diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /llama.cpp | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 19340 |
1 files changed, 0 insertions, 19340 deletions
diff --git a/llama.cpp b/llama.cpp deleted file mode 100644 index 169f7d68..00000000 --- a/llama.cpp +++ /dev/null @@ -1,19340 +0,0 @@ -#define LLAMA_API_INTERNAL -#include "llama.h" - -#include "unicode.h" - -#include "ggml.h" -#include "ggml-alloc.h" -#include "ggml-backend.h" - -#ifdef GGML_USE_RPC -# include "ggml-rpc.h" -#endif - -#ifdef GGML_USE_CUDA -# include "ggml-cuda.h" -#elif defined(GGML_USE_VULKAN) -# include "ggml-vulkan.h" -#elif defined(GGML_USE_SYCL) -# include "ggml-sycl.h" -#elif defined(GGML_USE_KOMPUTE) -# include "ggml-kompute.h" -#endif - -#ifdef GGML_USE_BLAS -# include "ggml-blas.h" -#endif - -#ifdef GGML_USE_METAL -# include "ggml-metal.h" -#endif - -// TODO: replace with ggml API call -#define QK_K 256 -#define QK_IQ1BN 64 - -#ifdef __has_include - #if __has_include(<unistd.h>) - #include <unistd.h> - #if defined(_POSIX_MAPPED_FILES) - #include <sys/mman.h> - #include <fcntl.h> - #endif - #if defined(_POSIX_MEMLOCK_RANGE) - #include <sys/resource.h> - #endif - #endif -#endif - -#if defined(_WIN32) - #define WIN32_LEAN_AND_MEAN - #ifndef NOMINMAX - #define NOMINMAX - #endif - #include <windows.h> - #ifndef PATH_MAX - #define PATH_MAX MAX_PATH - #endif - #include <io.h> -#endif - -#include <algorithm> -#include <array> -#include <cassert> -#include <cctype> -#include <cfloat> -#include <cinttypes> -#include <climits> -#include <cmath> -#include <cstdarg> -#include <cstddef> -#include <cstdint> -#include <cstdio> -#include <cstring> -#include <ctime> -#include <forward_list> -#include <fstream> -#include <functional> -#include <future> -#include <initializer_list> -#include <locale> -#include <map> -#include <memory> -#include <mutex> -#include <numeric> -#include <queue> -#include <random> -#include <regex> -#include <set> -#include <sstream> -#include <thread> -#include <type_traits> -#include <unordered_map> - -#if defined(_MSC_VER) -#pragma warning(disable: 4244 4267) // possible loss of data -#endif - -#ifdef __GNUC__ -#ifdef __MINGW32__ -#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) -#else -#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) -#endif -#else -#define LLAMA_ATTRIBUTE_FORMAT(...) -#endif - -#define LLAMA_MAX_NODES 8192 -#define LLAMA_MAX_EXPERTS 160 - -// -// logging -// - -LLAMA_ATTRIBUTE_FORMAT(2, 3) -static void llama_log_internal (ggml_log_level level, const char * format, ...); -static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data); - -#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) -#define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) -#define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) - -// -// helpers -// - -static size_t utf8_len(char src) { - const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; - uint8_t highbits = static_cast<uint8_t>(src) >> 4; - return lookup[highbits]; -} - -static void replace_all(std::string & s, const std::string & search, const std::string & replace) { - std::string result; - for (size_t pos = 0; ; pos += search.length()) { - auto new_pos = s.find(search, pos); - if (new_pos == std::string::npos) { - result += s.substr(pos, s.size() - pos); - break; - } - result += s.substr(pos, new_pos - pos) + replace; - pos = new_pos; - } - s = std::move(result); -} - -static bool is_float_close(float a, float b, float abs_tol) { - // Check for non-negative tolerance - if (abs_tol < 0.0) { - throw std::invalid_argument("Tolerance