summaryrefslogtreecommitdiff
path: root/include/llama.h
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /include/llama.h
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'include/llama.h')
-rw-r--r--include/llama.h1239
1 files changed, 1239 insertions, 0 deletions
diff --git a/include/llama.h b/include/llama.h
new file mode 100644
index 00000000..246fdf32
--- /dev/null
+++ b/include/llama.h
@@ -0,0 +1,1239 @@
+#ifndef LLAMA_H
+#define LLAMA_H
+
+#include "ggml.h"
+#include "ggml-backend.h"
+
+#include <stddef.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdbool.h>
+
+#ifdef LLAMA_SHARED
+# if defined(_WIN32) && !defined(__MINGW32__)
+# ifdef LLAMA_BUILD
+# define LLAMA_API __declspec(dllexport)
+# else
+# define LLAMA_API __declspec(dllimport)
+# endif
+# else
+# define LLAMA_API __attribute__ ((visibility ("default")))
+# endif
+#else
+# define LLAMA_API
+#endif
+
+#ifdef __GNUC__
+# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
+#elif defined(_MSC_VER)
+# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
+#else
+# define DEPRECATED(func, hint) func
+#endif
+
+#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
+
+#define LLAMA_MAX_RNG_STATE (64*1024)
+
+#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
+#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
+#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
+
+#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
+#define LLAMA_SESSION_VERSION 7
+
+#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
+#define LLAMA_STATE_SEQ_VERSION 1
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+ //
+ // C interface
+ //
+ // TODO: show sample usage
+ //
+
+ struct llama_model;
+ struct llama_context;
+
+ typedef int32_t llama_pos;
+ typedef int32_t llama_token;
+ typedef int32_t llama_seq_id;
+
+ enum llama_vocab_type {
+ LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
+ LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
+ LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
+ LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
+ LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
+ };
+
+ // pre-tokenization types
+ enum llama_vocab_pre_type {
+ LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
+ LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
+ LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
+ LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
+ LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
+ LLAMA_VOCAB_PRE_TYPE_MPT = 5,
+ LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
+ LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
+ LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
+ LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
+ LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
+ LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
+ LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
+ LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
+ LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
+ LLAMA_VOCAB_PRE_TYPE_PORO = 15,
+ LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
+ LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
+ LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
+ LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
+ LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
+ LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
+ LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
+ };
+
+ // note: these values should be synchronized with ggml_rope
+ // TODO: maybe move this enum to ggml.h (ggml_rope_type)
+ enum llama_rope_type {
+ LLAMA_ROPE_TYPE_NONE = -1,
+ LLAMA_ROPE_TYPE_NORM = 0,
+ LLAMA_ROPE_TYPE_NEOX = 2,
+ LLAMA_ROPE_TYPE_GLM = 4,
+ };
+
+ enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
+ LLAMA_TOKEN_TYPE_UNDEFINED = 0,
+ LLAMA_TOKEN_TYPE_NORMAL = 1,
+ LLAMA_TOKEN_TYPE_UNKNOWN = 2,
+ LLAMA_TOKEN_TYPE_CONTROL = 3,
+ LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
+ LLAMA_TOKEN_TYPE_UNUSED = 5,
+ LLAMA_TOKEN_TYPE_BYTE = 6,
+ };
+
+ enum llama_token_attr {
+ LLAMA_TOKEN_ATTR_UNDEFINED = 0,
+ LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
+ LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
+ LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
+ LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
+ LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
+ LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
+ LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
+ LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
+ LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
+ LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
+ };
+
+ // model file types
+ enum llama_ftype {
+ LLAMA_FTYPE_ALL_F32 = 0,
+ LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
+ // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
+ // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
+ // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
+ LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
+ LLAMA_FTYPE_MOSTLY_IQ1_BN = 36,
+ LLAMA_FTYPE_MOSTLY_IQ2_BN = 37,
+
+ LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
+ };
+
+ enum llama_rope_scaling_type {
+ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
+ LLAMA_ROPE_SCALING_TYPE_NONE = 0,
+ LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
