diff options
author | Georgi Gerganov <ggerganov@gmail.com> | 2023-08-21 23:07:43 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-08-21 23:07:43 +0300 |
commit | 6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9 (patch) | |
tree | 15f5b726f864ad0913bc8dcf6ea08b90ecc7ada9 /gguf.py | |
parent | dadbed99e65252d79f81101a392d0d6497b86caa (diff) |
gguf : new file format with flexible meta data (beta) (#2398)
* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415)
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426)
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438)
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf : inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613)
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp : fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620)
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629)
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635)
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit 7e82d25f40386540c2c15226300ad998ecd871ea.
* convert.py : n_head_kv optional and .gguf file extension
* convert.py : better always have n_head_kv and default it to n_head
* llama : sync with recent PRs on master
* editorconfig : ignore models folder
ggml-ci
* ci : update ".bin" to ".gguf" extension
ggml-ci
* llama : fix llama_model_loader memory leak
* gptneox : move as a WIP example
* llama : fix lambda capture
ggml-ci
* ggml : fix bug in gguf_set_kv
ggml-ci
* common.h : .bin --> .gguf
* quantize-stats.cpp : .bin --> .gguf
* convert.py : fix HF tensor permuting / unpacking
ggml-ci
* llama.cpp : typo
* llama : throw error if gguf fails to init from file
ggml-ci
* llama : fix tensor name grepping during quantization
ggml-ci
* gguf.py : write tensors in a single pass (#2644)
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : style fixes in simple conversion script
* gguf : refactor gptneox conversion script
* gguf : rename h5 to hf (for HuggingFace)
* gguf : refactor pth to gguf conversion script
* gguf : rm file_type key and method
* gguf.py : fix vertical alignment
* gguf.py : indentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert-gptneox-hf-to-gguf.py : fixes
* gguf.py : gptneox mapping
* convert-llama-hf-to-gguf.py : fixes
* convert-llama-7b-pth-to-gguf.py : fixes
* ggml.h : reverse GGUF_MAGIC
* gguf.py : reverse GGUF_MAGIC
* test-tokenizer-0.cpp : fix warning
* llama.cpp : print kv general.name
* llama.cpp : get special token kv and linefeed token id
* llama : print number of tensors per type + print arch + style
* tests : update vocab file with new magic
* editorconfig : fix whitespaces
* llama : re-order functions
* llama : remove C++ API + reorganize common source in /common dir
* llama : minor API updates
* llama : avoid hardcoded special tokens
* llama : fix MPI build
ggml-ci
* llama : introduce enum llama_vocab_type + remove hardcoded string constants
* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested
* falcon-main.cpp : falcon inference example
* convert-falcon-hf-to-gguf.py : remove extra kv
* convert-gptneox-hf-to-gguf.py : remove extra kv
* convert-llama-7b-pth-to-gguf.py : remove extra kv
* convert-llama-hf-to-gguf.py : remove extra kv
* gguf.py : fix for falcon 40b
* falcon-main.cpp : fix for falcon 40b
* convert-falcon-hf-to-gguf.py : update ref
* convert-falcon-hf-to-gguf.py : add tensor data layout
* cmpnct_gpt2bpe.hpp : fixes
* falcon-main.cpp : fixes
* gptneox-main.cpp : fixes
* cmpnct_gpt2bpe.hpp : remove non-general stuff
* Update examples/server/README.md
Co-authored-by: slaren <slarengh@gmail.com>
* cmpnct_gpt2bpe.hpp : cleanup
* convert-llama-hf-to-gguf.py : special tokens
* convert-llama-7b-pth-to-gguf.py : special tokens
* convert-permute-debug.py : permute debug print
* convert-permute-debug-master.py : permute debug for master
* convert-permute-debug.py : change permute type of attn_q
* convert.py : 70b model working (change attn_q permute)
* Delete convert-permute-debug-master.py
* Delete convert-permute-debug.py
* convert-llama-hf-to-gguf.py : fix attn_q permute
* gguf.py : fix rope scale kv
* convert-llama-hf-to-gguf.py : rope scale and added tokens
* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens
* llama.cpp : use rope scale kv
* convert-llama-7b-pth-to-gguf.py : rope scale fix
* convert-llama-hf-to-gguf.py : rope scale fix
* py : fix whitespace
* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)
* First pass at converting GGMLv3 LLaMA models to GGUF
* Cleanups, better output during conversion
* Fix vocab space conversion logic
* More vocab conversion fixes
* Add description to converted GGUF files
* Improve help text, expand warning
* Allow specifying name and description for output GGUF
* Allow overriding vocab and hyperparams from original model metadata
* Use correct params override var name
* Fix wrong type size for Q8_K
Better handling of original style metadata
