diff options
author | slaren <slarengh@gmail.com> | 2024-04-26 18:39:58 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-04-26 18:39:58 +0200 |
commit | 017e6999b5184234370b22a2f868e1be911e8d88 (patch) | |
tree | 2a29b4d5bf7cfc6965ce895abee9e889b6529ade /llama.cpp | |
parent | e2764cd7ca1112d9303eba9e81c9935ee67352ff (diff) |
add basic tensor data validation function (#6884)
* add basic tensor data validation function
* add --check-tensors command line argument
tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.
quantize always validates tensors.
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 90 |
1 files changed, 74 insertions, 16 deletions
@@ -75,6 +75,7 @@ #include <forward_list> #include <fstream> #include <functional> +#include <future> #include <initializer_list> #include <locale> #include <map> @@ -2985,6 +2986,7 @@ struct llama_model_loader { size_t n_bytes = 0; bool use_mmap = false; + bool check_tensors; llama_files files; llama_ftype ftype; @@ -3018,7 +3020,7 @@ struct llama_model_loader { std::string arch_name; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); - llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) { + llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) { int trace = 0; if (getenv("LLAMA_TRACE")) { trace = atoi(getenv("LLAMA_TRACE")); @@ -3223,6 +3225,7 @@ struct llama_model_loader { } this->use_mmap = use_mmap; + this->check_tensors = check_tensors; } ~llama_model_loader() { @@ -3481,6 +3484,10 @@ struct llama_model_loader { file->seek(w.offs, SEEK_SET); file->read_raw(cur->data, ggml_nbytes(cur)); } + + if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) { + throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); + } } size_t size_done = 0; @@ -3497,6 +3504,8 @@ struct llama_model_loader { GGML_ASSERT(size_data != 0 && "call init_mappings() first"); std::vector<no_init<uint8_t>> read_buf; + std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result; + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { const auto * weight = get_weight(ggml_get_name(cur)); if (weight == nullptr) { @@ -3518,37 +3527,66 @@ struct llama_model_loader { if (bufs_mmap.count(weight->idx)) { buf_mmap = bufs_mmap.at(weight->idx); } + uint8_t * data = (uint8_t *) mapping->addr + weight->offs; + + if (check_tensors) { + validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { + return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size)); + })); + } + GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated if (buf_mmap && cur->data == nullptr) { - ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs); + ggml_backend_tensor_alloc(buf_mmap, cur, data); if (lmlocks) { const auto & lmlock = lmlocks->at(weight->idx); - lmlock->grow_to(weight->offs + ggml_nbytes(cur)); + lmlock->grow_to(weight->offs + n_size); } auto & mmap_used = mmaps_used[weight->idx]; mmap_used.first = std::min(mmap_used.first, weight->offs); mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); } else { - ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size); + ggml_backend_tensor_set(cur, data, 0, n_size); } } else { GGML_ASSERT(weight->idx < files.size()); const auto & file = files.at(weight->idx); if (ggml_backend_buffer_is_host(cur->buffer)) { file->seek(weight->offs, SEEK_SET); - file->read_raw(cur->data, ggml_nbytes(cur)); + file->read_raw(cur->data, n_size); + if (check_tensors) { + validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { + return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); + })); + } } else { - read_buf.resize(ggml_nbytes(cur)); + read_buf.resize(n_size); file->seek(weight->offs, SEEK_SET); - file->read_raw(read_buf.data(), ggml_nbytes(cur)); + file->read_raw(read_buf.data(), n_size); ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); + if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { + throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); + } } } size_done += n_size; } + // check validation results + bool validation_failed = false; + for (auto & future : validation_result) { + auto result = future.get(); + if (!result.second) { + LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first)); + validation_failed = true; + } + } + if (validation_failed) { + throw std::runtime_error("found tensors with invalid data"); + } + // check if this is the last call and do final cleanup if (size_done >= size_data) { // unmap offloaded tensors and metadata @@ -5975,7 +6013,7 @@ static bool llm_load_tensors( // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) { try { - llama_model_loader ml(fname, params.use_mmap, params.kv_overrides); + llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides); model.hparams.vocab_only = params.vocab_only; @@ -14360,14 +14398,20 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) { - std::mutex mutex; - int64_t counter = 0; - size_t new_size = 0; if (nthread < 2) { // single-thread - return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); + size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); + if (!ggml_validate_row_data(new_type, new_data, new_size)) { + throw std::runtime_error("quantized data validation failed"); + } + return new_size; } - auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size, + + std::mutex mutex; + int64_t counter = 0; + size_t new_size = 0; + bool valid = true; + auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix]() { const int64_t nrows_per_chunk = chunk_size / n_per_row; size_t local_size = 0; @@ -14382,7 +14426,17 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa } lock.unlock(); const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk); - local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); + size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); + local_size += this_size; + + // validate the quantized data + const size_t row_size = ggml_row_size(new_type, n_per_row); + void * this_data = (char *) new_data + first_row * row_size; + if (!ggml_validate_row_data(new_type, this_data, this_size)) { + std::unique_lock<std::mutex> lock(mutex); + valid = false; + break; + } } }; for (int it = 0; it < nthread - 1; ++it) { @@ -14391,6 +14445,9 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa compute(); for (auto & w : workers) { w.join(); } workers.clear(); + if (!valid) { + throw std::runtime_error("quantized data validation failed"); + } return new_size; } @@ -14453,7 +14510,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides; kv_overrides = v->data(); } - llama_model_loader ml(fname_inp, use_mmap, kv_overrides); + llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides); ml.init_mappings(false); // no prefetching llama_model model; @@ -14814,7 +14871,7 @@ static int llama_apply_lora_from_file_internal( std::unique_ptr<llama_model_loader> ml; if (path_base_model) { LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); - ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr)); + ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr)); ml->init_mappings(/*prefetch*/ false); // no prefetching } @@ -15073,6 +15130,7 @@ struct llama_model_params llama_model_default_params() { /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, + /*.check_tensors =*/ false, }; #ifdef GGML_USE_METAL |