+ LLAMA_ROPE_SCALING_TYPE_YARN = 2,
+ LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
+ };
+
+ enum llama_pooling_type {
+ LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
+ LLAMA_POOLING_TYPE_NONE = 0,
+ LLAMA_POOLING_TYPE_MEAN = 1,
+ LLAMA_POOLING_TYPE_CLS = 2,
+ LLAMA_POOLING_TYPE_LAST = 3,
+ };
+
+ enum llama_attention_type {
+ LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
+ LLAMA_ATTENTION_TYPE_CAUSAL = 0,
+ LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
+ };
+
+ enum llama_split_mode {
+ LLAMA_SPLIT_MODE_NONE = 0, // single GPU
+ LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
+ LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
+ };
+
+ typedef struct llama_token_data {
+ llama_token id; // token id
+ float logit; // log-odds of the token
+ float p; // probability of the token
+ } llama_token_data;
+
+ typedef struct llama_token_data_array {
+ llama_token_data * data;
+ size_t size;
+ bool sorted;
+ } llama_token_data_array;
+
+ typedef bool (*llama_progress_callback)(float progress, void * user_data);
+
+ // Input data for llama_decode
+ // A llama_batch object can contain input about one or many sequences
+ // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
+ //
+ // - token : the token ids of the input (used when embd is NULL)
+ // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
+ // - pos : the positions of the respective token in the sequence
+ // - seq_id : the sequence to which the respective token belongs
+ // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
+ //
+ typedef struct llama_batch {
+ int32_t n_tokens;
+
+ llama_token * token;
+ float * embd;
+ llama_pos * pos;
+ int32_t * n_seq_id;
+ llama_seq_id ** seq_id;
+ int8_t * logits; // TODO: rename this to "output"
+
+ // NOTE: helpers for smooth API transition - can be deprecated in the future
+ // for future-proof code, use the above fields instead and ignore everything below
+ //
+ // pos[i] = all_pos_0 + i*all_pos_1
+ //
+ llama_pos all_pos_0; // used if pos == NULL
+ llama_pos all_pos_1; // used if pos == NULL
+ llama_seq_id all_seq_id; // used if seq_id == NULL
+ } llama_batch;
+
+ enum llama_model_kv_override_type {
+ LLAMA_KV_OVERRIDE_TYPE_INT,
+ LLAMA_KV_OVERRIDE_TYPE_FLOAT,
+ LLAMA_KV_OVERRIDE_TYPE_BOOL,
+ LLAMA_KV_OVERRIDE_TYPE_STR,
+ };
+
+ struct llama_model_kv_override {
+ enum llama_model_kv_override_type tag;
+
+ char key[128];
+
+ union {
+ int64_t val_i64;
+ double val_f64;
+ bool val_bool;
+ char val_str[128];
+ };
+ };
+
+ struct llama_model_params {
+ int32_t n_gpu_layers; // number of layers to store in VRAM
+ enum llama_split_mode split_mode; // how to split the model across multiple GPUs
+
+ // main_gpu interpretation depends on split_mode:
+ // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
+ // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
+ // LLAMA_SPLIT_LAYER: ignored
+ int32_t main_gpu;
+
+ // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
+ const float * tensor_split;
+
+ // comma separated list of RPC servers to use for offloading
+ const char * rpc_servers;
+
+ // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
+ // If the provided progress_callback returns true, model loading continues.
+ // If it returns false, model loading is immediately aborted.
+ llama_progress_callback progress_callback;
+
+ // context pointer passed to the progress callback
+ void * progress_callback_user_data;
+
+ // override key-value pairs of the model meta data
+ const struct llama_model_kv_override * kv_overrides;
+
+ // Keep the booleans together to avoid misalignment during copy-by-value.
+ bool vocab_only; // only load the vocabulary, no weights
+ bool use_mmap; // use mmap if possible
+ bool use_mlock; // force system to keep model in RAM
+ bool check_tensors; // validate model tensor data
+ };
+
+ // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
+ // https://github.com/ggerganov/llama.cpp/pull/7544
+ struct llama_context_params {
+ uint32_t seed; // RNG seed, -1 for random
+ uint32_t n_ctx; // text context, 0 = from model
+ uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
+ uint32_t n_ubatch; // physical maximum batch size
+ uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
+ uint32_t n_threads; // number of threads to use for generation
+ uint32_t n_threads_batch; // number of threads to use for batch processing
+
+ enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
+ enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
+ enum llama_attention_type attention_type; // attention type to use for embeddings
+
+ // ref: https://github.com/ggerganov/llama.cpp/pull/2054
+ float rope_freq_base; // RoPE base frequency, 0 = from model
+ float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
+ float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
+ float yarn_attn_factor; // YaRN magnitude scaling factor
+ float yarn_beta_fast; // YaRN low correction dim
+ float yarn_beta_slow; // YaRN high correction dim
+ uint32_t yarn_orig_ctx; // YaRN original context size
+ float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
+
+ ggml_backend_sched_eval_callback cb_eval;
+ void * cb_eval_user_data;
+
+ enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
+ enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
+
+ // Keep the booleans together to avoid misalignment during copy-by-value.
+ bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
+ bool embeddings; // if true, extract embeddings (together with logits)
+ bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
+ bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
+
+ // Abort callback
+ // if it returns true, execution of llama_decode() will be aborted
+ // currently works only with CPU execution
+ ggml_abort_callback abort_callback;
+ void * abort_callback_data;
+ };
+
+ // model quantization parameters
+ typedef struct llama_model_quantize_params {
+ int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
+ enum llama_ftype ftype; // quantize to this llama_ftype
+ enum ggml_type output_tensor_type; // output tensor type
+ enum ggml_type token_embedding_type; // itoken embeddings tensor type
+ bool allow_requantize; // allow quantizing non-f32/f16 tensors
+ bool quantize_output_tensor; // quantize output.weight
+ bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
+ bool pure; // quantize all tensors to the default type
+ bool keep_split; // quantize to the same number of shards
+ void * imatrix; // pointer to importance matrix data
+ void * kv_overrides; // pointer to vector containing overrides
+ } llama_model_quantize_params;
+
+ // grammar types
+ struct llama_grammar;
+
+ // grammar element type
+ enum llama_gretype {
+ // end of rule definition
+ LLAMA_GRETYPE_END = 0,
+
+ // start of alternate definition for rule
+ LLAMA_GRETYPE_ALT = 1,
+
+ // non-terminal element: reference to rule
+ LLAMA_GRETYPE_RULE_REF = 2,
+
+ // terminal element: character (code point)
+ LLAMA_GRETYPE_CHAR = 3,
+
+ // inverse char(s) ([^a], [^a-b] [^abc])
+ LLAMA_GRETYPE_CHAR_NOT = 4,
+
+ // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
+ // be an inclusive range ([a-z])
+ LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
+
+ // modifies a preceding LLAMA_GRETYPE_CHAR or
+ // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
+ LLAMA_GRETYPE_CHAR_ALT = 6,
+
+ // any character (.)
+ LLAMA_GRETYPE_CHAR_ANY = 7,
+ };
+
+ typedef struct llama_grammar_element {
+ enum llama_gretype type;
+ uint32_t value; // Unicode code point or rule ID
+ } llama_grammar_element;
+
+ // performance timing information
+ struct llama_timings {
+ double t_start_ms;
+ double t_end_ms;
+ double t_load_ms;
+ double t_sample_ms;
+ double t_p_eval_ms;
+ double t_eval_ms;
+
+ int32_t n_sample;
+ int32_t n_p_eval;
+ int32_t n_eval;
+ };
+
+ // used in chat template
+ typedef struct llama_chat_message {
+ const char * role;
+ const char * content;
+ } llama_chat_message;
+
+ // lora adapter
+ struct llama_lora_adapter;
+
+ // Helpers for getting default parameters
+ LLAMA_API struct llama_model_params llama_model_default_params(void);
+ LLAMA_API struct llama_context_params llama_context_default_params(void);
+ LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
+
+ // Initialize the llama + ggml backend
+ // If numa is true, use NUMA optimizations
+ // Call once at the start of the program
+ LLAMA_API void llama_backend_init(void);
+
+ //optional:
+ LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
+
+ // Call once at the end of the program - currently only used for MPI
+ LLAMA_API void llama_backend_free(void);
+
+ LLAMA_API struct llama_model * llama_load_model_from_file(
+ const char * path_model,
+ struct llama_model_params params);
+
+ LLAMA_API void llama_free_model(struct llama_model * model);
+
+ LLAMA_API struct llama_context * llama_new_context_with_model(
+ struct llama_model * model,
+ struct llama_context_params params);
+
+ // Frees all allocated memory
+ LLAMA_API void llama_free(struct llama_context * ctx);
+
+ LLAMA_API int64_t llama_time_us(void);
+
+ LLAMA_API size_t llama_max_devices(void);
+
+ LLAMA_API bool llama_supports_mmap (void);
+ LLAMA_API bool llama_supports_mlock (void);
+ LLAMA_API bool llama_supports_gpu_offload(void);
+
+ LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
+
+ LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
+ LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
+ LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
+ LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
+
+ LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
+
+ LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
+ LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
+
+ LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
+ LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
+ LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
+ LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
+
+ // Get the model's RoPE frequency scaling factor
+ LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
+
+ // Functions to access the model's GGUF metadata scalar values
+ // - The functions return the length of the string on success, or -1 on failure
+ // - The output string is always null-terminated and cleared on failure
+ // - GGUF array values are not supported by these functions
+
+ // Get metadata value as a string by key name
+ LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
+
+ // Get the number of metadata key/value pairs
+ LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
+
+ // Get metadata key name by index
+ LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
+
+ // Get metadata value as a string by index
+ LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
+
+ // Get a string describing the model type
+ LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
+
+ // Returns the total size of all the tensors in the model in bytes
+ LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
+
+ // Returns the total number of parameters in the model
+ LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
+
+ // Get a llama model tensor
+ LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
+
+ // Returns true if the model contains an encoder that requires llama_encode() call
+ LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
+
+ // For encoder-decoder models, this function returns id of the token that must be provided
+ // to the decoder to start generating output sequence. For other models, it returns -1.
+ LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
+
+ // Returns 0 on success
+ LLAMA_API uint32_t llama_model_quantize(
+ const char * fname_inp,
+ const char * fname_out,
+ const llama_model_quantize_params * params);
+
+ // Load a LoRA adapter from file
+ // The loaded adapter will be associated to the given model, and will be free when the model is deleted
+ LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
+ struct llama_model * model,
+ const char * path_lora);
+
+ // Add a loaded LoRA adapter to given context
+ // This will not modify model's weight
+ LLAMA_API int32_t llama_lora_adapter_set(
+ struct llama_context * ctx,
+ struct llama_lora_adapter * adapter,
+ float scale);
+
+ // Remove a specific LoRA adapter from given context
+ // Return -1 if the adapter is not present in the context
+ LLAMA_API int32_t llama_lora_adapter_remove(
+ struct llama_context * ctx,
+ struct llama_lora_adapter * adapter);
+
+ // Remove all LoRA adapters from given context
+ LLAMA_API void llama_lora_adapter_clear(
+ struct llama_context * ctx);
+
+ // Manually free a LoRA adapter
+ // Note: loaded adapters will be free when the associated model is deleted
+ LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
+
+ // Apply a loaded control vector to a llama_context, or if data is NULL, clear
+ // the currently loaded vector.
+ // n_embd should be the size of a single layer's control, and data should point
+ // to an n_embd x n_layers buffer starting from layer 1.
+ // il_start and il_end are the layer range the vector should apply to (both inclusive)
+ // See llama_control_vector_load in common to load a control vector.
+ LLAMA_API int32_t llama_control_vector_apply(
+ struct llama_context * lctx,
+ const float * data,
+ size_t len,
+ int32_t n_embd,
+ int32_t il_start,
+ int32_t il_end);
+
+ //
+ // KV cache
+ //
+
+ // Information associated with an individual cell in the KV cache view.
+ struct llama_kv_cache_view_cell {
+ // The position for this cell. Takes KV cache shifts into account.
+ // May be negative if the cell is not populated.
+ llama_pos pos;
+ };
+
+ // An updateable view of the KV cache.
+ struct llama_kv_cache_view {
+ // Number of KV cache cells. This will be the same as the context size.
+ int32_t n_cells;
+
+ // Maximum number of sequences that can exist in a cell. It's not an error
+ // if there are more sequences in a cell than this value, however they will
+ // not be visible in the view cells_sequences.
+ int32_t n_seq_max;
+
+ // Number of tokens in the cache. For example, if there are two populated
+ // cells, the first with 1 sequence id in it and the second with 2 sequence
+ // ids then you'll have 3 tokens.
+ int32_t token_count;
+
+ // Number of populated cache cells.
+ int32_t used_cells;
+
+ // Maximum contiguous empty slots in the cache.
+ int32_t max_contiguous;
+
+ // Index to the start of the max_contiguous slot range. Can be negative
+ // when cache is full.
+ int32_t max_contiguous_idx;
+
+ // Information for an individual cell.
+ struct llama_kv_cache_view_cell * cells;
+
+ // The sequences for each cell. There will be n_seq_max items per cell.
