "tokenizer.ggml.tokens" - TOKEN_TYPE = "tokenizer.ggml.token_type" - TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types - SCORES = "tokenizer.ggml.scores" - MERGES = "tokenizer.ggml.merges" - BOS_ID = "tokenizer.ggml.bos_token_id" - EOS_ID = "tokenizer.ggml.eos_token_id" - UNK_ID = "tokenizer.ggml.unknown_token_id" - SEP_ID = "tokenizer.ggml.seperator_token_id" - PAD_ID = "tokenizer.ggml.padding_token_id" - CLS_ID = "tokenizer.ggml.cls_token_id" - MASK_ID = "tokenizer.ggml.mask_token_id" - ADD_BOS = "tokenizer.ggml.add_bos_token" - ADD_EOS = "tokenizer.ggml.add_eos_token" - ADD_PREFIX = "tokenizer.ggml.add_space_prefix" - HF_JSON = "tokenizer.huggingface.json" - RWKV = "tokenizer.rwkv.world" - CHAT_TEMPLATE = "tokenizer.chat_template" - CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}" - CHAT_TEMPLATES = "tokenizer.chat_templates" + MODEL = "tokenizer.ggml.model" + PRE = "tokenizer.ggml.pre" + LIST = "tokenizer.ggml.tokens" + TOKEN_TYPE = "tokenizer.ggml.token_type" + TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types + SCORES = "tokenizer.ggml.scores" + MERGES = "tokenizer.ggml.merges" + BOS_ID = "tokenizer.ggml.bos_token_id" + EOS_ID = "tokenizer.ggml.eos_token_id" + UNK_ID = "tokenizer.ggml.unknown_token_id" + SEP_ID = "tokenizer.ggml.seperator_token_id" + PAD_ID = "tokenizer.ggml.padding_token_id" + CLS_ID = "tokenizer.ggml.cls_token_id" + MASK_ID = "tokenizer.ggml.mask_token_id" + ADD_BOS = "tokenizer.ggml.add_bos_token" + ADD_EOS = "tokenizer.ggml.add_eos_token" + ADD_PREFIX = "tokenizer.ggml.add_space_prefix" + REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces" + PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap" + HF_JSON = "tokenizer.huggingface.json" + RWKV = "tokenizer.rwkv.world" + CHAT_TEMPLATE = "tokenizer.chat_template" + CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}" + CHAT_TEMPLATES = "tokenizer.chat_templates" # FIM/Infill special tokens constants - PREFIX_ID = "tokenizer.ggml.prefix_token_id" - SUFFIX_ID = "tokenizer.ggml.suffix_token_id" - MIDDLE_ID = "tokenizer.ggml.middle_token_id" - EOT_ID = "tokenizer.ggml.eot_token_id" + PREFIX_ID = "tokenizer.ggml.prefix_token_id" + SUFFIX_ID = "tokenizer.ggml.suffix_token_id" + MIDDLE_ID = "tokenizer.ggml.middle_token_id" + EOT_ID = "tokenizer.ggml.eot_token_id" + class Adapter: + TYPE = "adapter.type" + LORA_ALPHA = "adapter.lora.alpha" # # recommended mapping of model tensor names for storage in gguf # +class GGUFType: + MODEL = "model" + ADAPTER = "adapter" + + class MODEL_ARCH(IntEnum): - LLAMA = auto() - FALCON = auto() - BAICHUAN = auto() - GROK = auto() - GPT2 = auto() - GPTJ = auto() - GPTNEOX = auto() - MPT = auto() - STARCODER = auto() - REFACT = auto() - BERT = auto() - NOMIC_BERT = auto() + LLAMA = auto() + FALCON = auto() + BAICHUAN = auto() + GROK = auto() + GPT2 = auto() + GPTJ = auto() + GPTNEOX = auto() + MPT = auto() + STARCODER = auto() + REFACT = auto() + BERT = auto() + NOMIC_BERT = auto() JINA_BERT_V2 = auto() - BLOOM = auto() - STABLELM = auto() - QWEN = auto() - QWEN2 = auto() - QWEN2MOE = auto() - PHI2 = auto() - PHI3 = auto() - PLAMO = auto() - CODESHELL = auto() - ORION = auto() - INTERNLM2 = auto() - MINICPM = auto() - GEMMA = auto() - STARCODER2 = auto() - MAMBA = auto() - XVERSE = auto() - COMMAND_R = auto() - DBRX = auto() - OLMO = auto() - ARCTIC = auto() - DEEPSEEK2 = auto() - BITNET = auto() + BLOOM = auto() + STABLELM = auto() + QWEN = auto() + QWEN2 = auto() + QWEN2MOE = auto() + PHI2 = auto() + PHI3 = auto() + PLAMO = auto() + CODESHELL = auto() + ORION = auto() + INTERNLM2 = auto() + MINICPM = auto() + GEMMA = auto() + GEMMA2 = auto() + STARCODER2 = auto() + MAMBA = auto() + XVERSE = auto() + COMMAND_R = auto() + DBRX = auto() + OLMO = auto() + OPENELM = auto() + ARCTIC = auto() + DEEPSEEK2 = auto() + CHATGLM = auto() + BITNET = auto() + T5 = auto() + JAIS = auto() class MODEL_TENSOR(IntEnum): - TOKEN_EMBD = auto() - TOKEN_EMBD_NORM = auto() - TOKEN_TYPES = auto() - POS_EMBD = auto() - OUTPUT = auto() - OUTPUT_NORM = auto() - ROPE_FREQS = auto() - ROPE_FACTORS_LONG = auto() - ROPE_FACTORS_SHORT = auto() - ATTN_Q = auto() - ATTN_K = auto() - ATTN_V = auto() - ATTN_QKV = auto() - ATTN_OUT = auto() - ATTN_NORM = auto() - ATTN_NORM_2 = auto() - ATTN_OUT_NORM = auto() - ATTN_ROT_EMBD = auto() - FFN_GATE_INP = auto() - FFN_GATE_INP_SHEXP = auto() - FFN_NORM = auto() - FFN_GATE = auto() - FFN_DOWN = auto() - FFN_UP = auto() - FFN_ACT = auto() - FFN_NORM_EXP = auto() - FFN_GATE_EXP = auto() - FFN_DOWN_EXP = auto() - FFN_UP_EXP = auto() - FFN_GATE_SHEXP = auto() - FFN_DOWN_SHEXP = auto() - FFN_UP_SHEXP = auto() - ATTN_Q_NORM = auto() - ATTN_K_NORM = auto() - LAYER_OUT_NORM = auto() - SSM_IN = auto() - SSM_CONV1D = auto() - SSM_X = auto() - SSM_DT = auto() - SSM_A = auto() - SSM_D = auto() - SSM_OUT = auto() - ATTN_Q_A = auto() - ATTN_Q_B = auto() - ATTN_KV_A_MQA = auto() - ATTN_KV_B = auto() - ATTN_Q_A_NORM = auto() - ATTN_KV_A_NORM = auto() - FFN_SUB_NORM = auto() - ATTN_SUB_NORM = auto() + TOKEN_EMBD = auto() + TOKEN_EMBD_NORM = auto() + TOKEN_TYPES = auto() + POS_EMBD = auto() + OUTPUT = auto() + OUTPUT_NORM = auto() + ROPE_FREQS = auto() + ROPE_FACTORS_LONG = auto() + ROPE_FACTORS_SHORT = auto() + ATTN_Q = auto() + ATTN_K = auto() + ATTN_V = auto() + ATTN_QKV = auto() + ATTN_OUT = auto() + ATTN_NORM = auto() + ATTN_NORM_2 = auto() + ATTN_OUT_NORM = auto() + ATTN_POST_NORM = auto() + ATTN_ROT_EMBD = auto() + FFN_GATE_INP = auto() + FFN_GATE_INP_SHEXP = auto() + FFN_NORM = auto() + FFN_PRE_NORM = auto() + FFN_POST_NORM = auto() + FFN_GATE = auto() + FFN_DOWN = auto() + FFN_UP = auto() + FFN_ACT = auto() + FFN_NORM_EXP = auto() + FFN_GATE_EXP = auto() + FFN_DOWN_EXP = auto() + FFN_UP_EXP = auto() + FFN_GATE_SHEXP = auto() + FFN_DOWN_SHEXP = auto() + FFN_UP_SHEXP = auto() + ATTN_Q_NORM = auto() + ATTN_K_NORM = auto() + LAYER_OUT_NORM = auto() + SSM_IN = auto() + SSM_CONV1D = auto() + SSM_X = auto() + SSM_DT = auto() + SSM_A = auto() + SSM_D = auto() + SSM_OUT = auto() + ATTN_Q_A = auto() + ATTN_Q_B = auto() + ATTN_KV_A_MQA = auto() + ATTN_KV_B = auto() + ATTN_Q_A_NORM = auto() + ATTN_KV_A_NORM = auto() + FFN_SUB_NORM = auto() + ATTN_SUB_NORM = auto() + DEC_ATTN_NORM = auto() + DEC_ATTN_Q = auto() + DEC_ATTN_K = auto() + DEC_ATTN_V = auto() + DEC_ATTN_OUT = auto() + DEC_ATTN_REL_B = auto() + DEC_CROSS_ATTN_NORM = auto() + DEC_CROSS_ATTN_Q = auto() + DEC_CROSS_ATTN_K = auto() + DEC_CROSS_ATTN_V = auto() + DEC_CROSS_ATTN_OUT = auto() + DEC_CROSS_ATTN_REL_B = auto() + DEC_FFN_NORM = auto() + DEC_FFN_GATE = auto() + DEC_FFN_DOWN = auto() + DEC_FFN_UP = auto() + DEC_OUTPUT_NORM = auto() + ENC_ATTN_NORM = auto() + ENC_ATTN_Q = auto() + ENC_ATTN_K = auto() + ENC_ATTN_V = auto() + ENC_ATTN_OUT = auto() + ENC_ATTN_REL_B = auto() + ENC_FFN_NORM = auto() + ENC_FFN_GATE = auto() + ENC_FFN_DOWN = auto() + ENC_FFN_UP = auto() + ENC_OUTPUT_NORM = auto() MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { @@ -232,68 +330,104 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.INTERNLM2: "internlm2", MODEL_ARCH.MINICPM: "minicpm", MODEL_ARCH.GEMMA: "gemma", + MODEL_ARCH.GEMMA2: "gemma2", MODEL_ARCH.STARCODER2: "starcoder2", MODEL_ARCH.MAMBA: "mamba", MODEL_ARCH.XVERSE: "xverse", MODEL_ARCH.COMMAND_R: "command-r", MODEL_ARCH.DBRX: "dbrx", MODEL_ARCH.OLMO: "olmo", + MODEL_ARCH.OPENELM: "openelm", MODEL_ARCH.ARCTIC: "arctic", MODEL_ARCH.DEEPSEEK2: "deepseek2", + MODEL_ARCH.CHATGLM: "chatglm", MODEL_ARCH.BITNET: "bitnet", + MODEL_ARCH.T5: "t5", + MODEL_ARCH.JAIS: "jais", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", - MODEL_TENSOR.TOKEN_TYPES: "token_types", - MODEL_TENSOR.POS_EMBD: "position_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long", - MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", - MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", - MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", - MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", - MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", - MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm", - MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp", - MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", - MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp", - MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp", - MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp", - MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn", - MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps", - MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps", - MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps", - MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps", - MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm", - MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in", - MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d", - MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x", - MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt", - MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", - MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", - MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", - MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a", - MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b", - MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa", - MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b", - MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm", - MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm", - MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm", - MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm", + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", + MODEL_TENSOR.TOKEN_TYPES: "token_types", + MODEL_TENSOR.POS_EMBD: "position_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long", + MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", + MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", + MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm", + MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm", + MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp", + MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp", + MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp", + MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp", + MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn", + MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps", + MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps", + MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps", + MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps", + MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm", + MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in", + MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d", + MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x", + MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt", + MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", + MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", + MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", + MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a", + MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b", + MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa", + MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b", + MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm", + MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm", + MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm", + MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm", + MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm", + MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q", + MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k", + MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v", + MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o", + MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b", + MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm", + MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q", + MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k", + MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v", + MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o", + MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b", + MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm", + MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate", + MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down", + MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up", + MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm", + MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm", + MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q", + MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k", + MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v", + MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o", + MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b", + MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm", + MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate", + MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down", + MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up", + MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm", } MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { @@ -684,6 +818,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_NORM, ], + MODEL_ARCH.GEMMA2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_POST_NORM, + MODEL_TENSOR.FFN_PRE_NORM, + MODEL_TENSOR.FFN_POST_NORM, + ], MODEL_ARCH.STARCODER2: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -766,6 +915,19 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.OPENELM: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.ARCTIC: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -814,17 +976,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN_SHEXP, MODEL_TENSOR.FFN_UP_SHEXP, ], + MODEL_ARCH.CHATGLM : [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.BITNET: [ MODEL_TENSOR.ATTN_Q, MODEL_TENSOR.ATTN_K, MODEL_TENSOR.ATTN_V, MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_QKV, MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.ATTN_ROT_EMBD, MODEL_TENSOR.FFN_NORM, MODEL_TENSOR.FFN_GATE, MODEL_TENSOR.FFN_DOWN, @@ -832,6 +1003,50 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ATTN_SUB_NORM, MODEL_TENSOR.FFN_SUB_NORM, ], + MODEL_ARCH.T5: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.DEC_ATTN_NORM, + MODEL_TENSOR.DEC_ATTN_Q, + MODEL_TENSOR.DEC_ATTN_K, + MODEL_TENSOR.DEC_ATTN_V, + MODEL_TENSOR.DEC_ATTN_OUT, + MODEL_TENSOR.DEC_ATTN_REL_B, + MODEL_TENSOR.DEC_CROSS_ATTN_NORM, + MODEL_TENSOR.DEC_CROSS_ATTN_Q, + MODEL_TENSOR.DEC_CROSS_ATTN_K, + MODEL_TENSOR.DEC_CROSS_ATTN_V, + MODEL_TENSOR.DEC_CROSS_ATTN_OUT, + MODEL_TENSOR.DEC_CROSS_ATTN_REL_B, + MODEL_TENSOR.DEC_FFN_NORM, + MODEL_TENSOR.DEC_FFN_GATE, + MODEL_TENSOR.DEC_FFN_DOWN, + MODEL_TENSOR.DEC_FFN_UP, + MODEL_TENSOR.DEC_OUTPUT_NORM, + MODEL_TENSOR.ENC_ATTN_NORM, + MODEL_TENSOR.ENC_ATTN_Q, + MODEL_TENSOR.ENC_ATTN_K, + MODEL_TENSOR.ENC_ATTN_V, + MODEL_TENSOR.ENC_ATTN_OUT, + MODEL_TENSOR.ENC_ATTN_REL_B, + MODEL_TENSOR.ENC_FFN_NORM, + MODEL_TENSOR.ENC_FFN_GATE, + MODEL_TENSOR.ENC_FFN_DOWN, + MODEL_TENSOR.ENC_FFN_UP, + MODEL_TENSOR.ENC_OUTPUT_NORM, + ], + MODEL_ARCH.JAIS: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_UP, + ], # TODO } @@ -869,6 +1084,9 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.CHATGLM: [ + MODEL_TENSOR.ROPE_FREQS, + ], } # @@ -1056,7 +1274,6 @@ KEY_GENERAL_URL = Keys.General.URL KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION KEY_GENERAL_LICENSE = Keys.General.LICENSE KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL -KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE # LLM diff --git a/gguf-py/gguf/gguf_reader.py b/gguf-py/gguf/gguf_reader.py index e48bc00c..e8e61abf 100644 --- a/gguf-py/gguf/gguf_reader.py +++ b/gguf-py/gguf/gguf_reader.py @@ -67,8 +67,9 @@ class ReaderTensor(NamedTuple): class GGUFReader: # I - same as host, S - swapped - byte_order: Literal['I'] | Literal['S'] = 'I' + byte_order: Literal['I', 'S'] = 'I' alignment: int = GGUF_DEFAULT_ALIGNMENT + data_offset: int # Note: Internal helper, API may change. gguf_scalar_to_np: dict[GGUFValueType, type[np.generic]] = { @@ -85,12 +86,16 @@ class GGUFReader: GGUFValueType.BOOL: np.bool_, } - def __init__(self, path: os.PathLike[str] | str, mode: Literal['r'] | Literal['r+'] | Literal['c'] = 'r'): + def __init__(self, path: os.PathLike[str] | str, mode: Literal['r', 'r+', 'c'] = 'r'): self.data = np.memmap(path, mode = mode) offs = 0 + + # Check for GGUF magic if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC: raise ValueError('GGUF magic invalid') offs += 4 + + # Check GGUF version temp_version = self._get(offs, np.uint32) if temp_version[0] & 65535 == 0: # If we get 0 here that means it's (probably) a GGUF file created for @@ -103,12 +108,16 @@ class GGUFReader: self.fields: OrderedDict[str, ReaderField] = OrderedDict() self.tensors: list[ReaderTensor] = [] offs += self._push_field(ReaderField(offs, 'GGUF.version', [temp_version], [0], [GGUFValueType.UINT32])) + + # Check tensor count and kv count temp_counts = self._get(offs, np.uint64, 2) offs += self._push_field(ReaderField(offs, 'GGUF.tensor_count', [temp_counts[:1]], [0], [GGUFValueType.UINT64])) offs += self._push_field(ReaderField(offs, 'GGUF.kv_count', [temp_counts[1:]], [0], [GGUFValueType.UINT64])) tensor_count, kv_count = temp_counts offs = self._build_fields(offs, kv_count) - offs, tensors_fields = self._build_tensors_fields(offs, tensor_count) + + # Build Tensor Info Fields + offs, tensors_fields = self._build_tensor_info(offs, tensor_count) new_align = self.fields.get('general.alignment') if new_align is not None: if new_align.types != [GGUFValueType.UINT32]: @@ -117,6 +126,7 @@ class GGUFReader: padding = offs % self.alignment if padding != 0: offs += self.alignment - padding + self.data_offset = offs self._build_tensors(offs, tensors_fields) _DT = TypeVar('_DT', bound = npt.DTypeLike) @@ -130,7 +140,7 @@ class GGUFReader: return self.tensors[idx] def _get( - self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I'] | Literal['S'] | Literal['<'] = None, + self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I', 'S', '<'] = None, ) -> npt.NDArray[Any]: count = int(count) itemsize = int(np.empty([], dtype = dtype).itemsize) @@ -193,18 +203,29 @@ class GGUFReader: # We can't deal with this one. raise ValueError('Unknown/unhandled field type {gtype}') - def _get_tensor(self, orig_offs: int) -> ReaderField: + def _get_tensor_info_field(self, orig_offs: int) -> ReaderField: offs = orig_offs + + # Get Tensor Name name_len, name_data = self._get_str(offs) offs += int(name_len.nbytes + name_data.nbytes) + + # Get Tensor Dimensions Count n_dims = self._get(offs, np.uint32) offs += int(n_dims.nbytes) + + # Get Tensor Dimension Array dims = self._get(offs, np.uint64, n_dims[0]) offs += int(dims.nbytes) + + # Get Tensor Encoding Scheme Type raw_dtype = self._get(offs, np.uint32) offs += int(raw_dtype.nbytes) + + # Get Tensor Offset offset_tensor = self._get(offs, np.uint64) offs += int(offset_tensor.nbytes) + return ReaderField( orig_offs, str(bytes(name_data), encoding = 'utf-8'), @@ -233,10 +254,10 @@ class GGUFReader: offs += field_size return offs - def _build_tensors_fields(self, offs: int, count: int) -> tuple[int, list[ReaderField]]: + def _build_tensor_info(self, offs: int, count: int) -> tuple[int, list[ReaderField]]: tensor_fields = [] for _ in range(count): - field = self._get_tensor(offs) + field = self._get_tensor_info_field(offs) offs += sum(int(part.nbytes) for part in field.parts) tensor_fields.append(field) return offs, tensor_fields diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index a697f657..ba6f53cd 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -7,6 +7,8 @@ import struct import tempfile from dataclasses import dataclass from enum import Enum, auto +from math import prod +from pathlib import Path from io import BufferedWriter from typing import IO, Any, Sequence, Mapping from string import ascii_letters, digits @@ -31,6 +33,9 @@ from .quants import quant_shape_from_byte_shape logger = logging.getLogger(__name__) +SHARD_NAME_FORMAT = "{:s}-{:05d}-of-{:05d}.gguf" + + @dataclass class TensorInfo: shape: Sequence[int] @@ -55,11 +60,11 @@ class WriterState(Enum): class GGUFWriter: - fout: BufferedWriter | None - path: os.PathLike[str] | str | None + fout: list[BufferedWriter] | None + path: Path | None temp_file: tempfile.SpooledTemporaryFile[bytes] | None - tensors: dict[str, TensorInfo] - kv_data: dict[str, GGUFValue] + tensors: list[dict[str, TensorInfo]] + kv_data: list[dict[str, GGUFValue]] state: WriterState _simple_value_packing = { GGUFValueType.UINT8: "B", @@ -76,29 +81,89 @@ class GGUFWriter: } def __init__( - self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, - endianess: GGUFEndian = GGUFEndian.LITTLE, + self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE, + split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False ): self.fout = None - self.path = path + self.path = Path(path) if path else None self.arch = arch self.endianess = endianess self.data_alignment = GGUF_DEFAULT_ALIGNMENT self.use_temp_file = use_temp_file self.temp_file = None - self.tensors = dict() - self.kv_data = dict() + self.tensors = [{}] + self.kv_data = [{}] + self.split_max_tensors = split_max_tensors + self.split_max_size = split_max_size + self.dry_run = dry_run + self.small_first_shard = small_first_shard logger.info("gguf: This GGUF file is for {0} Endian only".format( "Big" if self.endianess == GGUFEndian.BIG else "Little", )) self.state = WriterState.NO_FILE + if self.small_first_shard: + self.tensors.append({}) + self.add_architecture() - def open_output_file(self, path: os.PathLike[str] | str | None = None) -> None: + def get_total_parameter_count(self) -> tuple[int, int, int, int]: + total_params = 0 + shared_params = 0 + expert_params = 0 + + expert_sum = 0 + n_expert_tensors = 0 + + last_lora_a: tuple[str, TensorInfo] | None = None + + for tensors in self.tensors: + for name, info in tensors.items(): + + shape = info.shape + + if name.endswith(".lora_a"): + last_lora_a = (name, info) + continue + elif name.endswith(".lora_b"): + if last_lora_a is None or last_lora_a[0] != name[:-1] + "a": + # Bail when the LoRA pair can't be found trivially + logger.warning("can't measure LoRA size correctly, tensor order is unusual") + return 0, 0, 0, 0 + else: + shape = (*shape[:-1], last_lora_a[1].shape[-1]) + + size = prod(shape) + + if "_exps." in name: + expert_params += (size // shape[-3]) + expert_sum += shape[-3] + n_expert_tensors += 1 + else: + shared_params += size + + total_params += size + + # Hopefully this should work even for variable-expert-count models + expert_count = (expert_sum // n_expert_tensors) if n_expert_tensors > 0 else 0 + + # Negate the total to signal it's likely not exact + if last_lora_a is not None: + total_params = -total_params + + # NOTE: keep the output in the same order as accepted by 'size_label' in gguf-py/gguf/utility.py + return total_params, shared_params, expert_params, expert_count + + def format_shard_names(self, path: Path) -> list[Path]: + if len(self.tensors) == 1: + return [path] + return [path.with_name(SHARD_NAME_FORMAT.format(path.stem, i + 1, len(self.tensors))) for i in range(len(self.tensors))] + + def open_output_file(self, path: Path | None = None) -> None: if self.state is WriterState.EMPTY and self.fout is not None and (path is None or path == self.path): # allow calling this multiple times as long as the path is the same return + if self.state is not WriterState.NO_FILE: raise ValueError(f'Expected output file to be not yet opened, got {self.state}') @@ -106,22 +171,60 @@ class GGUFWriter: self.path = path if self.path is not None: - if self.fout is not None: - self.fout.close() - self.fout = open(self.path, "wb") + filenames = self.print_plan() + self.fout = [open(filename, "wb") for filename in filenames] self.state = WriterState.EMPTY - def write_header_to_file(self, path: os.PathLike[str] | str | None = None) -> None: + def print_plan(self) -> list[Path]: + logger.info("Writing the following files:") + assert self.path is not None + filenames = self.format_shard_names(self.path) + assert len(filenames) == len(self.tensors) + for name, tensors in zip(filenames, self.tensors): + logger.info(f"{name}: n_tensors = {len(tensors)}, total_size = {GGUFWriter.format_n_bytes_to_str(sum(ti.nbytes for ti in tensors.values()))}") + + if self.dry_run: + logger.info("Dry run, not writing files") + for name in filenames: + print(name) # noqa: NP100 + exit() + + return filenames + + def add_shard_kv_data(self) -> None: + if len(self.tensors) == 1: + return + + total_tensors = sum(len(t) for t in self.tensors) + assert self.fout is not None + total_splits = len(self.fout) + self.kv_data.extend({} for _ in range(len(self.kv_data), total_splits)) + for i, kv_data in enumerate(self.kv_data): + kv_data[Keys.Split.LLM_KV_SPLIT_NO] = GGUFValue(i, GGUFValueType.UINT16) + kv_data[Keys.Split.LLM_KV_SPLIT_COUNT] = GGUFValue(total_splits, GGUFValueType.UINT16) + kv_data[Keys.Split.LLM_KV_SPLIT_TENSORS_COUNT] = GGUFValue(total_tensors, GGUFValueType.INT32) + + def write_header_to_file(self, path: Path | None = None) -> None: + if len(self.tensors) == 1 and (self.split_max_tensors != 0 or self.split_max_size != 0): + logger.warning("Model fails split requirements, not splitting") + self.open_output_file(path) if self.state is not WriterState.EMPTY: raise ValueError(f'Expected output file to be empty, got {self.state}') - self._write_packed("<I", GGUF_MAGIC, skip_pack_prefix = True) - self._write_packed("I", GGUF_VERSION) - self._write_packed("Q", len(self.tensors)) - self._write_packed("Q", len(self.kv_data)) - self.flush() + assert self.fout is not None + assert len(self.fout) == len(self.tensors) + assert len(self.kv_data) == 1 + + self.add_shard_kv_data() + + for fout, tensors, kv_data in zip(self.fout, self.tensors, self.kv_data): + fout.write(self._pack("<I", GGUF_MAGIC, skip_pack_prefix = True)) + fout.write(self._pack("I", GGUF_VERSION)) + fout.write(self._pack("Q", len(tensors))) + fout.write(self._pack("Q", len(kv_data))) + fout.flush() self.state = WriterState.HEADER def