must be non-negative"); - } - - // Exact equality check - if (a == b) { - return true; - } - - // Check for infinities - if (std::isinf(a) || std::isinf(b)) { - return false; - } - - // Regular comparison using the provided absolute tolerance - return std::fabs(b - a) <= abs_tol; -} - -static void zeros(std::ofstream & file, size_t n) { - char zero = 0; - for (size_t i = 0; i < n; ++i) { - file.write(&zero, 1); - } -} - -LLAMA_ATTRIBUTE_FORMAT(1, 2) -static std::string format(const char * fmt, ...) { - va_list ap; - va_list ap2; - va_start(ap, fmt); - va_copy(ap2, ap); - int size = vsnprintf(NULL, 0, fmt, ap); - GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT - std::vector<char> buf(size + 1); - int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); - GGML_ASSERT(size2 == size); - va_end(ap2); - va_end(ap); - return std::string(buf.data(), size); -} - -// -// gguf constants (sync with gguf.py) -// - -enum llm_arch { - LLM_ARCH_LLAMA, - LLM_ARCH_FALCON, - LLM_ARCH_BAICHUAN, - LLM_ARCH_GROK, - LLM_ARCH_GPT2, - LLM_ARCH_GPTJ, - LLM_ARCH_GPTNEOX, - LLM_ARCH_MPT, - LLM_ARCH_STARCODER, - LLM_ARCH_REFACT, - LLM_ARCH_BERT, - LLM_ARCH_NOMIC_BERT, - LLM_ARCH_JINA_BERT_V2, - LLM_ARCH_BLOOM, - LLM_ARCH_STABLELM, - LLM_ARCH_QWEN, - LLM_ARCH_QWEN2, - LLM_ARCH_QWEN2MOE, - LLM_ARCH_PHI2, - LLM_ARCH_PHI3, - LLM_ARCH_PLAMO, - LLM_ARCH_CODESHELL, - LLM_ARCH_ORION, - LLM_ARCH_INTERNLM2, - LLM_ARCH_MINICPM, - LLM_ARCH_GEMMA, - LLM_ARCH_STARCODER2, - LLM_ARCH_MAMBA, - LLM_ARCH_XVERSE, - LLM_ARCH_COMMAND_R, - LLM_ARCH_DBRX, - LLM_ARCH_OLMO, - LLM_ARCH_ARCTIC, - LLM_ARCH_DEEPSEEK2, - LLM_ARCH_BITNET, - LLM_ARCH_UNKNOWN, -}; - -static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { - { LLM_ARCH_LLAMA, "llama" }, - { LLM_ARCH_FALCON, "falcon" }, - { LLM_ARCH_GROK, "grok" }, - { LLM_ARCH_GPT2, "gpt2" }, - { LLM_ARCH_GPTJ, "gptj" }, - { LLM_ARCH_GPTNEOX, "gptneox" }, - { LLM_ARCH_MPT, "mpt" }, - { LLM_ARCH_BAICHUAN, "baichuan" }, - { LLM_ARCH_STARCODER, "starcoder" }, - { LLM_ARCH_REFACT, "refact" }, - { LLM_ARCH_BERT, "bert" }, - { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, - { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" }, - { LLM_ARCH_BLOOM, "bloom" }, - { LLM_ARCH_STABLELM, "stablelm" }, - { LLM_ARCH_QWEN, "qwen" }, - { LLM_ARCH_QWEN2, "qwen2" }, - { LLM_ARCH_QWEN2MOE, "qwen2moe" }, - { LLM_ARCH_PHI2, "phi2" }, - { LLM_ARCH_PHI3, "phi3" }, - { LLM_ARCH_PLAMO, "plamo" }, - { LLM_ARCH_CODESHELL, "codeshell" }, - { LLM_ARCH_ORION, "orion" }, - { LLM_ARCH_INTERNLM2, "internlm2" }, - { LLM_ARCH_MINICPM, "minicpm" }, - { LLM_ARCH_GEMMA, "gemma" }, - { LLM_ARCH_STARCODER2, "starcoder2" }, - { LLM_ARCH_MAMBA, "mamba" }, - { LLM_ARCH_XVERSE, "xverse" }, - { LLM_ARCH_COMMAND_R, "command-r" }, - { LLM_ARCH_DBRX, "dbrx" }, - { LLM_ARCH_OLMO, "olmo" }, - { LLM_ARCH_ARCTIC, "arctic" }, - { LLM_ARCH_DEEPSEEK2, "deepseek2" }, - { LLM_ARCH_BITNET, "bitnet" }, - { LLM_ARCH_UNKNOWN, "(unknown)" }, -}; - -enum llm_kv { - LLM_KV_GENERAL_ARCHITECTURE, - LLM_KV_GENERAL_QUANTIZATION_VERSION, - LLM_KV_GENERAL_ALIGNMENT, - LLM_KV_GENERAL_NAME, - LLM_KV_GENERAL_AUTHOR, - LLM_KV_GENERAL_VERSION, - LLM_KV_GENERAL_URL, - LLM_KV_GENERAL_DESCRIPTION, - LLM_KV_GENERAL_LICENSE, - LLM_KV_GENERAL_SOURCE_URL, - LLM_KV_GENERAL_SOURCE_HF_REPO, - - LLM_KV_VOCAB_SIZE, - LLM_KV_CONTEXT_LENGTH, - LLM_KV_EMBEDDING_LENGTH, - LLM_KV_BLOCK_COUNT, - LLM_KV_LEADING_DENSE_BLOCK_COUNT, - LLM_KV_FEED_FORWARD_LENGTH, - LLM_KV_EXPERT_FEED_FORWARD_LENGTH, - LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, - LLM_KV_USE_PARALLEL_RESIDUAL, - LLM_KV_TENSOR