summaryrefslogtreecommitdiff
path: root/iqk_mul_mat.cpp
diff options
context:
space:
mode:
authorIwan Kawrakow <iwan.kawrakow@gmail.com>2024-06-25 11:32:48 +0300
committerIwan Kawrakow <iwan.kawrakow@gmail.com>2024-06-25 11:32:48 +0300
commitaa14a06b44ff12be7e4461a6e169a657275a5b20 (patch)
treec0ab2e1cd51a778594f0dd226d3e54c102c81b39 /iqk_mul_mat.cpp
parentcc44d4a5c3368801f1de0d68096619a6746d47a4 (diff)
Bitnet: trying an alternative iq1_bn grid
Faster on CUDA. The scalar version is faster too. The issue with CUDA is that now I see wild performance fluctuations. Running llama-bench I can get 220 t/s for TG-128 one time, and 190 t/s another time, with uncertaintiers of 1-2 t/s. Same for PP, results are jumping back-and-fort between ~9500 t/s and ~8900 t/s. So, basically no reliable measurement at this point, but for sure faster than the previous version, which was at around 170-180 t/s.
Diffstat (limited to 'iqk_mul_mat.cpp')
-rw-r--r--iqk_mul_mat.cpp1
1 files changed, 1 insertions, 0 deletions
diff --git a/iqk_mul_mat.cpp b/iqk_mul_mat.cpp
index 1e195ec2..907b0d19 100644
--- a/iqk_mul_mat.cpp
+++ b/iqk_mul_mat.cpp
@@ -2788,6 +2788,7 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) {
MulMat::set_functions<DequantizerIQ2XXS>(mm);
break;
case GGML_TYPE_IQ1_BN:
+ return false;
assert (ne00 % QK_IQ1BN == 0);
mm.funcs[0] = mul_mat_iq1bn_q8_K64<1>;
mm.funcs[1] = mul_mat_iq1bn_q8_K64<2>;