write_kv_data_to_file(self) -> None: @@ -129,13 +232,15 @@ class GGUFWriter: raise ValueError(f'Expected output file to contain the header, got {self.state}') assert self.fout is not None - kv_data = bytearray() + for fout, kv_data in zip(self.fout, self.kv_data): + kv_bytes = bytearray() + + for key, val in kv_data.items(): + kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False) + kv_bytes += self._pack_val(val.value, val.type, add_vtype=True) - for key, val in self.kv_data.items(): - kv_data += self._pack_val(key, GGUFValueType.STRING, add_vtype=False) - kv_data += self._pack_val(val.value, val.type, add_vtype=True) + fout.write(kv_bytes) - self.fout.write(kv_data) self.flush() self.state = WriterState.KV_DATA @@ -144,28 +249,29 @@ class GGUFWriter: raise ValueError(f'Expected output file to contain KV data, got {self.state}') assert self.fout is not None - ti_data = bytearray() - offset_tensor = 0 - - for name, ti in self.tensors.items(): - ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False) - n_dims = len(ti.shape) - ti_data += self._pack("I", n_dims) - for i in range(n_dims): - ti_data += self._pack("Q", ti.shape[n_dims - 1 - i]) - ti_data += self._pack("I", ti.dtype) - ti_data += self._pack("Q", offset_tensor) - offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment) - - self.fout.write(ti_data) - self.flush() + for fout, tensors in zip(self.fout, self.tensors): + ti_data = bytearray() + offset_tensor = 0 + + for name, ti in tensors.items(): + ti_data += self._pack_val(name, GGUFValueType.STRING, add_vtype=False) + n_dims = len(ti.shape) + ti_data += self._pack("I", n_dims) + for j in range(n_dims): + ti_data += self._pack("Q", ti.shape[n_dims - 1 - j]) + ti_data += self._pack("I", ti.dtype) + ti_data += self._pack("Q", offset_tensor) + offset_tensor += GGUFWriter.ggml_pad(ti.nbytes, self.data_alignment) + + fout.write(ti_data) + fout.flush() self.state = WriterState.TI_DATA def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None: - if key in self.kv_data: + if any(key in kv_data for kv_data in self.kv_data): raise ValueError(f'Duplicated key name {key!r}') - self.kv_data[key] = GGUFValue(value=val, type=vtype) + self.kv_data[0][key] = GGUFValue(value=val, type=vtype) def add_uint8(self, key: str, val: int) -> None: self.add_key_value(key,val, GGUFValueType.UINT8) @@ -206,9 +312,6 @@ class GGUFWriter: self.add_key_value(key, val, GGUFValueType.STRING) def add_array(self, key: str, val: Sequence[Any]) -> None: - if not isinstance(val, Sequence): - raise ValueError("Value must be a sequence for array type") - self.add_key_value(key, val, GGUFValueType.ARRAY) @staticmethod @@ -222,7 +325,7 @@ class GGUFWriter: if self.state is not WriterState.NO_FILE: raise ValueError(f'Expected output file to be not yet opened, got {self.state}') - if name in self.tensors: + if any(name in tensors for tensors in self.tensors): raise ValueError(f'Duplicated tensor name {name!r}') if raw_dtype is None: @@ -247,7 +350,18 @@ class GGUFWriter: if tensor_dtype == np.uint8: tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype) - self.tensors[name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes) + # make sure there is at least one tensor before splitting + if len(self.tensors[-1]) > 0: + if ( # split when over tensor limit + self.split_max_tensors != 0 + and len(self.tensors[-1]) >= self.split_max_tensors + ) or ( # split when over size limit + self.split_max_size != 0 + and sum(ti.nbytes for ti in self.tensors[-1].values()) + tensor_nbytes > self.split_max_size + ): + self.tensors.append({}) + + self.tensors[-1][name] = TensorInfo(shape=tensor_shape, dtype=dtype, nbytes=tensor_nbytes) def add_tensor( self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, @@ -264,7 +378,7 @@ class GGUFWriter: self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype=raw_dtype) if self.temp_file is None: - self.tensors[name].tensor = tensor + self.tensors[-1][name].tensor = tensor return tensor.tofile(self.temp_file) @@ -282,9 +396,24 @@ class GGUFWriter: if self.endianess == GGUFEndian.BIG: tensor.byteswap(inplace=True) - self.write_padding(self.fout, self.fout.tell()) - tensor.tofile(self.fout) - self.write_padding(self.fout, tensor.nbytes) + + file_id = -1 + for i, tensors in enumerate(self.tensors): + if len(tensors) > 0: + file_id = i + break + + fout = self.fout[file_id] + + # pop the first tensor info + # TODO: cleaner way to get the first key + first_tensor_name = [name for name, _ in zip(self.tensors[file_id].keys(), range(1))][0] + ti = self.tensors[file_id].pop(first_tensor_name) + assert ti.nbytes == tensor.nbytes + + self.write_padding(fout, fout.tell()) + tensor.tofile(fout) + self.write_padding(fout, tensor.nbytes) self.state = WriterState.WEIGHTS @@ -293,31 +422,43 @@ class GGUFWriter: assert self.fout is not None - self.write_padding(self.fout, self.fout.tell()) + for fout in self.fout: + self.write_padding(fout, fout.tell()) if self.temp_file is None: + shard_bar = None bar = None if progress: from tqdm import tqdm - total_bytes = sum(t.nbytes for t in self.tensors.values()) + total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values()) + if len(self.fout) > 1: + shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True) bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True) - # relying on the fact that Python dicts preserve insertion order (since 3.7) - for ti in self.tensors.values(): - assert ti.tensor is not None # can only iterate once over the tensors - assert ti.tensor.nbytes == ti.nbytes - ti.tensor.tofile(self.fout) - if bar is not None: - bar.update(ti.nbytes) - self.write_padding(self.fout, ti.nbytes) - ti.tensor = None + for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)): + if shard_bar is not None: + shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})") + total = sum(ti.nbytes for ti in tensors.values()) + shard_bar.reset(total=(total if total > 0 else None)) + + # relying on the fact that Python dicts preserve insertion order (since 3.7) + for ti in tensors.values(): + assert ti.tensor is not None # can only iterate once over the tensors + assert ti.tensor.nbytes == ti.nbytes + ti.tensor.tofile(fout) + if shard_bar is not None: + shard_bar.update(ti.nbytes) + if bar is not None: + bar.update(ti.nbytes) + self.write_padding(fout, ti.nbytes) + ti.tensor = None else: self.temp_file.seek(0) - shutil.copyfileobj(self.temp_file, self.fout) + shutil.copyfileobj(self.temp_file, self.fout[0 if not self.small_first_shard else 1]) self.flush() self.temp_file.close() @@ -325,53 +466,129 @@ class GGUFWriter: def flush(self) -> None: assert self.fout is not None - self.fout.flush() + for fout in self.fout: + fout.flush() def close(self) -> None: if self.fout is not None: - self.fout.close() + for fout in self.fout: + fout.close() self.fout = None + def add_type(self, type_name: str) -> None: + self.add_string(Keys.General.TYPE, type_name) + def add_architecture(self) -> None: self.add_string(Keys.General.ARCHITECTURE, self.arch) + def add_quantization_version(self, quantization_version: int) -> None: + self.add_uint32(Keys.General.QUANTIZATION_VERSION, quantization_version) + + def add_custom_alignment(self, alignment: int) -> None: + self.data_alignment = alignment + self.add_uint32(Keys.General.ALIGNMENT, alignment) + + def add_file_type(self, ftype: int) -> None: + self.add_uint32(Keys.General.FILE_TYPE, ftype) + + def add_name(self, name: str) -> None: + self.add_string(Keys.General.NAME, name) + def add_author(self, author: str) -> None: self.add_string(Keys.General.AUTHOR, author) def add_version(self, version: str) -> None: self.add_string(Keys.General.VERSION, version) - def add_tensor_data_layout(self, layout: str) -> None: - self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) + def add_organization(self, organization: str) -> None: + self.add_string(Keys.General.ORGANIZATION, organization) - def add_url(self, url: str) -> None: - self.add_string(Keys.General.URL, url) + def add_finetune(self, finetune: str) -> None: + self.add_string(Keys.General.FINETUNE, finetune) + + def add_basename(self, basename: str) -> None: + self.add_string(Keys.General.BASENAME, basename) def add_description(self, description: str) -> None: self.add_string(Keys.General.DESCRIPTION, description) - def add_licence(self, licence: str) -> None: - self.add_string(Keys.General.LICENSE, licence) + def add_quantized_by(self, quantized: str) -> None: + self.add_string(Keys.General.QUANTIZED_BY, quantized) + + def add_size_label(self, size_label: str) -> None: + self.add_string(Keys.General.SIZE_LABEL, size_label) + + def add_license(self, license: str) -> None: + self.add_string(Keys.General.LICENSE, license) + + def add_license_name(self, license: str) -> None: + self.add_string(Keys.General.LICENSE_NAME, license) + + def add_license_link(self, license: str) -> None: + self.add_string(Keys.General.LICENSE_LINK, license) + + def add_url(self, url: str) -> None: + self.add_string(Keys.General.URL, url) + + def add_doi(self, doi: str) -> None: + self.add_string(Keys.General.DOI, doi) + + def add_uuid(self, uuid: str) -> None: + self.add_string(Keys.General.UUID, uuid) + + def add_repo_url(self, repo_url: str) -> None: + self.add_string(Keys.General.REPO_URL, repo_url) def add_source_url(self, url: str) -> None: self.add_string(Keys.General.SOURCE_URL, url) - def add_source_hf_repo(self, repo: str) -> None: - self.add_string(Keys.General.SOURCE_HF_REPO, repo) + def add_source_doi(self, doi: str) -> None: + self.add_string(Keys.General.SOURCE_DOI, doi) - def add_file_type(self, ftype: int) -> None: - self.add_uint32(Keys.General.FILE_TYPE, ftype) + def add_source_uuid(self, uuid: str) -> None: + self.add_string(Keys.General.SOURCE_UUID, uuid) - def add_name(self, name: str) -> None: - self.add_string(Keys.General.NAME, name) + def add_source_repo_url(self, repo_url: str) -> None: + self.add_string(Keys.General.SOURCE_REPO_URL, repo_url) - def add_quantization_version(self, quantization_version: int) -> None: - self.add_uint32( - Keys.General.QUANTIZATION_VERSION, quantization_version) + def add_base_model_count(self, source_count: int) -> None: + self.add_uint32(Keys.General.BASE_MODEL_COUNT, source_count) - def add_custom_alignment(self, alignment: int) -> None: - self.data_alignment = alignment - self.add_uint32(Keys.General.ALIGNMENT, alignment) + def add_base_model_name(self, source_id: int, name: str) -> None: + self.add_string(Keys.General.BASE_MODEL_NAME.format(id=source_id), name) + + def add_base_model_author(self, source_id: int, author: str) -> None: + self.add_string(Keys.General.BASE_MODEL_AUTHOR.format(id=source_id), author) + + def add_base_model_version(self, source_id: int, version: str) -> None: + self.add_string(Keys.General.BASE_MODEL_VERSION.format(id=source_id), version) + + def add_base_model_organization(self, source_id: int, organization: str) -> None: + self.add_string(Keys.General.BASE_MODEL_ORGANIZATION.format(id=source_id), organization) + + def add_base_model_url(self, source_id: int, url: str) -> None: + self.add_string(Keys.General.BASE_MODEL_URL.format(id=source_id), url) + + def add_base_model_doi(self, source_id: int, doi: str) -> None: + self.add_string(Keys.General.BASE_MODEL_DOI.format(id=source_id), doi) + + def add_base_model_uuid(self, source_id: int, uuid: str) -> None: + self.add_string(Keys.General.BASE_MODEL_UUID.format(id=source_id), uuid) + + def add_base_model_repo_url(self, source_id: int, repo_url: str) -> None: + self.add_string(Keys.General.BASE_MODEL_REPO_URL.format(id=source_id), repo_url) + + def add_tags(self, tags: Sequence[str]) -> None: + self.add_array(Keys.General.TAGS, tags) + + def add_languages(self, languages: Sequence[str]) -> None: + self.add_array(Keys.General.LANGUAGES, languages) + + def add_datasets(self, datasets: Sequence[str]) -> None: + self.add_array(Keys.General.DATASETS, datasets) + + def add_tensor_data_layout(self, layout: str) -> None: + self.add_string(Keys.LLM.TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) def add_vocab_size(self, size: int) -> None: self.add_uint32(Keys.LLM.VOCAB_SIZE.format(arch=self.arch), size) @@ -388,8 +605,11 @@ class GGUFWriter: def add_leading_dense_block_count(self, length: int) -> None: self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length) - def add_feed_forward_length(self, length: int) -> None: - self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) + def add_feed_forward_length(self, length: int | Sequence[int]) -> None: + if isinstance(length, int): + self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) + else: + self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) def add_expert_feed_forward_length(self, length: int) -> None: self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length) @@ -400,11 +620,20 @@ class GGUFWriter: def add_parallel_residual(self, use: bool) -> None: self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) - def add_head_count(self, count: int) -> None: - self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count) + def add_decoder_start_token_id(self, id: int) -> None: + self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id) - def