* Set default value for gguf add_tensor raw_shape KW arg
* llama : improve token type support (#2668)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* llama : add API for token type
ggml-ci
* tests : use new tokenizer type API (#2692)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* Improve commentary
* Use token type API in test-tokenizer-1.cpp
* py : cosmetics
* readme : add notice about new file format
ggml-ci
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Diffstat (limited to 'gguf.py')
-rw-r--r-- | gguf.py | 718 |
1 files changed, 718 insertions, 0 deletions
diff --git a/gguf.py b/gguf.py new file mode 100644 index 00000000..9776649c --- /dev/null +++ b/gguf.py @@ -0,0 +1,718 @@ +import shutil +import sys +import struct +import tempfile +import numpy as np + +from enum import IntEnum, auto +from typing import Any, IO, List, Optional + +# +# constants +# + +GGUF_MAGIC = 0x46554747 +GGUF_VERSION = 1 +GGUF_DEFAULT_ALIGNMENT = 32 + +# general +KEY_GENERAL_ARCHITECTURE = "general.architecture" +KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version" +KEY_GENERAL_ALIGNMENT = "general.alignment" +KEY_GENERAL_NAME = "general.name" +KEY_GENERAL_AUTHOR = "general.author" +KEY_GENERAL_URL = "general.url" +KEY_GENERAL_DESCRIPTION = "general.description" +KEY_GENERAL_LICENSE = "general.license" +KEY_GENERAL_SOURCE_URL = "general.source.url" +KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository" + +# LLM +KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length" +KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length" +KEY_LLM_BLOCK_COUNT = "{arch}.block_count" +KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" +KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" +KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" + +# attention +KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count" +KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv" +KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias" +KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv" +KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" +KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" + +# RoPE +KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count" +KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear" + +# tokenization +KEY_TOKENIZER_MODEL = "tokenizer.ggml.model" +KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens" +KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type" +KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores" +KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges" +KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id" +KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id" +KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id" +KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id" +KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id" +KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json" +KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" + + +# +# recommended mapping of model tensor names for storage in gguf +# + + +class MODEL_ARCH(IntEnum): + LLAMA = auto() + FALCON = auto() + GPT2 = auto() + GPTJ = auto() + GPTNEOX = auto() + MPT = auto() + + +class MODEL_TENSOR(IntEnum): + TOKEN_EMBD = auto() + POS_EMBD = auto() + OUTPUT = auto() + OUTPUT_NORM = auto() + ROPE_FREQS = auto() + ATTN_Q = auto() + ATTN_K = auto() + ATTN_V = auto() + ATTN_QKV = auto() + ATTN_OUT = auto() + ATTN_NORM = auto() + ATTN_NORM_2 = auto() + ATTN_ROT_EMBD = auto() + FFN_GATE = auto() + FFN_DOWN = auto() + FFN_UP = auto() + FFN_NORM = auto() + + +MODEL_ARCH_NAMES = { + MODEL_ARCH.LLAMA: "llama", + MODEL_ARCH.FALCON: "falcon", + MODEL_ARCH.GPT2: "gpt2", + MODEL_ARCH.GPTJ: "gptj", + MODEL_ARCH.GPTNEOX: "gptneox", + MODEL_ARCH.MPT: "mpt", +} + +MODEL_TENSOR_NAMES = { + MODEL_ARCH.LLAMA: { + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + }, + MODEL_ARCH.GPTNEOX: { + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + }, + MODEL_ARCH.FALCON: { + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + }, + MODEL_ARCH.GPT2: { + # TODO + }, + # TODO +} + +# tensors that will not be serialized +MODEL_TENSOR_SKIP = { + MODEL_ARCH.LLAMA: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], +} + + +# TODO: the following helper functions should be removed +# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR) +# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions +# REMOVE +def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool: + for skip in MODEL_TENSOR_SKIP.get(arch, []): + for i in range(n_blocks): + if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i): + return True + + return False + + +def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict: + tensor_map = {} + + # Token embeddings + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None) + + tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox + tensor_map["transformer.wte"] = mapped_to # gpt2 mpt + tensor_map["transformer.word_embeddings"] = mapped_to # falcon + tensor_map["model.embed_tokens"] = mapped_to # llama-hf + tensor_map["tok_embeddings"] = mapped_to # llama-pth + + # Position embeddings + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None) + + tensor_map["transformer.wpe"] = mapped_to # gpt2 + + # Output + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None) + + tensor_map["embed_out"] = mapped_to # gptneox + tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf + tensor_map["output"] = mapped_to # llama-pth + + # Output norm + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None) + + tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox + tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon + tensor_map["transformer.norm_f"] = mapped_to # mpt + tensor_map["model.norm"] = mapped_to # llama-hf + tensor_map["norm"] = mapped_to # llama-pth + + # Rope frequencies + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None) + + tensor_map["rope.freqs"] = mapped_to # llama-pth + + # Attention and feed-forward blocks + for i in range(0, n_blocks): + # Attention norm + # TODO: is there are simpler way to write these 2 lines in Python? + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None) + mapped_to = mapped_to.format(bid=i) if mapped_to else None + + tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox + tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt + tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b + tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b + tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth + + # Attention norm 2 + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b + + # Attention query-key-value + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox + tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt + tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon + + # Attention query + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth + + # Attention key + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth + + # Attention value + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth + + # Attention output + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox + tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt + tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon + tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth + + # Rotary embeddings + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth + + # Feed-forward norm + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox + tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt + tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth + + # Feed-forward up + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox + tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt + tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon + tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth + + # Feed-forward gate + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth + + # Feed-forward down + mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None) + mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None + + tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox + tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt + tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon + tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth + + return tensor_map + + +class TokenType(IntEnum): + NORMAL = 1 + UNKNOWN = 2 + CONTROL = 3 + USER_DEFINED = 4 + UNUSED = 5 + BYTE = 6 + +# +# implementation +# + + +class GGMLQuantizationType(IntEnum): + F32 = 0 + F16 = 1 + Q4_0 = 2 + Q4_1 = 3 + Q5_0 = 6 + Q5_1 = 7 + Q8_0 = 8 + Q8_1 = 9 + Q2_K = 10 + Q3_K = 11 + Q4_K = 12 + Q5_K = 13 + Q6_K = 14 + Q8_K = 15 + + +class GGUFValueType(IntEnum): + UINT8 = 0 + INT8 = 1 + UINT16 = 2 + INT16 = 3 + UINT32 = 4 + INT32 = 5 + FLOAT32 = 6 + BOOL = 7 + STRING = 8 + ARRAY = 9 + + @staticmethod + def get_type(val): + if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray): + return GGUFValueType.STRING + elif isinstance(val, list): + return GGUFValueType.ARRAY + elif isinstance(val, float): + return GGUFValueType.FLOAT32 + elif isinstance(val, bool): + return GGUFValueType.BOOL + elif isinstance(val, int): + return GGUFValueType.INT32 + else: + print("Unknown type: "+str(type(val))) + sys.exit() + + +class GGUFWriter: + def __init__(self, path: str, arch: str, use_temp_file = True): + self.fout = open(path, "wb") + self.arch = arch + self.offset_tensor = 0 + self.data_alignment = GGUF_DEFAULT_ALIGNMENT + self.kv_data = b"" + self.kv_data_count = 0 + self.ti_data = b"" + self.ti_data_count = 0 + self.add_architecture() + self.use_temp_file = use_temp_file + self.tensors = [] + + def