+ llama_seq_id * cells_sequences;
+ };
+
+ // Create an empty KV cache view. (use only for debugging purposes)
+ LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
+
+ // Free a KV cache view. (use only for debugging purposes)
+ LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
+
+ // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
+ LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
+
+ // Returns the number of tokens in the KV cache (slow, use only for debug)
+ // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
+ LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
+
+ // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
+ LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
+
+ // Clear the KV cache - both cell info is erased and KV data is zeroed
+ LLAMA_API void llama_kv_cache_clear(
+ struct llama_context * ctx);
+
+ // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
+ // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
+ // seq_id < 0 : match any sequence
+ // p0 < 0 : [0, p1]
+ // p1 < 0 : [p0, inf)
+ LLAMA_API bool llama_kv_cache_seq_rm(
+ struct llama_context * ctx,
+ llama_seq_id seq_id,
+ llama_pos p0,
+ llama_pos p1);
+
+ // Copy all tokens that belong to the specified sequence to another sequence
+ // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
+ // p0 < 0 : [0, p1]
+ // p1 < 0 : [p0, inf)
+ LLAMA_API void llama_kv_cache_seq_cp(
+ struct llama_context * ctx,
+ llama_seq_id seq_id_src,
+ llama_seq_id seq_id_dst,
+ llama_pos p0,
+ llama_pos p1);
+
+ // Removes all tokens that do not belong to the specified sequence
+ LLAMA_API void llama_kv_cache_seq_keep(
+ struct llama_context * ctx,
+ llama_seq_id seq_id);
+
+ // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
+ // If the KV cache is RoPEd, the KV data is updated accordingly:
+ // - lazily on next llama_decode()
+ // - explicitly with llama_kv_cache_update()
+ // p0 < 0 : [0, p1]
+ // p1 < 0 : [p0, inf)
+ LLAMA_API void llama_kv_cache_seq_add(
+ struct llama_context * ctx,
+ llama_seq_id seq_id,
+ llama_pos p0,
+ llama_pos p1,
+ llama_pos delta);
+
+ // Integer division of the positions by factor of `d > 1`
+ // If the KV cache is RoPEd, the KV data is updated accordingly:
+ // - lazily on next llama_decode()
+ // - explicitly with llama_kv_cache_update()
+ // p0 < 0 : [0, p1]
+ // p1 < 0 : [p0, inf)
+ LLAMA_API void llama_kv_cache_seq_div(
+ struct llama_context * ctx,
+ llama_seq_id seq_id,
+ llama_pos p0,
+ llama_pos p1,
+ int d);
+
+ // Returns the largest position present in the KV cache for the specified sequence
+ LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
+ struct llama_context * ctx,
+ llama_seq_id seq_id);
+
+ // Defragment the KV cache
+ // This will be applied:
+ // - lazily on next llama_decode()
+ // - explicitly with llama_kv_cache_update()
+ LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
+
+ // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
+ LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
+
+ //
+ // State / sessions
+ //
+
+ // Returns the maximum size in bytes of the state (rng, logits, embedding
+ // and kv_cache) - will often be smaller after compacting tokens
+ LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
+ LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
+ "use llama_state_get_size instead");
+
+ // Copies the state to the specified destination address.
+ // Destination needs to have allocated enough memory.
