summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
authorslaren <slarengh@gmail.com>2024-04-26 18:39:58 +0200
committerGitHub <noreply@github.com>2024-04-26 18:39:58 +0200
commit017e6999b5184234370b22a2f868e1be911e8d88 (patch)
tree2a29b4d5bf7cfc6965ce895abee9e889b6529ade /llama.cpp
parente2764cd7ca1112d9303eba9e81c9935ee67352ff (diff)
add basic tensor data validation function (#6884)
* add basic tensor data validation function * add --check-tensors command line argument tensor validation is disabled by default and can be enabled by adding `--check-tensors` to the command line arguments. quantize always validates tensors.
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp90
1 files changed, 74 insertions, 16 deletions
diff --git a/llama.cpp b/llama.cpp
index d728bd49..e5e64001 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -75,6 +75,7 @@
#include <forward_list>
#include <fstream>
#include <functional>
+#include <future>
#include <initializer_list>
#include <locale>
#include <map>
@@ -2985,6 +2986,7 @@ struct llama_model_loader {
size_t n_bytes = 0;
bool use_mmap = false;
+ bool check_tensors;
llama_files files;
llama_ftype ftype;
@@ -3018,7 +3020,7 @@ struct llama_model_loader {
std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
- llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
+ llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
int trace = 0;
if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE"));
@@ -3223,6 +3225,7 @@ struct llama_model_loader {
}
this->use_mmap = use_mmap;
+ this->check_tensors = check_tensors;
}
~llama_model_loader() {
@@ -3481,6 +3484,10 @@ struct llama_model_loader {
file->seek(w.offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur));
}
+
+ if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
+ throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
+ }
}
size_t size_done = 0;
@@ -3497,6 +3504,8 @@ struct llama_model_loader {
GGML_ASSERT(size_data != 0 && "call init_mappings() first");
std::vector<no_init<uint8_t>> read_buf;
+ std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
+
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur));
if (weight == nullptr) {
@@ -3518,37 +3527,66 @@ struct llama_model_loader {
if (bufs_mmap.count(weight->idx)) {
buf_mmap = bufs_mmap.at(weight->idx);
}
+ uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
+
+ if (check_tensors) {
+ validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
+ return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
+ }));
+ }
+
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
if (buf_mmap && cur->data == nullptr) {
- ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
+ ggml_backend_tensor_alloc(buf_mmap, cur, data);
if (lmlocks) {
const auto & lmlock = lmlocks->at(weight->idx);
- lmlock->grow_to(weight->offs + ggml_nbytes(cur));
+ lmlock->grow_to(weight->offs + n_size);
}
auto & mmap_used = mmaps_used[weight->idx];
mmap_used.first = std::min(mmap_used.first, weight->offs);
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
} else {
- ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
+ ggml_backend_tensor_set(cur, data, 0, n_size);
}
} else {
GGML_ASSERT(weight->idx < files.size());
const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
file->seek(weight->offs, SEEK_SET);
- file->read_raw(cur->data, ggml_nbytes(cur));
+ file->read_raw(cur->data, n_size);
+ if (check_tensors) {
+ validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
+ return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
+ }));
+ }
} else {
- read_buf.resize(ggml_nbytes(cur));
+ read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
- file->read_raw(read_buf.data(), ggml_nbytes(cur));
+ file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
+ if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
+ throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
+ }
}
}
size_done += n_size;
}
+ // check validation results
+ bool validation_failed = false;
+ for (auto & future : validation_result) {
+ auto result = future.get();
+ if (!result.second) {
+ LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
+ validation_failed = true;
+ }
+ }
+ if (validation_failed) {
+ throw std::runtime_error("found tensors with invalid data");
+ }
+
// check if this is the last call and do final cleanup
if (size_done >= size_data) {
// unmap offloaded tensors and metadata
@@ -5975,7 +6013,7 @@ static bool llm_load_tensors(
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
try {
- llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
+ llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
model.hparams.vocab_only = params.vocab_only;
@@ -14360,14 +14398,20 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
}
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
- std::mutex mutex;
- int64_t counter = 0;
- size_t new_size = 0;
if (nthread < 2) {
// single-thread
- return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
+ size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
+ if (!ggml_validate_row_data(new_type, new_data, new_size)) {
+ throw std::runtime_error("quantized data validation failed");
+ }
+ return new_size;
}
- auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
+
+ std::mutex mutex;
+ int64_t counter = 0;
+ size_t new_size = 0;
+ bool valid = true;
+ auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() {
const int64_t nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0;
@@ -14382,7 +14426,17 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
}
lock.unlock();
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
- local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
+ size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
+ local_size += this_size;
+
+ // validate the quantized data
+ const size_t row_size = ggml_row_size(new_type, n_per_row);
+ void * this_data = (char *) new_data + first_row * row_size;
+ if (!ggml_validate_row_data(new_type, this_data, this_size)) {
+ std::unique_lock<std::mutex> lock(mutex);
+ valid = false;
+ break;
+ }
}
};
for (int it = 0; it < nthread - 1; ++it) {
@@ -14391,6 +14445,9 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
+ if (!valid) {
+ throw std::runtime_error("quantized data validation failed");
+ }
return new_size;
}
@@ -14453,7 +14510,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
- llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
+ llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
ml.init_mappings(false); // no prefetching
llama_model model;
@@ -14814,7 +14871,7 @@ static int llama_apply_lora_from_file_internal(
std::unique_ptr<llama_model_loader> ml;
if (path_base_model) {
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
- ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
+ ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
ml->init_mappings(/*prefetch*/ false); // no prefetching
}
@@ -15073,6 +15130,7 @@ struct llama_model_params llama_model_default_params() {
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
+ /*.check_tensors =*/ false,
};
#ifdef GGML_USE_METAL