write_header_to_file(self): + self.fout.write(struct.pack("<I", GGUF_MAGIC)) + self.fout.write(struct.pack("<I", GGUF_VERSION)) + self.fout.write(struct.pack("<I", self.ti_data_count)) + self.fout.write(struct.pack("<I", self.kv_data_count)) + self.flush() +# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count)) + + def write_kv_data_to_file(self): + self.fout.write(self.kv_data) + self.flush() + + def write_ti_data_to_file(self): + self.fout.write(self.ti_data) + self.flush() + + def add_key(self, key: str): + self.add_val(key, GGUFValueType.STRING, add_vtype=False) + + def add_uint8(self, key: str, val: int): + self.add_key(key) + self.add_val(val, GGUFValueType.UINT8) + + def add_int8(self, key: str, val: int): + self.add_key(key) + self.add_val(val, GGUFValueType.INT8) + + def add_uint16(self, key: str, val: int): + self.add_key(key) + self.add_val(val, GGUFValueType.UINT16) + + def add_int16(self, key: str, val: int): + self.add_key(key) + self.add_val(val, GGUFValueType.INT16) + + def add_uint32(self, key: str, val: int): + self.add_key(key) + self.add_val(val, GGUFValueType.UINT32) + + def add_int32(self, key: str, val: int): + self.add_key(key) + self.add_val(val, GGUFValueType.INT32) + + def add_float32(self, key: str, val: float): + self.add_key(key) + self.add_val(val, GGUFValueType.FLOAT32) + + def add_bool(self, key: str, val: bool): + self.add_key(key) + self.add_val(val, GGUFValueType.BOOL) + + def add_string(self, key: str, val: str): + if len(val) == 0: + return + self.add_key(key) + self.add_val(val, GGUFValueType.STRING) + + def add_array(self, key: str, val: list): + if not isinstance(val, list): + raise ValueError("Value must be a list for array type") + + self.add_key(key) + self.add_val(val, GGUFValueType.ARRAY) + + def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True): + if vtype is None: + vtype = GGUFValueType.get_type(val) + + if add_vtype: + self.kv_data += struct.pack("<I", vtype) + self.kv_data_count += 1 + + if vtype == GGUFValueType.UINT8: + self.kv_data += struct.pack("<B", val) + elif vtype == GGUFValueType.INT8: + self.kv_data += struct.pack("<b", val) + elif vtype == GGUFValueType.UINT16: + self.kv_data += struct.pack("<H", val) + elif vtype == GGUFValueType.INT16: + self.kv_data += struct.pack("<h", val) + elif vtype == GGUFValueType.UINT32: + self.kv_data += struct.pack("<I", val) + elif vtype == GGUFValueType.INT32: + self.kv_data += struct.pack("<i", val) + elif vtype == GGUFValueType.FLOAT32: + self.kv_data += struct.pack("<f", val) + elif vtype == GGUFValueType.BOOL: + self.kv_data += struct.pack("?", val) + elif vtype == GGUFValueType.STRING: + encoded_val = val.encode("utf8") if isinstance(val, str) else val + self.kv_data += struct.pack("<I", len(encoded_val)) + self.kv_data += encoded_val + elif vtype == GGUFValueType.ARRAY: + ltype = set([GGUFValueType.get_type(item) for item in val]) + assert len(ltype) == 1, "All items in a GGUF array should be of the same type" + self.kv_data += struct.pack("<I", list(ltype)[0]) + self.kv_data += struct.pack("<I", len(val)) + for item in val: + self.add_val(item, add_vtype=False) + else: + raise ValueError("Invalid GGUF metadata value type") + + @staticmethod + def ggml_pad(x: int, n: int) -> int: + return ((x + n - 1) // n) * n + + def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None): + assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now" + + encoded_name = name.encode("utf8") + self.ti_data += struct.pack("<I", len(encoded_name)) + self.ti_data += encoded_name + n_dims = len(tensor_shape) + self.ti_data += struct.pack("<I", n_dims) + for i in range(n_dims): + self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i]) + if raw_dtype is None: + dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16 + else: + dtype = raw_dtype + self.ti_data += struct.pack("<I", dtype) + self.ti_data += struct.pack("<Q", self.offset_tensor) + self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment) + self.ti_data_count += 1 + + def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None): + if self.use_temp_file and not hasattr(self, "temp_file"): + self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024) + self.temp_file.seek(0) + + self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype) + + pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes + + if not self.use_temp_file: + self.tensors.append((tensor, pad)) + return + + tensor.tofile(self.temp_file) + + if pad != 0: + self.temp_file.write(bytes([0] * pad)) + + def write_tensor_data(self, tensor: np.ndarray): + pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell() + if pad != 0: + self.fout.write(bytes([0] * pad)) + + tensor.tofile(self.fout) + + pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes + if pad != 0: + self.fout.write(bytes([0] * pad)) + + def write_tensors_to_file(self): + self.write_ti_data_to_file() + + pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell() + if pad != 0: + self.fout.write(bytes([0] * pad)) + + if not