add_head_count_kv(self, count: int) -> None: - self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) + def add_head_count(self, count: int | Sequence[int]) -> None: + if isinstance(count, int): + self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count) + else: + self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count) + + def add_head_count_kv(self, count: int | Sequence[int]) -> None: + if isinstance(count, int): + self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) + else: + self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) def add_key_length(self, length: int) -> None: self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length) @@ -421,6 +650,12 @@ class GGUFWriter: def add_logit_scale(self, value: float) -> None: self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value) + def add_attn_logit_softcapping(self, value: float) -> None: + self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value) + + def add_final_logit_softcapping(self, value: float) -> None: + self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value) + def add_expert_count(self, count: int) -> None: self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count) @@ -448,6 +683,12 @@ class GGUFWriter: def add_kv_lora_rank(self, length: int) -> None: self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length) + def add_relative_attn_buckets_count(self, value: int) -> None: + self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value) + + def add_sliding_window(self, value: int) -> None: + self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value) + def add_pooling_type(self, value: PoolingType) -> None: self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value) @@ -538,6 +779,12 @@ class GGUFWriter: def add_add_space_prefix(self, value: bool) -> None: self.add_bool(Keys.Tokenizer.ADD_PREFIX, value) + def add_remove_extra_whitespaces(self, value: bool) -> None: + self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value) + + def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None: + self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap) + def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None: if not isinstance(value, str): template_default = None @@ -599,9 +846,12 @@ class GGUFWriter: kv_data += self._pack("Q", len(encoded_val)) kv_data += encoded_val elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val: - ltype = GGUFValueType.get_type(val[0]) - if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): - raise ValueError("All items in a GGUF array should be of the same type") + if isinstance(val, bytes): + ltype = GGUFValueType.UINT8 + else: + ltype = GGUFValueType.get_type(val[0]) + if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]): + raise ValueError("All items in a GGUF array should be of the same type") kv_data += self._pack("I", ltype) kv_data += self._pack("Q", len(val)) for item in val: @@ -611,6 +861,13 @@ class GGUFWriter: return kv_data - def _write_packed(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> None: - assert self.fout is not None - self.fout.write(self._pack(fmt, value, skip_pack_prefix)) + @staticmethod + def format_n_bytes_to_str(num: int) -> str: + if num == 0: + return "negligible - metadata only" + fnum = float(num) + for unit in ("", "K", "M", "G"): + if abs(fnum) < 1000.0: + return f"{fnum:3.1f}{unit}" + fnum /= 1000.0 + return f"{fnum:.1f}T - over 1TB, split recommended" diff --git a/gguf-py/gguf/lazy.py b/gguf-py/gguf/lazy.py index 1167335b..ac98d9a9 100644 --- a/gguf-py/gguf/lazy.py +++ b/gguf-py/gguf/lazy.py @@ -3,10 +3,8 @@ from abc import ABC, ABCMeta, abstractmethod import logging from typing import Any, Callable -from collections import deque import numpy as np -from numpy._typing import _Shape from numpy.typing import DTypeLike @@ -16,16 +14,16 @@ logger = logging.getLogger(__name__) class LazyMeta(ABCMeta): def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs): - def __getattr__(self, __name: str) -> Any: - meta_attr = getattr(self._meta, __name) + def __getattr__(self, name: str) -> Any: + meta_attr = getattr(self._meta, name) if callable(meta_attr): return type(self)._wrap_fn( - (lambda s, *args, **kwargs: getattr(s, __name)(*args, **kwargs)), + (lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)), use_self=self, ) elif isinstance(meta_attr, self._tensor_type): # e.g. self.T with torch.Tensor should still be wrapped - return type(self)._wrap_fn(lambda s: getattr(s, __name))(self) + return type(self)._wrap_fn(lambda s: getattr(s, name))(self) else: # no need to wrap non-tensor properties, # and they likely don't depend on the actual contents of the tensor @@ -75,20 +73,18 @@ class LazyBase(ABC, metaclass=LazyMeta): _tensor_type: type _meta: Any _data: Any | None - _lazy: deque[LazyBase] # shared within a graph, to avoid deep recursion when making eager _args: tuple - _func: Callable[[tuple], Any] | None + _kwargs: dict[str, Any] + _func: Callable[[Any], Any] | None - def __init__(self, *, meta: Any, data: Any | None = None, lazy: deque[LazyBase] | None = None, args: tuple = (), func: Callable[[tuple], Any] | None = None): + def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None): super().__init__() self._meta = meta self._data = data - self._lazy = lazy if lazy is not None else deque() self._args = args + self._kwargs = kwargs if kwargs is not None else {} self._func = func assert self._func is not None or self._data is not None - if self._data is None: - self._lazy.append(self) def __init_subclass__(cls) -> None: if "_tensor_type" not in cls.__dict__: @@ -118,6 +114,7 @@ class LazyBase(ABC, metaclass=LazyMeta): args = ((use_self,) if use_self is not None else ()) + args meta_args = LazyBase._recurse_apply(args, lambda t: t._meta) + # TODO: maybe handle tensors in kwargs too if isinstance(meta_noop, bool) and not meta_noop: try: @@ -141,21 +138,7 @@ class LazyBase(ABC, metaclass=LazyMeta): res = cls.meta_with_dtype_and_shape(meta_noop, res.shape) if isinstance(res, cls._tensor_type): - def collect_replace(t: LazyBase): - if collect_replace.shared_lazy is None: - collect_replace.shared_lazy = t._lazy - else: - collect_replace.shared_lazy.extend(t._lazy) - t._lazy = collect_replace.shared_lazy - - # emulating a static variable - collect_replace.shared_lazy = None - - LazyBase._recurse_apply(args, collect_replace) - - shared_lazy = collect_replace.shared_lazy - - return cls(meta=cls.eager_to_meta(res), lazy=shared_lazy, args=args, func=lambda a: fn(*a, **kwargs)) + return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn) else: del res # not needed # non-tensor return likely relies on the contents of the args @@ -167,25 +150,18 @@ class LazyBase(ABC, metaclass=LazyMeta): @classmethod def to_eager(cls, t: Any) -> Any: def simple_to_eager(_t: LazyBase) -> Any: - def already_eager_to_eager(_t: LazyBase) -> Any: - assert _t._data is not None + if _t._data is not None: return _t._data - while _t._data is None: - lt = _t._lazy.popleft() - if lt._data is not None: - # Lazy tensor did not belong in the lazy queue. - # Weirdly only happens with Bloom models... - # likely because tensors aren't unique in the queue. - # The final output is still the same as in eager mode, - # so it's safe to ignore this. - continue - assert lt._func is not None - lt._args = cls._recurse_apply(lt._args, already_eager_to_eager) - lt._data = lt._func(lt._args) - # sanity check - assert lt._data.dtype == lt._meta.dtype - assert lt._data.shape == lt._meta.shape + # NOTE: there's a recursion limit in Python (usually 1000) + + assert _t._func is not None + _t._args = cls._recurse_apply(_t._args, simple_to_eager) + _t._data = _t._func(*_t._args, **_t._kwargs) + # sanity check + assert _t._data is not None + assert _t._data.dtype == _t._meta.dtype + assert _t._data.shape == _t._meta.shape return _t._data @@ -204,7 +180,7 @@ class LazyBase(ABC, metaclass=LazyMeta): @classmethod def from_eager(cls, t: Any) -> Any: if type(t) is cls: - # already eager + # already lazy return t elif isinstance(t, cls._tensor_type): return cls(meta=cls.eager_to_meta(t), data=t) @@ -216,7 +192,7 @@ class LazyNumpyTensor(LazyBase): _tensor_type = np.ndarray @classmethod - def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: _Shape) -> np.ndarray[Any, Any]: + def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]: # The initial idea was to use np.nan as the fill value, # but non-float types like np.int16 can't use that. # So zero it is. @@ -226,8 +202,7 @@ class LazyNumpyTensor(LazyBase): def astype(self, dtype, *args, **kwargs): meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape) full_args = (self, dtype,) + args - # very important to pass the shared _lazy deque, or else there's an infinite loop somewhere. - return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs))) + return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs))) def tofile(self, *args, **kwargs): eager = LazyNumpyTensor.to_eager(self) diff --git a/gguf-py/gguf/metadata.py b/gguf-py/gguf/metadata.py new file mode 100644 index 00000000..15189f71 --- /dev/null +++ b/gguf-py/gguf/metadata.py @@ -0,0 +1,503 @@ +from __future__ import annotations + +import re +import json +import yaml +import logging +from pathlib import Path +from typing import Any, Literal, Optional +from dataclasses import dataclass + +from .constants import Keys + +import gguf + +logger = logging.getLogger("metadata") + + +@dataclass +class Metadata: + # Authorship Metadata to be written to GGUF KV Store + name: Optional[str] = None + author: Optional[str] = None + version: Optional[str] = None + organization: Optional[str] = None + finetune: Optional[str] = None + basename: Optional[str] = None + description: Optional[str] = None + quantized_by: Optional[str] = None + size_label: Optional[str] = None + url: Optional[str] = None + doi: Optional[str] = None + uuid: Optional[str] = None + repo_url: Optional[str] = None + source_url: Optional[str] = None + source_doi: Optional[str] = None + source_uuid: Optional[str] = None + source_repo_url: Optional[str] = None + license: Optional[str] = None + license_name: Optional[str] = None + license_link: Optional[str] = None + base_models: Optional[list[dict]] = None + tags: Optional[list[str]] = None + languages: Optional[list[str]] = None + datasets: Optional[list[str]] = None + + @staticmethod + def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata: + # This grabs as many contextual authorship metadata as possible from the model repository + # making any conversion as required to match the gguf kv store metadata format + # as well as giving users the ability to override any authorship metadata that may be incorrect + + # Create a new Metadata instance + metadata = Metadata() + + model_card = Metadata.load_model_card(model_path) + hf_params = Metadata.load_hf_parameters(model_path) + # TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter + + # heuristics + metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params) + + # Metadata Override File Provided + # This is based on LLM_KV_NAMES mapping in llama.cpp + metadata_override = Metadata.load_metadata_override(metadata_override_path) + + metadata.name = metadata_override.get(Keys.General.NAME, metadata.name) + metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author) + metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version) + metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization) + + metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune) + metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename) + + metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description) + metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by) + + metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label) + metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name) + metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link) + + metadata.url = metadata_override.get(Keys.General.URL, metadata.url) + metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi) + metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid) + metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url) + + metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url) + metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi) + metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid) + metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url) + + # Base Models is received here as an array of models + metadata.base_models = metadata_override.get("general.base_models", metadata.base_models) + + metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags) + metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages) + metadata.datasets = metadata_override.get(Keys.General.DATASETS, metadata.datasets) + + # Direct Metadata Override (via direct cli argument) + if model_name is not None: + metadata.name = model_name + + return metadata + + @staticmethod + def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]: + if metadata_override_path is None or not metadata_override_path.is_file(): + return {} + + with open(metadata_override_path, "r", encoding="utf-8") as f: + return json.load(f) + + @staticmethod + def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]: + if model_path is None or not model_path.is_dir(): + return {} + + model_card_path = model_path / "README.md" + + if not model_card_path.is_file(): + return {} + + # The model card metadata is assumed to always be in YAML + # ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473 + with open(model_card_path, "r", encoding="utf-8") as f: + if f.readline() == "---\n": + raw = f.read().partition("---\n")[0] + data = yaml.safe_load(raw) + if isinstance(data, dict): + return data + else: + logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict") + return {} + else: + return {} + + @staticmethod + def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]: + if model_path is None or not model_path.is_dir(): + return {} + + config_path = model_path / "config.json" + + if not config_path.is_file(): + return {} + + with open(config_path, "r", encoding="utf-8") as f: + return json.load(f) + + @staticmethod + def id_to_title(string): + # Convert capitalization into title form unless acronym or version number + return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()]) + + @staticmethod + def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]: + # Huggingface often store model id as '<org>/<model name>' + # so let's parse it and apply some heuristics if possible for model name components + + if model_id is None: + # model ID missing + return None, None, None, None, None, None + + if ' ' in model_id: + # model ID is actually a normal human sentence + # which means its most likely a normal model name only + # not part of the hugging face naming standard, but whatever + return model_id, None, None, None, None, None + + if '/' in model_id: + # model ID (huggingface style) + org_component, model_full_name_component = model_id.split('/', 1) + else: + # model ID but missing org components + org_component, model_full_name_component = None, model_id + + # Check if we erroneously matched against './' or '../' etc... + if org_component is not None and org_component[0] == '.': + org_component = None + + name_parts: list[str] = model_full_name_component.split('-') + + # Remove empty parts + for i in reversed(range(len(name_parts))): + if len(name_parts[i]) == 0: + del name_parts[i] + + name_types: list[ + set[Literal["basename", "size_label", "finetune", "version", "type"]] + ] = [set() for _ in name_parts] + + # Annotate the name + for i, part in enumerate(name_parts): + # Version + if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE): + name_types[i].add("version") + # Quant type (should not be there for base models, but still annotated) + elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE): + name_types[i].add("type") + name_parts[i] = part.upper() + # Model size + elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE): + part = part.replace("_", ".") + # Handle weird bloom-7b1 notation + if part[-1].isdecimal(): + part = part[:-2] + "." + part[-1] + part[-2] + # Normalize the size suffixes + if len(part) > 1 and part[-2].isdecimal(): + if part[-1] in "kmbt": + part = part[:-1] + part[-1].upper() + if total_params != 0: + try: + label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1])) + # Only use it as a size label if it's close or bigger than the model size + # Note that LoRA adapters don't necessarily include all layers, + # so this is why bigger label sizes are accepted. + # Do not use the size label when it's smaller than 1/8 of the model size + if (total_params < 0 and label_params < abs(total_params) // 8) or ( + # Check both directions when the current model isn't a LoRA adapter + total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8 + ): + # Likely a context length + name_types[i].add("finetune") + # Lowercase the size when it's a context length + part = part[:-1] + part[-1].lower() + except ValueError: + # Failed to convert the size label to float, use it anyway + pass + if len(name_types[i]) == 0: + name_types[i].add("size_label") + name_parts[i] = part + # Some easy to recognize finetune names + elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE): + if total_params < 0 and part.lower() == "lora": + # ignore redundant "lora" in the finetune part when the output is a lora adapter + name_types[i].add("type") + else: + name_types[i].add("finetune") + + # Ignore word-based size labels when there is at least a number-based one present + # TODO: should word-based size labels always be removed instead? + if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n): + for n, t in zip(name_parts, name_types): + if "size_label" in t: + if all(c.isalpha() for c in n): + t.remove("size_label") + + at_start = True + # Find the basename through the annotated name + for part, t in zip(name_parts, name_types): + if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t): + t.add("basename") + else: + if at_start: + at_start = False + if len(t) == 0: + t.add("finetune") + + # Remove the basename annotation from trailing version + for part, t in zip(reversed(name_parts), reversed(name_types)): + if "basename" in t and len(t) > 1: + t.remove("basename") + else: + break + + basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None + # Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys) + size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None + finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None + # TODO: should the basename version always be excluded? + # NOTE: multiple finetune versions are joined together + version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None + + if size_label is None and finetune is None and version is None: + # Too ambiguous, output nothing + basename = None + + return model_full_name_component, org_component, basename, finetune, version, size_label + + @staticmethod + def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata: + # Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 + + # Model Card Heuristics + ######################## + if model_card is not None: + + if "model_name" in model_card and metadata.name is None: + # Not part of huggingface model card standard but notice some model creator using it + # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' + metadata.name = model_card.get("model_name") + + if "model_creator" in model_card and metadata.author is None: + # Not part of huggingface model card standard but notice some model creator using it + # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' + metadata.author = model_card.get("model_creator") + + if "model_type" in model_card and metadata.basename is None: + # Not part of huggingface model card standard but notice some model creator using it + # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF' + metadata.basename = model_card.get("model_type") + + if "base_model" in model_card: + # This represents the parent models that this is based on + # Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges) + # Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md + metadata_base_models = [] + base_model_value = model_card.get("base_model", None) + + if base_model_value is not None: + if isinstance(base_model_value, str): + metadata_base_models.append(base_model_value) + elif isinstance(base_model_value, list): + metadata_base_models.extend(base_model_value) + + if metadata.base_models is None: + metadata.base_models = [] + + for model_id in metadata_base_models: + # NOTE: model size of base model is assumed to be similar to the size of the current model + model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) + base_model = {} + if model_full_name_component is not None: + base_model["name"] = Metadata.id_to_title(model_full_name_component) + if org_component is not None: + base_model["organization"] = Metadata.id_to_title(org_component) + if version is not None: + base_model["version"] = version + if org_component is not None and model_full_name_component is not None: + base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}" + metadata.base_models.append(base_model) + + if "license" in model_card and metadata.license is None: + metadata.license = model_card.get("license") + + if "license_name" in model_card and metadata.license_name is None: + metadata.license_name = model_card.get("license_name") + + if "license_link" in model_card and metadata.license_link is None: + metadata.license_link = model_card.get("license_link") + + tags_value = model_card.get("tags", None) + if tags_value is not None: + + if metadata.tags is None: + metadata.tags = [] + + if isinstance(tags_value, str): + metadata.tags.append(tags_value) + elif isinstance(tags_value, list): + metadata.tags.extend(tags_value) + + pipeline_tags_value = model_card.get("pipeline_tag", None) + if pipeline_tags_value is not None: + + if metadata.tags is None: + metadata.tags = [] + + if isinstance(pipeline_tags_value, str): + metadata.tags.append(pipeline_tags_value) + elif isinstance(pipeline_tags_value, list): + metadata.tags.extend(pipeline_tags_value) + + language_value = model_card.get("languages", model_card.get("language", None)) + if language_value is not None: + + if metadata.languages is None: + metadata.languages = [] + + if isinstance(language_value, str): + metadata.languages.append(language_value) + elif isinstance(language_value, list): + metadata.languages.extend(language_value) + + dataset_value = model_card.get("datasets", model_card.get("dataset", None)) + if dataset_value is not None: + + if metadata.datasets is None: + metadata.datasets = [] + + if isinstance(dataset_value, str): + metadata.datasets.append(dataset_value) + elif isinstance(dataset_value, list): + metadata.datasets.extend(dataset_value) + + # Hugging Face Parameter Heuristics + #################################### + + if hf_params is not None: + + hf_name_or_path = hf_params.get("_name_or_path") + if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1: + # Use _name_or_path only if its actually a model name and not some computer path + # e.g. 'meta-llama/Llama-2-7b-hf' + model_id = hf_name_or_path + model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) + if metadata.name is None and model_full_name_component is not None: + metadata.name = Metadata.id_to_title(model_full_name_component) + if metadata.organization is None and org_component is not None: + metadata.organization = Metadata.id_to_title(org_component) + if metadata.basename is None and basename is not None: + metadata.basename = basename + if metadata.finetune is None and finetune is not None: + metadata.finetune = finetune + if metadata.version is None and version is not None: + metadata.version = version + if metadata.size_label is None and size_label is not None: + metadata.size_label = size_label + + # Directory Folder Name Fallback Heuristics + ############################################ + if model_path is not None: + model_id = model_path.name + model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params) + if metadata.name is None and model_full_name_component is not None: + metadata.name = Metadata.id_to_title(model_full_name_component) + if metadata.organization is None and org_component is not None: + metadata.organization = Metadata.id_to_title(org_component) + if metadata.basename is None and basename is not None: + metadata.basename = basename + if metadata.finetune is None and finetune is not None: + metadata.finetune = finetune + if metadata.version is None and version is not None: + metadata.version = version + if metadata.size_label is None and size_label is not None: + metadata.size_label = size_label + + return metadata + + def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter): + assert self.name is not None + gguf_writer.add_name(self.name) + + if self.author is not None: + gguf_writer.add_author(self.author) + if self.version is not None: + gguf_writer.add_version(self.version) + if self.organization is not None: + gguf_writer.add_organization(self.organization) + + if self.finetune is not None: + gguf_writer.add_finetune(self.finetune) + if self.basename is not None: + gguf_writer.add_basename(self.basename) + + if self.description is not None: + gguf_writer.add_description(self.description) + if self.quantized_by is not None: + gguf_writer.add_quantized_by(self.quantized_by) + + if self.size_label is not None: + gguf_writer.add_size_label(self.size_label) + + if self.license is not None: + gguf_writer.add_license(self.license) + if self.license_name is not None: + gguf_writer.add_license_name(self.license_name) + if self.license_link is not None: + gguf_writer.add_license_link(self.license_link) + + if self.url is not None: + gguf_writer.add_url(self.url) + if self.doi is not None: + gguf_writer.add_doi(self.doi) + if self.uuid is not None: + gguf_writer.add_uuid(self.uuid) + if self.repo_url is not None: + gguf_writer.add_repo_url(self.repo_url) + + if self.source_url is not None: + gguf_writer.add_source_url(self.source_url) + if self.source_doi is not None: + gguf_writer.add_source_doi(self.source_doi) + if self.source_uuid is not None: + gguf_writer.add_source_uuid(self.source_uuid) + if self.source_repo_url is not None: + gguf_writer.add_source_repo_url(self.source_repo_url) + + if