+ // Returns the number of bytes copied
+ LLAMA_API size_t llama_state_get_data(
+ struct llama_context * ctx,
+ uint8_t * dst);
+ LLAMA_API DEPRECATED(size_t llama_copy_state_data(
+ struct llama_context * ctx,
+ uint8_t * dst),
+ "use llama_state_get_data instead");
+
+ // Set the state reading from the specified address
+ // Returns the number of bytes read
+ LLAMA_API size_t llama_state_set_data(
+ struct llama_context * ctx,
+ const uint8_t * src);
+ LLAMA_API DEPRECATED(size_t llama_set_state_data(
+ struct llama_context * ctx,
+ const uint8_t * src),
+ "use llama_state_set_data instead");
+
+ // Save/load session file
+ LLAMA_API bool llama_state_load_file(
+ struct llama_context * ctx,
+ const char * path_session,
+ llama_token * tokens_out,
+ size_t n_token_capacity,
+ size_t * n_token_count_out);
+ LLAMA_API DEPRECATED(bool llama_load_session_file(
+ struct llama_context * ctx,
+ const char * path_session,
+ llama_token * tokens_out,
+ size_t n_token_capacity,
+ size_t * n_token_count_out),
+ "use llama_state_load_file instead");
+
+ LLAMA_API bool llama_state_save_file(
+ struct llama_context * ctx,
+ const char * path_session,
+ const llama_token * tokens,
+ size_t n_token_count);
+ LLAMA_API DEPRECATED(bool llama_save_session_file(
+ struct llama_context * ctx,
+ const char * path_session,
+ const llama_token * tokens,
+ size_t n_token_count),
+ "use llama_state_save_file instead");
+
+ // Get the exact size needed to copy the KV cache of a single sequence
+ LLAMA_API size_t llama_state_seq_get_size(
+ struct llama_context * ctx,
+ llama_seq_id seq_id);
+
+ // Copy the KV cache of a single sequence into the specified buffer
+ LLAMA_API size_t llama_state_seq_get_data(
+ struct llama_context * ctx,
+ uint8_t * dst,
+ llama_seq_id seq_id);
+
+ // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
+ // Returns:
+ // - Positive: Ok
+ // - Zero: Failed to load
+ LLAMA_API size_t llama_state_seq_set_data(
+ struct llama_context * ctx,
+ const uint8_t * src,
+ llama_seq_id dest_seq_id);
+
+ LLAMA_API size_t llama_state_seq_save_file(
+ struct llama_context * ctx,
+ const char * filepath,
+ llama_seq_id seq_id,
+ const llama_token * tokens,
+ size_t n_token_count);
+
+ LLAMA_API size_t llama_state_seq_load_file(
+ struct llama_context * ctx,
+ const char * filepath,
+ llama_seq_id dest_seq_id,
+ llama_token * tokens_out,
+ size_t n_token_capacity,
+ size_t * n_token_count_out);
+
+ //
+ // Decoding
+ //
+
+ // Return batch for single sequence of tokens starting at pos_0
+ //
+ // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
+ //
+ LLAMA_API struct llama_batch llama_batch_get_one(
+ llama_token * tokens,
+ int32_t n_tokens,
+ llama_pos pos_0,
+ llama_seq_id seq_id);
+
+ // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
+ // Each token can be assigned up to n_seq_max sequence ids
+ // The batch has to be freed with llama_batch_free()
+ // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
+ // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
+ // The rest of the llama_batch members are allocated with size n_tokens
+ // All members are left uninitialized
+ LLAMA_API struct llama_batch llama_batch_init(
+ int32_t n_tokens,
+ int32_t embd,
+ int32_t n_seq_max);
+
+ // Frees a batch of tokens allocated with llama_batch_init()
+ LLAMA_API void llama_batch_free(struct llama_batch batch);
+
+ // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
+ // Stores the encoder output internally for later use by the decoder cross-attention layers.
+ // 0 - success
+ // < 0 - error
+ LLAMA_API int32_t llama_encode(
+ struct llama_context * ctx,
+ struct llama_batch batch);
+
+ // Positive return values does not mean a fatal error, but rather a warning.
+ // 0 - success
+ // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
+ // < 0 - error
+ LLAMA_API int32_t llama_decode(
+ struct llama_context * ctx,
+ struct llama_batch batch);
+
+ // Set the number of threads used for decoding
+ // n_threads is the number of threads used for generation (single token)
+ // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
+ LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
+
+ // Get the number of threads used for generation of a single token.
+ LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
+
+ // Get the number of threads used for prompt and batch processing (multiple token).
+ LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
+
+ // Set whether the model is in embeddings mode or not
+ // If true, embeddings will be returned but logits will not
+ LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
+
+ // Set whether to use causal attention or not
+ // If set to true, the model will only attend to the past tokens
+ LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
+
+ // Set abort callback
+ LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
+
+ // Wait until all computations are finished
+ // This is automatically done when using one of the functions below to obtain the computation results
+ // and is not necessary to call it explicitly in most cases
+ LLAMA_API void llama_synchronize(struct llama_context * ctx);
+
+ // Token logits obtained from the last call to llama_decode()
+ // The logits for which llama_batch.logits[i] != 0 are stored contiguously
+ // in the order they have appeared in the batch.
+ // Rows: number of tokens for which llama_batch.logits[i] != 0
+ // Cols: n_vocab
+ LLAMA_API float * llama_get_logits(struct llama_context * ctx);
+
+ // Logits for the ith token. For positive indices, Equivalent to:
+ // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
+ // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
+ // returns NULL for invalid ids.
+ LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
+
+ // Get all output token embeddings.
+ // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
+ // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
+ // in the order they have appeared in the batch.
+ // shape: [n_outputs*n_embd]
+ // Otherwise, returns NULL.
+ LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
+
+ // Get the embeddings for the ith token. For positive indices, Equivalent to:
+ // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
+ // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
+ // shape: [n_embd] (1-dimensional)
+ // returns NULL for invalid ids.
+ LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
+
+ // Get the embeddings for a sequence id
+ // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
+ // shape: [n_embd] (1-dimensional)
+ LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
+
+ //
+ // Vocab
+ //
+
+ LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
+
+ LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
+
+ LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
+
+ // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
+ LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
+
+ // Identify if Token Id is a control token or a render-able token
+ LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
+
+ // Special tokens
+ LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
+ LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
+ LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
+ LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
+ LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
+ LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
+
+ // Returns -1 if unknown, 1 for true or 0 for false.
+ LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
+
+ // Returns -1 if unknown, 1 for true or 0 for false.
+ LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
+
+ // Codellama infill tokens
+ LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
+ LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
+ LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
+ LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
+
+ //
+ // Tokenization
+ //
+
+ /// @details Convert the provided text into tokens.
+ /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
+ /// @return Returns the number of tokens on success, no more than n_tokens_max
+ /// @return Returns a negative number on failure - the number of tokens that would have been returned
+ /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
+ /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
+ /// as plaintext. Does not insert a leading space.
+ LLAMA_API int32_t llama_tokenize(
+ const struct llama_model * model,
+ const char * text,
+ int32_t text_len,
+ llama_token * tokens,
+ int32_t n_tokens_max,
+ bool add_special,
+ bool parse_special);
+
+ // Token Id -> Piece.
+ // Uses the vocabulary in the provided context.
+ // Does not write null terminator to the buffer.
+ // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
+ // @param special If true, special tokens are rendered in the output.
+ LLAMA_API int32_t llama_token_to_piece(
+ const struct llama_model * model,
+ llama_token token,
+ char * buf,
+ int32_t length,
+ int32_t lstrip,
+ bool special);
+
+ /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
+ /// @param text The char pointer must be large enough to hold the resulting text.
+ /// @return Returns the number of chars/bytes on success, no more than text_len_max.
+ /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
+ /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
+ /// @param unparse_special If true, special tokens are rendered in the output.
+ LLAMA_API int32_t llama_detokenize(
+ const struct llama_model * model,
+ const llama_token * tokens,
+ int32_t n_tokens,
+ char * text,
+ int32_t text_len_max,
+ bool remove_special,
+ bool unparse_special);
+
+ //
+ // Chat templates
+ //
+
+ /// Apply chat template. Inspired by hf apply_chat_template() on python.
+ /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
+ /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
+ /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
+ /// @param chat Pointer to a list of multiple llama_chat_message
+ /// @param n_msg Number of llama_chat_message in this chat
+ /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
+ /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
+ /// @param length The size of the allocated buffer
+ /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
+ LLAMA_API int32_t llama_chat_apply_template(
+ const struct llama_model * model,
+ const char * tmpl,
+ const struct llama_chat_message * chat,
+ size_t n_msg,
+ bool add_ass,
+ char * buf,
+ int32_t length);
+
+ //
+ // Grammar
+ //
+
+ /// Initialize a llama_grammar.
+ ///
+ /// @param rules The rule elements of the grammar to initialize.
+ /// @param n_rules The number of rules.
+ /// @param start_rule_index The index of the root rule (the starting point of the grammar).
+ /// @return The initialized llama_grammar or nullptr if initialization failed.
+ LLAMA_API struct llama_grammar * llama_grammar_init(
+ const llama_grammar_element ** rules,
+ size_t n_rules,
+ size_t start_rule_index);
+
+ LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
+
+ LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
+
+ /// @details Apply constraints from grammar
+ LLAMA_API void llama_grammar_sample(
+ const struct llama_grammar * grammar,
+ const struct llama_context * ctx,
+ llama_token_data_array * candidates);
+ LLAMA_API DEPRECATED(void llama_sample_grammar(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ const struct llama_grammar * grammar),
+ "use llama_grammar_sample instead");
+
+ /// @details Accepts the sampled token into the grammar
+ LLAMA_API void llama_grammar_accept_token(
+ struct llama_grammar * grammar,
+ struct llama_context * ctx,
+ llama_token token);
+
+ //
+ // Sampling functions
+ //
+
+ // Sets the current rng seed.
+ LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
+
+ /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
+ /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
+ LLAMA_API void llama_sample_repetition_penalties(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ const llama_token * last_tokens,
+ size_t penalty_last_n,
+ float penalty_repeat,
+ float penalty_freq,
+ float penalty_present);
+
+ /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
+ /// @param logits Logits extracted from the original generation context.
+ /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
+ /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
+ LLAMA_API void llama_sample_apply_guidance(
+ struct llama_context * ctx,
+ float * logits,
+ float * logits_guidance,
+ float scale);
+
+ /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
+ LLAMA_API void llama_sample_softmax(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates);
+
+ /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
+ LLAMA_API void llama_sample_top_k(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ int32_t k,
+ size_t min_keep);
+
+ /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
+ LLAMA_API void llama_sample_top_p(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ float p,
+ size_t min_keep);
+
+ /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
+ LLAMA_API void llama_sample_min_p(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ float p,
+ size_t min_keep);
+
+ /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
+ LLAMA_API void llama_sample_tail_free(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ float z,
+ size_t min_keep);
+
+ /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
+ LLAMA_API void llama_sample_typical(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ float p,
+ size_t min_keep);
+
+ /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
+ LLAMA_API void llama_sample_entropy(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates_p,
+ float min_temp,
+ float max_temp,
+ float exponent_val);
+
+ LLAMA_API void llama_sample_temp(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ float temp);
+
+ /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
+ /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
+ /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
+ /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
+ /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
+ /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
+ LLAMA_API llama_token llama_sample_token_mirostat(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ float tau,
+ float eta,
+ int32_t m,
+ float * mu);
+
+ /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
+ /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
+ /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
+ /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
+ /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
+ LLAMA_API llama_token llama_sample_token_mirostat_v2(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ float tau,
+ float eta,
+ float * mu);
+
+ /// @details Selects the token with the highest probability.
+ /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
+ LLAMA_API llama_token llama_sample_token_greedy(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates);
+
+ /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
+ LLAMA_API llama_token llama_sample_token(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates);
+
+ //
+ // Model split
+ //
+
+ /// @details Build a split GGUF final path for this chunk.
+ /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
+ // Returns the split_path length.
+ LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
+
+ /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
+ /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
+ // Returns the split_prefix length.
+ LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
+
+ // Performance information
+ LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
+
+ LLAMA_API void llama_print_timings(struct llama_context * ctx);
+ LLAMA_API void llama_reset_timings(struct llama_context * ctx);
+
+ // Print system information
+ LLAMA_API const char * llama_print_system_info(void);
+
+ // Set callback for all future logging events.
+ // If this is not called, or NULL is supplied, everything is output on stderr.
+ LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
+
+ LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
+
+#ifdef __cplusplus
+}
+#endif
+
+// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
+#ifdef LLAMA_API_INTERNAL
+
+#include <random>
+#include <string>
+#include <vector>
+
+struct ggml_tensor;
+
+const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
+ struct llama_context * ctx
+);
+
+struct llama_partial_utf8 {
+ uint32_t value; // bit value so far (unshifted)
+ int n_remain; // num bytes remaining; -1 indicates invalid sequence
+};
+
+struct llama_grammar_candidate {
+ size_t index;
+ const uint32_t * code_points;
+ llama_partial_utf8 partial_utf8;
+};
+
+using llama_grammar_rule = std::vector< llama_grammar_element>;
+using llama_grammar_stack = std::vector<const llama_grammar_element *>;
+
+using llama_grammar_rules = std::vector<llama_grammar_rule>;
+using llama_grammar_stacks = std::vector<llama_grammar_stack>;
+using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
+
+const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
+ llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
+
+void llama_grammar_accept(
+ const llama_grammar_rules & rules,
+ const llama_grammar_stacks & stacks,
+ const uint32_t chr,
+ llama_grammar_stacks & new_stacks);
+
+std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
+ const llama_grammar_rules & rules,
+ const llama_grammar_stack & stack,
+ const llama_grammar_candidates & candidates);
+
+std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
+ const std::string & src,
+ llama_partial_utf8 partial_start);
+
+// Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
+// This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
+llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
+
+#endif // LLAMA_API_INTERNAL
+
+#endif // LLAMA_H