self.use_temp_file: + for (currtensor, currpad) in self.tensors: + currtensor.tofile(self.fout) + if currpad != 0: + self.fout.write(bytes([0] * currpad)) + return + + self.temp_file.seek(0) + + shutil.copyfileobj(self.temp_file, self.fout) + self.flush() + self.temp_file.close() + + def flush(self): + self.fout.flush() + + def close(self): + self.fout.close() + + def add_architecture(self): + self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch) + + def add_author(self, author: str): + self.add_string(KEY_GENERAL_AUTHOR, author) + + def add_tensor_data_layout(self, layout: str): + self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) + + def add_url(self, url: str): + self.add_string(KEY_GENERAL_URL, url) + + def add_description(self, description: str): + self.add_string(KEY_GENERAL_DESCRIPTION, description) + + def add_source_url(self, url: str): + self.add_string(KEY_GENERAL_SOURCE_URL, url) + + def add_source_hf_repo(self, repo: str): + self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo) + + def add_name(self, name: str): + self.add_string(KEY_GENERAL_NAME, name) + + def add_quantization_version(self, quantization_version: GGMLQuantizationType): + self.add_uint32( + KEY_GENERAL_QUANTIZATION_VERSION, quantization_version) + + def add_custom_alignment(self, alignment: int): + self.data_alignment = alignment + self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment) + + def add_context_length(self, length: int): + self.add_uint32( + KEY_LLM_CONTEXT_LENGTH.format(arch=self.arch), length) + + def add_embedding_length(self, length: int): + self.add_uint32( + KEY_LLM_EMBEDDING_LENGTH.format(arch=self.arch), length) + + def add_block_count(self, length: int): + self.add_uint32( + KEY_LLM_BLOCK_COUNT.format(arch=self.arch), length) + + def add_feed_forward_length(self, length: int): + self.add_uint32( + KEY_LLM_FEED_FORWARD_LENGTH.format(arch=self.arch), length) + + def add_parallel_residual(self, use: bool): + self.add_bool( + KEY_LLM_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) + + def add_tensor_data_layout(self, layout: str): + self.add_string( + KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout) + + def add_head_count(self, count: int): + self.add_uint32( + KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count) + + def add_head_count_kv(self, count: int): + self.add_uint32( + KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count) + + def add_max_alibi_bias(self, bias: float): + self.add_float32( + KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias) + + def add_clamp_kqv(self, value: float): + self.add_float32( + KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value) + + def add_layer_norm_eps(self, value: float): + self.add_float32( + KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value) + + def add_layer_norm_rms_eps(self, value: float): + self.add_float32( + KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value) + + def add_rope_dimension_count(self, count: int): + self.add_uint32( + KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count) + + def add_rope_scale_linear(self, value: float): + self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value) + + def add_tokenizer_model(self, model: str): + self.add_string(KEY_TOKENIZER_MODEL, model) + + def add_token_list(self, tokens: List): + self.add_array(KEY_TOKENIZER_LIST, tokens) + + def add_token_merges(self, merges: List): + self.add_array(KEY_TOKENIZER_MERGES, merges) + + def add_token_types(self, types: List[int]): + self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types) + + def add_token_scores(self, scores: List[float]): + self.add_array(KEY_TOKENIZER_SCORES, scores) + + def add_bos_token_id(self, id: int): + self.add_uint32(KEY_TOKENIZER_BOS_ID, id) + + def add_eos_token_id(self, id: int): + self.add_uint32(KEY_TOKENIZER_EOS_ID, id) + + def add_unk_token_id(self, id: int): + self.add_uint32(KEY_TOKENIZER_UNK_ID, id) + + def add_sep_token_id(self, id: int): + self.add_uint32(KEY_TOKENIZER_SEP_ID, id) + + def add_pad_token_id(self, id: int): + self.add_uint32(KEY_TOKENIZER_PAD_ID, id) + + +# Example usage: +if __name__ == "__main__": + # Example usage with a file + gguf_writer = GGUFWriter("example.gguf", "llama") + + gguf_writer.add_architecture() + gguf_writer.add_block_count(12) + gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer + gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float + gguf_writer.add_custom_alignment(64) + + tensor1 = np.ones((32,), dtype=np.float32) * 100.0 + tensor2 = np.ones((64,), dtype=np.float32) * 101.0 + tensor3 = np.ones((96,), dtype=np.float32) * 102.0 + + gguf_writer.add_tensor("tensor1", tensor1) + gguf_writer.add_tensor("tensor2", tensor2) + gguf_writer.add_tensor("tensor3", tensor3) + + gguf_writer.write_header_to_file() + gguf_writer.write_kv_data_to_file() + gguf_writer.write_tensors_to_file() + + gguf_writer.close() |