self.base_models is not None: + gguf_writer.add_base_model_count(len(self.base_models)) + for key, base_model_entry in enumerate(self.base_models): + if "name" in base_model_entry: + gguf_writer.add_base_model_name(key, base_model_entry["name"]) + if "author" in base_model_entry: + gguf_writer.add_base_model_author(key, base_model_entry["author"]) + if "version" in base_model_entry: + gguf_writer.add_base_model_version(key, base_model_entry["version"]) + if "organization" in base_model_entry: + gguf_writer.add_base_model_organization(key, base_model_entry["organization"]) + if "url" in base_model_entry: + gguf_writer.add_base_model_url(key, base_model_entry["url"]) + if "doi" in base_model_entry: + gguf_writer.add_base_model_doi(key, base_model_entry["doi"]) + if "uuid" in base_model_entry: + gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"]) + if "repo_url" in base_model_entry: + gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"]) + + if self.tags is not None: + gguf_writer.add_tags(self.tags) + if self.languages is not None: + gguf_writer.add_languages(self.languages) + if self.datasets is not None: + gguf_writer.add_datasets(self.datasets) diff --git a/gguf-py/gguf/quants.py b/gguf-py/gguf/quants.py index b22eec16..16e0a9aa 100644 --- a/gguf-py/gguf/quants.py +++ b/gguf-py/gguf/quants.py @@ -43,7 +43,7 @@ def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np. osize *= dim out = np.empty(shape=osize, dtype=otype) # compute over groups of 16 rows (arbitrary, but seems good for performance) - n_groups = rows.shape[0] // 16 + n_groups = (rows.shape[0] // 16) or 1 np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out) return out.reshape(oshape) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 350035bd..9aa2209e 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -10,7 +10,7 @@ class TensorNameMap: # Token embeddings MODEL_TENSOR.TOKEN_EMBD: ( "gpt_neox.embed_in", # gptneox - "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx + "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais "transformer.word_embeddings", # falcon "word_embeddings", # bloom "model.embed_tokens", # llama-hf @@ -24,6 +24,9 @@ class TensorNameMap: "backbone.embedding", # mamba "backbone.embeddings", # mamba-hf "transformer.in_out_embed", # Grok + "embedding.word_embeddings", # chatglm + "transformer.token_embeddings", # openelm + "shared", # t5 ), # Token type embeddings @@ -36,6 +39,7 @@ class TensorNameMap: "word_embeddings_layernorm", # bloom "embeddings.LayerNorm", # bert "emb_ln", # nomic-bert + "transformer.norm", # openelm ), # Position embeddings @@ -48,16 +52,17 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx + "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 + "output_layer", # chatglm ), # Output norm MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox - "transformer.ln_f", # gpt2 gpt-j falcon + "transformer.ln_f", # gpt2 gpt-j falcon jais "model.norm", # llama-hf baichuan internlm2 "norm", # llama-pth "transformer.norm_f", # mpt dbrx @@ -68,11 +73,14 @@ class TensorNameMap: "model.norm_f", # mamba-qbert "backbone.norm_f", # mamba "transformer.rms_norm", # Grok + "encoder.final_layernorm", # chatglm + "transformer.norm", # openelm ), # Rope frequencies MODEL_TENSOR.ROPE_FREQS: ( "rope.freqs", # llama-pth + "rotary_pos_emb.inv_freq", # chatglm ), } @@ -80,7 +88,7 @@ class TensorNameMap: # Attention norm MODEL_TENSOR.ATTN_NORM: ( "gpt_neox.layers.{bid}.input_layernorm", # gptneox - "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen + "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b "h.{bid}.input_layernorm", # bloom @@ -97,6 +105,8 @@ class TensorNameMap: "backbone.layers.{bid}.norm", # mamba "transformer.decoder_layer.{bid}.rms_norm", # Grok "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx + "encoder.layers.{bid}.input_layernorm", # chatglm + "transformer.layers.{bid}.attn_norm", # openelm ), # Attention norm 2 @@ -108,7 +118,7 @@ class TensorNameMap: # Attention query-key-value MODEL_TENSOR.ATTN_QKV: ( "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox - "transformer.h.{bid}.attn.c_attn", # gpt2 qwen + "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais "transformer.blocks.{bid}.attn.Wqkv", # mpt "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx "transformer.h.{bid}.self_attention.query_key_value", # falcon @@ -118,7 +128,9 @@ class TensorNameMap: "h.{bid}.attn.c_attn", # gpt2 "transformer.h.{bid}.mixer.Wqkv", # phi2 "encoder.layers.{bid}.attn.Wqkv", # nomic-bert - "model.layers.{bid}.self_attn.qkv_proj" # phi3 + "model.layers.{bid}.self_attn.qkv_proj", # phi3 + "encoder.layers.{bid}.self_attention.query_key_value", # chatglm + "transformer.layers.{bid}.attn.qkv_proj", # openelm ), # Attention query @@ -129,7 +141,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.q_proj", # gpt-j "model.layers.layers.{bid}.self_attn.q_proj", # plamo "model.layers.{bid}.attention.wq", # internlm2 - "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok + "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok ), # Attention key @@ -141,7 +153,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.k", # refact "model.layers.layers.{bid}.self_attn.k_proj", # plamo "model.layers.{bid}.attention.wk", # internlm2 - "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok + "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok ), # Attention value @@ -159,7 +171,7 @@ class TensorNameMap: # Attention output MODEL_TENSOR.ATTN_OUT: ( "gpt_neox.layers.{bid}.attention.dense", # gptneox - "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen + "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom @@ -176,6 +188,8 @@ class TensorNameMap: "encoder.layers.{bid}.attn.out_proj", # nomic-bert "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx + "encoder.layers.{bid}.self_attention.dense", # chatglm + "transformer.layers.{bid}.attn.out_proj", # openelm ), # Attention output norm @@ -186,6 +200,10 @@ class TensorNameMap: "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx ), + MODEL_TENSOR.ATTN_POST_NORM: ( + "model.layers.{bid}.post_attention_layernorm", # gemma2 + ), + # Rotary embeddings MODEL_TENSOR.ATTN_ROT_EMBD: ( "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf @@ -197,7 +215,7 @@ class TensorNameMap: # Feed-forward norm MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox - "transformer.h.{bid}.ln_2", # gpt2 refact qwen + "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais "h.{bid}.post_attention_layernorm", # bloom "transformer.blocks.{bid}.norm_2", # mpt "model.layers.{bid}.post_attention_layernorm", # llama-hf @@ -207,6 +225,18 @@ class TensorNameMap: "h.{bid}.ln_2", # gpt2 "model.layers.{bid}.ffn_norm", # internlm2 "transformer.decoder_layer.{bid}.rms_norm_2", # Grok + "encoder.layers.{bid}.post_attention_layernorm", # chatglm + "transformer.layers.{bid}.ffn_norm", # openelm + ), + + # Post feed-forward norm + MODEL_TENSOR.FFN_PRE_NORM: ( + "model.layers.{bid}.pre_feedforward_layernorm", # gemma2 + ), + + # Post feed-forward norm + MODEL_TENSOR.FFN_POST_NORM: ( + "model.layers.{bid}.post_feedforward_layernorm", # gemma2 ), MODEL_TENSOR.FFN_GATE_INP: ( @@ -224,7 +254,7 @@ class TensorNameMap: # Feed-forward up MODEL_TENSOR.FFN_UP: ( "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox - "transformer.h.{bid}.mlp.c_fc", # gpt2 + "transformer.h.{bid}.mlp.c_fc", # gpt2 jais "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon "h.{bid}.mlp.dense_h_to_4h", # bloom @@ -246,6 +276,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.c_fc", # starcoder2 "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 "model.layers.{bid}.residual_mlp.w3", # arctic + "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -270,6 +301,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.gate_proj", # llama-hf refact "layers.{bid}.feed_forward.w1", # llama-pth "transformer.h.{bid}.mlp.w2", # qwen + "transformer.h.{bid}.mlp.c_fc2", # jais "model.layers.layers.{bid}.mlp.gate_proj", # plamo "model.layers.{bid}.feed_forward.w1", # internlm2 "encoder.layers.{bid}.mlp.fc12", # nomic-bert @@ -293,7 +325,7 @@ class TensorNameMap: # Feed-forward down MODEL_TENSOR.FFN_DOWN: ( "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox - "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen + "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon "h.{bid}.mlp.dense_4h_to_h", # bloom @@ -311,8 +343,10 @@ class TensorNameMap: "encoder.layers.{bid}.mlp.fc2", # nomic-bert "model.layers.{bid}.mlp.c_proj", # starcoder2 "encoder.layer.{bid}.mlp.wo", # jina-bert-v2 + "transformer.layers.{bid}.ffn.proj_2", # openelm "model.layers.{bid}.residual_mlp.w2", # arctic "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2 + "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm ), MODEL_TENSOR.FFN_DOWN_EXP: ( @@ -332,7 +366,8 @@ class TensorNameMap: "model.layers.{bid}.self_attn.q_layernorm", # persimmon "model.layers.{bid}.self_attn.q_norm", # cohere "transformer.blocks.{bid}.attn.q_ln", # sea-lion - "encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2 + "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2 + "transformer.layers.{bid}.attn.q_norm", # openelm ), MODEL_TENSOR.ATTN_K_NORM: ( @@ -340,7 +375,8 @@ class TensorNameMap: "model.layers.{bid}.self_attn.k_layernorm", # persimmon "model.layers.{bid}.self_attn.k_norm", # cohere "transformer.blocks.{bid}.attn.k_ln", # sea-lion - "encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2 + "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2 + "transformer.layers.{bid}.attn.k_norm", # openelm ), MODEL_TENSOR.ROPE_FREQS: ( @@ -421,6 +457,120 @@ class TensorNameMap: MODEL_TENSOR.FFN_SUB_NORM: ( "model.layers.{bid}.mlp.ffn_layernorm", # bitnet ), + + MODEL_TENSOR.DEC_ATTN_NORM: ( + "decoder.block.{bid}.layer.0.layer_norm", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_Q: ( + "decoder.block.{bid}.layer.0.SelfAttention.q", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_K: ( + "decoder.block.{bid}.layer.0.SelfAttention.k", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_V: ( + "decoder.block.{bid}.layer.0.SelfAttention.v", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_OUT: ( + "decoder.block.{bid}.layer.0.SelfAttention.o", # t5 + ), + + MODEL_TENSOR.DEC_ATTN_REL_B: ( + "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_NORM: ( + "decoder.block.{bid}.layer.1.layer_norm", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_Q: ( + "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_K: ( + "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_V: ( + "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_OUT: ( + "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5 + ), + + MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: ( + "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5 + ), + + MODEL_TENSOR.DEC_FFN_NORM: ( + "decoder.block.{bid}.layer.2.layer_norm", # t5 + ), + + MODEL_TENSOR.DEC_FFN_GATE: ( + "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5 + ), + + MODEL_TENSOR.DEC_FFN_UP: ( + "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5 + "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5 + ), + + MODEL_TENSOR.DEC_FFN_DOWN: ( + "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5 + ), + + MODEL_TENSOR.DEC_OUTPUT_NORM: ( + "decoder.final_layer_norm", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_NORM: ( + "encoder.block.{bid}.layer.0.layer_norm", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_Q: ( + "encoder.block.{bid}.layer.0.SelfAttention.q", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_K: ( + "encoder.block.{bid}.layer.0.SelfAttention.k", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_V: ( + "encoder.block.{bid}.layer.0.SelfAttention.v", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_OUT: ( + "encoder.block.{bid}.layer.0.SelfAttention.o", # t5 + ), + + MODEL_TENSOR.ENC_ATTN_REL_B: ( + "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5 + ), + + MODEL_TENSOR.ENC_FFN_NORM: ( + "encoder.block.