summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
authorCausalLM <148736309+CausalLM@users.noreply.github.com>2023-12-02 02:17:06 +0800
committerGitHub <noreply@github.com>2023-12-01 20:17:06 +0200
commit03562f3a86d6706eea9f4fc09b532946c191b34e (patch)
tree709378616d9e23c4fb098dc61c7659b32e8740a4 /llama.cpp
parent37c746d687d877bc11803e96b4dc5f378b83c0a0 (diff)
llama : support attention bias on LLaMA architecture (#4283)
* Support attention_bias on LLaMA architecture QKVO bias, should fix InternLM (https://github.com/ggerganov/llama.cpp/issues/3133) and works for LLaMAfied Qwen models (https://github.com/ggerganov/llama.cpp/pull/3743#issuecomment-1825923608). * check existence of qkvo bias while loading llama models Tested on LLaMA2, CUDA and CPU. * Update llama.cpp
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp52
1 files changed, 48 insertions, 4 deletions
diff --git a/llama.cpp b/llama.cpp
index ca21cffa..15e52ad3 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -1266,6 +1266,9 @@ struct llama_layer {
struct ggml_tensor * wqkv;
// attention bias
+ struct ggml_tensor * bq;
+ struct ggml_tensor * bk;
+ struct ggml_tensor * bv;
struct ggml_tensor * bo;
struct ggml_tensor * bqkv;
@@ -2809,6 +2812,30 @@ static void llm_load_tensors(
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
+ try {
+ layer.bq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, backend);
+ } catch (const std::runtime_error& e) {
+ if (std::string(e.what()).find("not found") != std::string::npos) layer.bq = NULL; else throw;
+ }
+
+ try {
+ layer.bk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, backend);
+ } catch (const std::runtime_error& e) {
+ if (std::string(e.what()).find("not found") != std::string::npos) layer.bk = NULL; else throw;
+ }
+
+ try {
+ layer.bv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, backend);
+ } catch (const std::runtime_error& e) {
+ if (std::string(e.what()).find("not found") != std::string::npos) layer.bv = NULL; else throw;
+ }
+
+ try {
+ layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
+ } catch (const std::runtime_error& e) {
+ if (std::string(e.what()).find("not found") != std::string::npos) layer.bo = NULL; else throw;
+ }
+
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
@@ -2817,9 +2844,14 @@ static void llm_load_tensors(
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
- ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
- ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
- ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
+ ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
+ ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) +
+ (layer.bq ? ggml_nbytes(layer.bq) : 0) +
+ (layer.bk ? ggml_nbytes(layer.bk) : 0) +
+ (layer.bv ? ggml_nbytes(layer.bv) : 0) +
+ (layer.bo ? ggml_nbytes(layer.bo) : 0) +
+ ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_gate) +
+ ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
}
}
} break;
@@ -3983,12 +4015,24 @@ struct llm_build_context {
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
@@ -4007,7 +4051,7 @@ struct llm_build_context {
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
cur = llm_build_kqv(ctx0, hparams, kv_self,
- model.layers[il].wo, NULL,
+ model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
cb(cur, "kqv_out", il);
}