{bid}.layer.1.layer_norm", # t5 + ), + + MODEL_TENSOR.ENC_FFN_GATE: ( + "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5 + ), + + MODEL_TENSOR.ENC_FFN_UP: ( + "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5 + "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5 + ), + + MODEL_TENSOR.ENC_FFN_DOWN: ( + "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5 + ), + + MODEL_TENSOR.ENC_OUTPUT_NORM: ( + "encoder.final_layer_norm", # t5 + ), } # architecture-specific block mappings @@ -452,14 +602,12 @@ class TensorNameMap: for tensor, keys in self.block_mappings_cfg.items(): if tensor not in MODEL_TENSORS[arch]: continue - # TODO: make this configurable - n_experts = 160 - for xid in range(n_experts): - tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid) - self.mapping[tensor_name] = (tensor, tensor_name) - for key in keys: - key = key.format(bid = bid, xid = xid) - self.mapping[key] = (tensor, tensor_name) + + tensor_name = TENSOR_NAMES[tensor].format(bid = bid) + self.mapping[tensor_name] = (tensor, tensor_name) + for key in keys: + key = key.format(bid = bid) + self.mapping[key] = (tensor, tensor_name) def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: result = self.mapping.get(key) diff --git a/gguf-py/gguf/utility.py b/gguf-py/gguf/utility.py new file mode 100644 index 00000000..40d59b75 --- /dev/null +++ b/gguf-py/gguf/utility.py @@ -0,0 +1,69 @@ +from __future__ import annotations + +from typing import Literal + + +def fill_templated_filename(filename: str, output_type: str | None) -> str: + # Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf' + ftype_lowercase: str = output_type.lower() if output_type is not None else "" + ftype_uppercase: str = output_type.upper() if output_type is not None else "" + return filename.format(ftype_lowercase, + outtype=ftype_lowercase, ftype=ftype_lowercase, + OUTTYPE=ftype_uppercase, FTYPE=ftype_uppercase) + + +def model_weight_count_rounded_notation(model_params_count: int, min_digits: int = 2) -> str: + if model_params_count > 1e12 : + # Trillions Of Parameters + scaled_model_params = model_params_count * 1e-12 + scale_suffix = "T" + elif model_params_count > 1e9 : + # Billions Of Parameters + scaled_model_params = model_params_count * 1e-9 + scale_suffix = "B" + elif model_params_count > 1e6 : + # Millions Of Parameters + scaled_model_params = model_params_count * 1e-6 + scale_suffix = "M" + else: + # Thousands Of Parameters + scaled_model_params = model_params_count * 1e-3 + scale_suffix = "K" + + fix = max(min_digits - len(str(round(scaled_model_params)).lstrip('0')), 0) + + return f"{scaled_model_params:.{fix}f}{scale_suffix}" + + +def size_label(total_params: int, shared_params: int, expert_params: int, expert_count: int) -> str: + + if expert_count > 0: + pretty_size = model_weight_count_rounded_notation(abs(shared_params) + abs(expert_params), min_digits=2) + size_class = f"{expert_count}x{pretty_size}" + else: + size_class = model_weight_count_rounded_notation(abs(total_params), min_digits=2) + + return size_class + + +def naming_convention(model_name: str | None, base_name: str | None, finetune_string: str | None, version_string: str | None, size_label: str | None, output_type: str | None, model_type: Literal['vocab', 'LoRA'] | None = None) -> str: + # Reference: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#gguf-naming-convention + + if base_name is not None: + name = base_name.strip().replace(' ', '-').replace('/', '-') + elif model_name is not None: + name = model_name.strip().replace(' ', '-').replace('/', '-') + else: + name = "ggml-model" + + parameters = f"-{size_label}" if size_label is not None else "" + + finetune = f"-{finetune_string.strip().replace(' ', '-')}" if finetune_string is not None else "" + + version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else "" + + encoding = f"-{output_type.strip().replace(' ', '-').upper()}" if output_type is not None else "" + + kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else "" + + return f"{name}{parameters}{finetune}{version}{encoding}{kind}" diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 36e63ee3..19f6761e 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.9.0" +version = "0.9.1" description = "Read and write ML models in GGUF for GGML" authors = ["GGML <ggml@ggml.ai>"] packages = [ @@ -22,6 +22,7 @@ classifiers = [ python = ">=3.8" numpy = ">=1.17" tqdm = ">=4.27" +pyyaml = ">=5.1" [tool.poetry.dev-dependencies] pytest = "^5.2" diff --git a/gguf-py/scripts/__init__.py b/gguf-py/scripts/__init__.py index 1ad45639..e77f2e9c 100644 --- a/gguf-py/scripts/__init__.py +++ b/gguf-py/scripts/__init__.py @@ -1,13 +1,6 @@ -import os +# pyright: reportUnusedImport=false -from importlib import import_module - - -os.environ["NO_LOCAL_GGUF"] = "TRUE" - -gguf_convert_endian_entrypoint = import_module("scripts.gguf-convert-endian").main -gguf_dump_entrypoint = import_module("scripts.gguf-dump").main -gguf_set_metadata_entrypoint = import_module("scripts.gguf-set-metadata").main -gguf_new_metadata_entrypoint = import_module("scripts.gguf-new-metadata").main - -del import_module, os +from .gguf_convert_endian import main as gguf_convert_endian_entrypoint +from .gguf_dump import main as gguf_dump_entrypoint +from .gguf_set_metadata import main as gguf_set_metadata_entrypoint +from .gguf_new_metadata import main as gguf_new_metadata_entrypoint diff --git a/gguf-py/scripts/gguf-convert-endian.py b/gguf-py/scripts/gguf_convert_endian.py index b698af0f..b698af0f 100755 --- a/gguf-py/scripts/gguf-convert-endian.py +++ b/gguf-py/scripts/gguf_convert_endian.py diff --git a/gguf-py/scripts/gguf-dump.py b/gguf-py/scripts/gguf_dump.py index 92d14d6c..1b654654 100755 --- a/gguf-py/scripts/gguf-dump.py +++ b/gguf-py/scripts/gguf_dump.py @@ -4,6 +4,7 @@ from __future__ import annotations import logging import argparse import os +import re import sys from pathlib import Path from typing import Any @@ -208,7 +209,9 @@ def translate_tensor_name(name): 'ssm_d': 'State space model skip connection', 'ssm_dt': 'State space model time step', 'ssm_out': 'State space model output projection', - 'blk': 'Block' + 'blk': 'Block', + 'enc': 'Encoder', + 'dec': 'Decoder', } expanded_words = [] @@ -242,26 +245,58 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None else: pretty_type = str(field.types[-1].name) + def escape_markdown_inline_code(value_string): + # Find the longest contiguous sequence of backticks in the string then + # wrap string with appropriate number of backticks required to escape it + max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0) + inline_code_marker = '`' * (max_backticks + 1) + + # If the string starts or ends with a backtick, add a space at the beginning and end + if value_string.startswith('`') or value_string.endswith('`'): + value_string = f" {value_string} " + + return f"{inline_code_marker}{value_string}{inline_code_marker}" + total_elements = len(field.data) value = "" if len(field.types) == 1: curr_type = field.types[0] if curr_type == GGUFValueType.STRING: - value = repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]) + truncate_length = 60 + value_string = str(bytes(field.parts[-1]), encoding='utf-8') + if len(value_string) > truncate_length: + head = escape_markdown_inline_code(value_string[:truncate_length // 2]) + tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) + value = "{head}...{tail}".format(head=head, tail=tail) + else: + value = escape_markdown_inline_code(value_string) elif curr_type in reader.gguf_scalar_to_np: value = str(field.parts[-1][0]) else: if field.types[0] == GGUFValueType.ARRAY: curr_type = field.types[1] + array_elements = [] + if curr_type == GGUFValueType.STRING: render_element = min(5, total_elements) for element_pos in range(render_element): - value += repr(str(bytes(field.parts[-1 - element_pos]), encoding='utf-8')[:5]) + (", " if total_elements > 1 else "") + truncate_length = 30 + value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8') + if len(value_string) > truncate_length: + head = escape_markdown_inline_code(value_string[:truncate_length // 2]) + tail = escape_markdown_inline_code(value_string[-truncate_length // 2:]) + value = "{head}...{tail}".format(head=head, tail=tail) + else: + value = escape_markdown_inline_code(value_string) + array_elements.append(value) + elif curr_type in reader.gguf_scalar_to_np: render_element = min(7, total_elements) for element_pos in range(render_element): - value += str(field.parts[-1 - element_pos][0]) + (", " if total_elements > 1 else "") - value = f'[ {value}{" ..." if total_elements > 1 else ""} ]' + array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0])) + + value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]' + kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value}) kv_dump_table_header_map = [ @@ -291,6 +326,10 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None tensor_group_name = "base" if tensor_components[0] == 'blk': tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}" + elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk': + tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}" + elif tensor_components[0] in ['enc', 'dec']: + tensor_group_name = f"{tensor_components[0]}" # Check if new Tensor Group if tensor_group_name not in tensor_groups: @@ -313,6 +352,27 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None markdown_content += "\n" + markdown_content += "### Tensor Data Offset\n" + markdown_content += '\n' + markdown_content += 'This table contains the offset and data segment relative to start of file\n' + markdown_content += '\n' + + tensor_mapping_table: list[dict[str, str | int]] = [] + for key, tensor in enumerate(reader.tensors): + data_offset_pretty = '{0:#16x}'.format(tensor.data_offset) + data_size_pretty = '{0:#16x}'.format(tensor.n_bytes) + tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty}) + + tensors_mapping_table_header_map = [ + {'key_name':'t_id', 'header_name':'T_ID', 'align':'right'}, + {'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'}, + {'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'}, + {'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'}, + ] + + markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table) + markdown_content += "\n" + for group in tensor_prefix_order: tensors = tensor_groups[group] group_elements = sum(tensor.n_elements for tensor in tensors) @@ -355,7 +415,7 @@ def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n" markdown_content += "\n\n" - print(markdown_content) # noqa: NP100 + print(markdown_content) # noqa: NP100 def main() -> None: @@ -364,6 +424,8 @@ def main() -> None: parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata") parser.add_argument("--json", action="store_true", help="Produce JSON output") parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)") + parser.add_argument("--data-offset", action="store_true", help="Start of data offset") + parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field") parser.add_argument("--markdown", action="store_true", help="Produce markdown output") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") @@ -371,7 +433,7 @@ def main() -> None: logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) - if not args.json and not args.markdown: + if not args.json and not args.markdown and not args.data_offset and not args.data_alignment: logger.info(f'* Loading: {args.model}') reader = GGUFReader(args.model, 'r') @@ -380,6 +442,10 @@ def main() -> None: dump_metadata_json(reader, args) elif args.markdown: dump_markdown_metadata(reader, args) + elif args.data_offset: + print(reader.data_offset) # noqa: NP100 + elif args.data_alignment: + print(reader.alignment) # noqa: NP100 else: dump_metadata(reader, args) diff --git a/gguf-py/scripts/gguf_hash.py b/gguf-py/scripts/gguf_hash.py new file mode 100755 index 00000000..ee34d09b --- /dev/null +++ b/gguf-py/scripts/gguf_hash.py @@ -0,0 +1,102 @@ +#!/usr/bin/env python3 +from __future__ import annotations + +import uuid +import hashlib + +import logging +import argparse +import os +import sys +from pathlib import Path + +from tqdm import tqdm + +# Necessary to load the local gguf package +if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): + sys.path.insert(0, str(Path(__file__).parent.parent)) + +from gguf import GGUFReader # noqa: E402 + + +logger = logging.getLogger("gguf-hash") + +# UUID_NAMESPACE_LLAMA_CPP = uuid.uuid5(uuid.NAMESPACE_URL, 'en.wikipedia.org/wiki/Llama.cpp') +UUID_NAMESPACE_LLAMA_CPP = uuid.UUID('ef001206-dadc-5f6d-a15f-3359e577d4e5') + + +# For more information about what field.parts and field.data represent, +# please see the comments in the modify_gguf.py example. +def gguf_hash(reader: GGUFReader, filename: str, disable_progress_bar: bool, no_layer: bool) -> None: + sha1 = hashlib.sha1() + sha256 = hashlib.sha256() + uuidv5_sha1 = hashlib.sha1() + uuidv5_sha1.update(UUID_NAMESPACE_LLAMA_CPP.bytes) + + # Total Weight Calculation For Progress Bar + total_weights = 0 + for n, tensor in enumerate(reader.tensors, 1): + + # We don't need these + if tensor.name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): + continue + + # Calculate Tensor Volume + sum_weights_in_tensor = 1 + for dim in tensor.shape: + sum_weights_in_tensor *= dim + total_weights += sum_weights_in_tensor + + # Hash Progress Bar + bar = tqdm(desc="Hashing", total=total_weights, unit="weights", unit_scale=True, disable=disable_progress_bar) + + # Hashing Process + for tensor in reader.tensors: + + # We don't need these + if tensor.name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): + continue + + # Progressbar + sum_weights_in_tensor = 1 + for dim in tensor.shape: + sum_weights_in_tensor *= dim + bar.update(sum_weights_in_tensor) + + if not no_layer: + + sha1_layer = hashlib.sha1() + sha1_layer.update(tensor.data.data) + print("sha1 {0} {1}:{2}".format(sha1_layer.hexdigest(), filename, tensor.name)) # noqa: NP100 + + sha256_layer = hashlib.sha256() + sha256_layer.update(tensor.data.data) + print("sha256 {0} {1}:{2}".format(sha256_layer.hexdigest(), filename, tensor.name)) # noqa: NP100 + + sha1.update(tensor.data.data) + sha256.update(tensor.data.data) + uuidv5_sha1.update(tensor.data.data) + + # Flush Hash Progress Bar + bar.close() + + # Display Hash Output + print("sha1 {0} {1}".format(sha1.hexdigest(), filename)) # noqa: NP100 + print("sha256 {0} {1}".format(sha256.hexdigest(), filename)) # noqa: NP100 + print("uuid {0} {1}".format(uuid.UUID(bytes=uuidv5_sha1.digest()[:16], version=5), filename)) # noqa: NP100 + + +def main() -> None: + parser = argparse.ArgumentParser(description="Dump GGUF file metadata") + parser.add_argument("model", type=str, help="GGUF format model filename") + parser.add_argument("--no-layer", action="store_true", help="exclude per layer hash") + parser.add_argument("--verbose", action="store_true", help="increase output verbosity") + parser.add_argument("--progressbar", action="store_true", help="enable progressbar") + args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"]) + logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) + reader = GGUFReader(args.model, 'r') + gguf_hash(reader, args.model, not args.progressbar, args.no_layer) + + +if __name__ == '__main__': + main() diff --git a/gguf-py/scripts/gguf-new-metadata.py b/gguf-py/scripts/gguf_new_metadata.py index c4b90d58..fce52a8c 100755 --- a/gguf-py/scripts/gguf-new-metadata.py +++ b/gguf-py/scripts/gguf_new_metadata.py @@ -1,4 +1,6 @@ #!/usr/bin/env python3 +from __future__ import annotations + import logging import argparse import os diff --git a/gguf-py/scripts/gguf-set-metadata.py b/gguf-py/scripts/gguf_set_metadata.py index e35b651b..e35b651b 100755 --- a/gguf-py/scripts/gguf-set-metadata.py +++ b/gguf-py/scripts/gguf_set_metadata.py diff --git a/gguf-py/tests/__init__.py b/gguf-py/tests/__init__.py new file mode 100644 index 00000000..d23ff9cb --- /dev/null +++ b/gguf-py/tests/__init__.py @@ -0,0 +1 @@ +from .test_metadata import * diff --git a/gguf-py/tests/test_gguf.py b/gguf-py/tests/test_gguf.py deleted file mode 100644 index 0adeb7d5..00000000 --- a/gguf-py/tests/test_gguf.py +++ /dev/null @@ -1,7 +0,0 @@ -import gguf # noqa: F401 - -# TODO: add tests - - -def test_write_gguf() -> None: - pass diff --git a/gguf-py/tests/test_metadata.py b/gguf-py/tests/test_metadata.py new file mode 100755 index 00000000..81a2a30a --- /dev/null +++ b/gguf-py/tests/test_metadata.py @@ -0,0 +1,203 @@ +#!/usr/bin/env python3 + +import unittest +from pathlib import Path +import os +import sys + +# Necessary to load the local gguf package +if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists(): + sys.path.insert(0, str(Path(__file__).parent.parent)) + +import gguf + + +class TestMetadataMethod(unittest.TestCase): + + def test_id_to_title(self): + self.assertEqual(gguf.Metadata.id_to_title("Mixtral-8x7B-Instruct-v0.1"), "Mixtral 8x7B Instruct v0.1") + self.assertEqual(gguf.Metadata.id_to_title("Meta-Llama-3-8B"), "Meta Llama 3 8B") + self.assertEqual(gguf.Metadata.id_to_title("hermes-2-pro-llama-3-8b-DPO"), "Hermes 2 Pro Llama 3 8b DPO") + + def test_get_model_id_components(self): + # This is the basic standard form with organization marker + self.assertEqual(gguf.Metadata.get_model_id_components("Mistral/Mixtral-8x7B-Instruct-v0.1"), + ('Mixtral-8x7B-Instruct-v0.1', "Mistral", 'Mixtral', 'Instruct', 'v0.1', '8x7B')) + + # Similar to basic standard form but without organization marker + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-Instruct-v0.1"), + ('Mixtral-8x7B-Instruct-v0.1', None, 'Mixtral', 'Instruct', 'v0.1', '8x7B')) + + # Missing version + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-Instruct"), + ('Mixtral-8x7B-Instruct', None, 'Mixtral', 'Instruct', None, '8x7B')) + + # Missing finetune + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B-v0.1"), + ('Mixtral-8x7B-v0.1', None, 'Mixtral', None, 'v0.1', '8x7B')) + + # Base name and size label only + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-8x7B"), + ('Mixtral-8x7B', None, 'Mixtral', None, None, '8x7B')) + + # Base name and version only + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral-v0.1"), + ('Mixtral-v0.1', None, 'Mixtral', None, 'v0.1', None)) + + ## Edge Cases ## + + # This is too ambiguous... best to err on caution and output nothing + self.assertEqual(gguf.Metadata.get_model_id_components("Mixtral"), + ('Mixtral', None, None, None, None, None)) + + # Basename has numbers mixed in and also size label provided. Must avoid capturing number in basename + self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Meta-Llama-3-8B"), + ('Meta-Llama-3-8B', "NousResearch", 'Meta-Llama-3', None, None, '8B')) + + # Non standard naming + self.assertEqual(gguf.Metadata.get_model_id_components("Qwen1.5-MoE-A2.7B-Chat"), + ('Qwen1.5-MoE-A2.7B-Chat', None, 'Qwen1.5-MoE', 'Chat', None, 'A2.7B')) + + # Capture 'sub size labels' e.g. A14B in '57B-A14B' usually refers to activated params/weight count + self.assertEqual(gguf.Metadata.get_model_id_components("Qwen2-57B-A14B-Instruct"), + ('Qwen2-57B-A14B-Instruct', None, 'Qwen2', 'Instruct', None, '57B-A14B')) + + # Check that it can handle a real model id with no version code + # Note that 4k in this string is non standard and microsoft were referring to context length rather than weight count + self.assertEqual(gguf.Metadata.get_model_id_components("microsoft/Phi-3-mini-4k-instruct", 4 * 10**9), + ('Phi-3-mini-4k-instruct', 'microsoft', 'Phi-3', '4k-instruct', None, 'mini')) + + # There is some legitimate models with only thousands of parameters + self.assertEqual(gguf.Metadata.get_model_id_components("delphi-suite/stories-llama2-50k", 50 * 10**3), + ('stories-llama2-50k', 'delphi-suite', 'stories-llama2', None, None, '50K')) + + # Non standard and not easy to disambiguate + self.assertEqual(gguf.Metadata.get_model_id_components("DeepSeek-Coder-V2-Lite-Instruct"), + ('DeepSeek-Coder-V2-Lite-Instruct', None, 'DeepSeek-Coder-V2-Lite', 'Instruct', None, None)) + + # This is a real model_id where they append 2DPO to refer to Direct Preference Optimization + self.assertEqual(gguf.Metadata.get_model_id_components("crestf411/daybreak-kunoichi-2dpo-7b"), + ('daybreak-kunoichi-2dpo-7b', 'crestf411', 'daybreak-kunoichi', '2dpo', None, '7B')) + + # This is a real model id where the weight size has a decimal point + self.assertEqual(gguf.Metadata.get_model_id_components("Qwen2-0.5B-Instruct"), + ('Qwen2-0.5B-Instruct', None, 'Qwen2', 'Instruct', None, '0.5B')) + + # Uses an underscore in the size label + self.assertEqual(gguf.Metadata.get_model_id_components("smallcloudai/Refact-1_6B-fim"), + ('Refact-1_6B-fim', 'smallcloudai', 'Refact', 'fim', None, '1.6B')) + + # Uses Iter3 for the version + self.assertEqual(gguf.Metadata.get_model_id_components("UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3"), + ('Gemma-2-9B-It-SPPO-Iter3', 'UCLA-AGI', 'Gemma-2', 'It-SPPO', 'Iter3', '9B')) + + # Has two potential versions in the basename + self.assertEqual(gguf.Metadata.get_model_id_components("NousResearch/Hermes-2-Theta-Llama-3-8B"), + ('Hermes-2-Theta-Llama-3-8B', 'NousResearch', 'Hermes-2-Theta-Llama-3', None, None, '8B')) + + # Potential version in the basename + self.assertEqual(gguf.Metadata.get_model_id_components("SeaLLMs/SeaLLMs-v3-7B-Chat"), + ('SeaLLMs-v3-7B-Chat', 'SeaLLMs', 'SeaLLMs-v3', 'Chat', None, '7B')) + + # Underscore in the basename, and 1m for the context size + self.assertEqual(gguf.Metadata.get_model_id_components("internlm/internlm2_5-7b-chat-1m", 7 * 10**9), + ('internlm2_5-7b-chat-1m', 'internlm', 'internlm2_5', 'chat-1m', None, '7B')) + + # Version before the finetune name + self.assertEqual(gguf.Metadata.get_model_id_components("pszemraj/jamba-900M-v0.13-KIx2"), + ('jamba-900M-v0.13-KIx2', 'pszemraj', 'jamba', 'KIx2', 'v0.13', '900M')) + + # TODO: hf suffix which could be ignored but isn't + self.assertEqual(gguf.Metadata.get_model_id_components("state-spaces/mamba-2.8b-hf"), + ('mamba-2.8b-hf', 'state-spaces', 'mamba', 'hf', None, '2.8B')) + + # Two sizes, don't merge them, the other is the number of tokens on which it was trained + self.assertEqual(gguf.Metadata.get_model_id_components("abacaj/llama-161M-100B", 161 * 10**6), + ('llama-161M-100B', 'abacaj', 'llama', '100b', None, '161M')) + + # It's a trap, there is no size label + self.assertEqual(gguf.Metadata.get_model_id_components("SparseLLM/relu-100B", 1340 * 10**6), + ('relu-100B', 'SparseLLM', 'relu', '100b', None, None)) + + # Weird size notation + self.assertEqual(gguf.Metadata.get_model_id_components("bigscience/bloom-7b1-petals"), + ('bloom-7b1-petals', 'bigscience', 'bloom', 'petals', None, '7.1B')) + + # Ignore full-text size labels when there are number-based ones, and deduplicate size labels + self.assertEqual(gguf.Metadata.get_model_id_components("MaziyarPanahi/GreenNode-mini-7B-multilingual-v1olet-Mistral-7B-Instruct-v0.1"), + ('GreenNode-mini-7B-multilingual-v1olet-Mistral-7B-Instruct-v0.1', 'MaziyarPanahi', 'GreenNode-mini', 'multilingual-v1olet-Mistral-Instruct', 'v0.1', '7B')) + + # Instruct in a name without a size label + self.assertEqual(gguf.Metadata.get_model_id_components("mistralai/Mistral-Nemo-Instruct-2407"), + ('Mistral-Nemo-Instruct-2407', 'mistralai', 'Mistral-Nemo', 'Instruct', '2407', None)) + + # Non-obvious splitting relying on 'chat' keyword + self.assertEqual(gguf.Metadata.get_model_id_components("deepseek-ai/DeepSeek-V2-Chat-0628"), + ('DeepSeek-V2-Chat-0628', 'deepseek-ai', 'DeepSeek-V2', 'Chat', '0628', None)) + + # Multiple versions + self.assertEqual(gguf.Metadata.get_model_id_components("OpenGVLab/Mini-InternVL-Chat-2B-V1-5"), + ('Mini-InternVL-Chat-2B-V1-5', 'OpenGVLab', 'Mini-InternVL', 'Chat', 'V1-5', '2B')) + + # TODO: DPO in the name + self.assertEqual(gguf.Metadata.get_model_id_components("jondurbin/bagel-dpo-2.8b-v0.2"), + ('bagel-dpo-2.8b-v0.2', 'jondurbin', 'bagel-dpo', None, 'v0.2', '2.8B')) + + # DPO in name, but can't be used for the finetune to keep 'LLaMA-3' in the basename + self.assertEqual(gguf.Metadata.get_model_id_components("voxmenthe/SFR-Iterative-DPO-LLaMA-3-8B-R-unquantized"), + ('SFR-Iterative-DPO-LLaMA-3-8B-R-unquantized', 'voxmenthe', 'SFR-Iterative-DPO-LLaMA-3', 'R-unquantized', None, '8B')) + + # Too ambiguous + # TODO: should "base" be a 'finetune' or 'size_label'? + # (in this case it should be a size label, but other models use it to signal that they are not finetuned) + self.assertEqual(gguf.Metadata.get_model_id_components("microsoft/Florence-2-base"), + ('Florence-2-base', 'microsoft', None, None, None, None)) + + ## Invalid cases ## + + # Start with a dash and has dashes in rows + self.assertEqual(gguf.Metadata.get_model_id_components("mistralai/-Mistral--Nemo-Base-2407-"), + ('-Mistral--Nemo-Base-2407-', 'mistralai', 'Mistral-Nemo-Base', None, '2407', None)) + + ## LoRA ## + + self.assertEqual(gguf.Metadata.get_model_id_components("Llama-3-Instruct-abliteration-LoRA-8B"), + ('Llama-3-Instruct-abliteration-LoRA-8B', None, 'Llama-3', 'Instruct-abliteration-LoRA', None, '8B')) + + # Negative size --> output is a LoRA adaper --> prune "LoRA" out of the name to avoid redundancy with the suffix + self.assertEqual(gguf.Metadata.get_model_id_components("Llama-3-Instruct-abliteration-LoRA-8B", -1234), + ('Llama-3-Instruct-abliteration-LoRA-8B', None, 'Llama-3', 'Instruct-abliteration', None, '8B')) + + def test_apply_metadata_heuristic_from_model_card(self): + model_card = { + 'tags': ['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'], + 'model-index': [{'name': 'Mixtral-8x7B-Instruct-v0.1', 'results': []}], + 'language': ['en'], + 'datasets': ['teknium/OpenHermes-2.5'], + 'widget': [{'example_title': 'Hermes 2 Pro', 'messages': [{'role': 'system', 'content': 'You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.'}, {'role': 'user', 'content': 'Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.'}]}], + 'base_model': ["EmbeddedLLM/Mistral-7B-Merge-14-v0", "janai-hq/trinity-v1"] + } + got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card, None, None) + expect = gguf.Metadata() + expect.base_models=[{'name': 'Mistral 7B Merge 14 v0', 'organization': 'EmbeddedLLM', 'version': '14-v0', 'repo_url': 'https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0'}, {'name': 'Trinity v1', 'organization': 'Janai Hq', 'version': 'v1', 'repo_url': 'https://huggingface.co/janai-hq/trinity-v1'}] + expect.tags=['Llama-3', 'instruct', 'finetune', 'chatml', 'DPO', 'RLHF', 'gpt4', 'synthetic data', 'distillation', 'function calling', 'json mode', 'axolotl'] + expect.languages=['en'] + expect.datasets=['teknium/OpenHermes-2.5'] + + self.assertEqual(got, expect) + + def test_apply_metadata_heuristic_from_hf_parameters(self): + hf_params = {"_name_or_path": "./hermes-2-pro-llama-3-8b-DPO"} + got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card=None, hf_params=hf_params, model_path=None) + expect = gguf.Metadata(name='Hermes 2 Pro Llama 3 8b DPO', finetune='DPO', basename='hermes-2-pro-llama-3', size_label='8B') + self.assertEqual(got, expect) + + def test_apply_metadata_heuristic_from_model_dir(self): + model_dir_path = Path("./hermes-2-pro-llama-3-8b-DPO") + got = gguf.Metadata.apply_metadata_heuristic(gguf.Metadata(), model_card=None, hf_params=None, model_path=model_dir_path) + expect = gguf.Metadata(name='Hermes 2 Pro Llama 3 8b DPO', finetune='DPO', basename='hermes-2-pro-llama-3', size_label='8B') + self.assertEqual(got, expect) + + +if __name__ == "__main__": + unittest.main() |