_DATA_LAYOUT, - LLM_KV_EXPERT_COUNT, - LLM_KV_EXPERT_USED_COUNT, - LLM_KV_EXPERT_SHARED_COUNT, - LLM_KV_EXPERT_WEIGHTS_SCALE, - LLM_KV_POOLING_TYPE, - LLM_KV_LOGIT_SCALE, - - LLM_KV_ATTENTION_HEAD_COUNT, - LLM_KV_ATTENTION_HEAD_COUNT_KV, - LLM_KV_ATTENTION_MAX_ALIBI_BIAS, - LLM_KV_ATTENTION_CLAMP_KQV, - LLM_KV_ATTENTION_KEY_LENGTH, - LLM_KV_ATTENTION_VALUE_LENGTH, - LLM_KV_ATTENTION_LAYERNORM_EPS, - LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, - LLM_KV_ATTENTION_CAUSAL, - LLM_KV_ATTENTION_Q_LORA_RANK, - LLM_KV_ATTENTION_KV_LORA_RANK, - - LLM_KV_ROPE_DIMENSION_COUNT, - LLM_KV_ROPE_FREQ_BASE, - LLM_KV_ROPE_SCALE_LINEAR, - LLM_KV_ROPE_SCALING_TYPE, - LLM_KV_ROPE_SCALING_FACTOR, - LLM_KV_ROPE_SCALING_ATTN_FACTOR, - LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, - LLM_KV_ROPE_SCALING_FINETUNED, - LLM_KV_ROPE_SCALING_YARN_LOG_MUL, - - LLM_KV_SPLIT_NO, - LLM_KV_SPLIT_COUNT, - LLM_KV_SPLIT_TENSORS_COUNT, - - LLM_KV_SSM_INNER_SIZE, - LLM_KV_SSM_CONV_KERNEL, - LLM_KV_SSM_STATE_SIZE, - LLM_KV_SSM_TIME_STEP_RANK, - - LLM_KV_TOKENIZER_MODEL, - LLM_KV_TOKENIZER_PRE, - LLM_KV_TOKENIZER_LIST, - LLM_KV_TOKENIZER_TOKEN_TYPE, - LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, - LLM_KV_TOKENIZER_SCORES, - LLM_KV_TOKENIZER_MERGES, - LLM_KV_TOKENIZER_BOS_ID, - LLM_KV_TOKENIZER_EOS_ID, - LLM_KV_TOKENIZER_UNK_ID, - LLM_KV_TOKENIZER_SEP_ID, - LLM_KV_TOKENIZER_PAD_ID, - LLM_KV_TOKENIZER_CLS_ID, - LLM_KV_TOKENIZER_MASK_ID, - LLM_KV_TOKENIZER_ADD_BOS, - LLM_KV_TOKENIZER_ADD_EOS, - LLM_KV_TOKENIZER_ADD_PREFIX, - LLM_KV_TOKENIZER_HF_JSON, - LLM_KV_TOKENIZER_RWKV, - LLM_KV_TOKENIZER_PREFIX_ID, - LLM_KV_TOKENIZER_SUFFIX_ID, - LLM_KV_TOKENIZER_MIDDLE_ID, - LLM_KV_TOKENIZER_EOT_ID, -}; - -static const std::map<llm_kv, const char *> LLM_KV_NAMES = { - { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, - { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, - { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, - { LLM_KV_GENERAL_NAME, "general.name" }, - { LLM_KV_GENERAL_AUTHOR, "general.author" }, - { LLM_KV_GENERAL_VERSION, "general.version" }, - { LLM_KV_GENERAL_URL, "general.url" }, - { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, - { LLM_KV_GENERAL_LICENSE, "general.license" }, - { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, - { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, - - { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, - { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, - { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, - { LLM_KV_BLOCK_COUNT, "%s.block_count" }, - { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" }, - { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, - { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" }, - { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" }, - { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, - { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, - { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, - { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, - { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, - { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, - { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, - { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, - - { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, - { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, - { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, - { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, - { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" }, - { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, - { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, - { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, - { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, - { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" }, - { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, - - { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, - { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, - { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, - { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, - { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, - { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, - { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, - { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, - { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, - - { LLM_KV_SPLIT_NO, "split.no" }, - { LLM_KV_SPLIT_COUNT, "split.count" }, - { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" }, - - { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" }, - { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" }, - { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" }, - { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, - - { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, - { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, - { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, - { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, - { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" }, - { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" }, - { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" }, - { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" }, - { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" }, - { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, - { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, - { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, - { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" }, - { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" }, - { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" }, - { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" }, - { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" }, - { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, - { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, - { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" }, - { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" }, - { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" }, - { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" }, -}; - -struct LLM_KV { - LLM_KV(llm_arch arch) : arch(arch) {} - - llm_arch arch; - - std::string operator()(llm_kv kv) const { - return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); - } -}; - -enum llm_tensor { - LLM_TENSOR_TOKEN_EMBD, - LLM_TENSOR_TOKEN_EMBD_NORM, - LLM_TENSOR_TOKEN_TYPES, - LLM_TENSOR_POS_EMBD, - LLM_TENSOR_OUTPUT, - LLM_TENSOR_OUTPUT_NORM, - LLM_TENSOR_ROPE_FREQS, - LLM_TENSOR_ROPE_FACTORS_LONG, - LLM_TENSOR_ROPE_FACTORS_SHORT, - LLM_TENSOR_ATTN_Q, - LLM_TENSOR_ATTN_K, - LLM_TENSOR_ATTN_V, - LLM_TENSOR_ATTN_QKV, - LLM_TENSOR_ATTN_OUT, - LLM_TENSOR_ATTN_NORM, - LLM_TENSOR_ATTN_NORM_2, - LLM_TENSOR_ATTN_OUT_NORM, - LLM_TENSOR_ATTN_ROT_EMBD, - LLM_TENSOR_FFN_GATE_INP, - LLM_TENSOR_FFN_GATE_INP_SHEXP, - LLM_TENSOR_FFN_NORM, - LLM_TENSOR_FFN_GATE, - LLM_TENSOR_FFN_DOWN, - LLM_TENSOR_FFN_UP, - LLM_TENSOR_FFN_ACT, - LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility - LLM_TENSOR_FFN_GATE_EXP, - LLM_TENSOR_FFN_UP_EXP, - LLM_TENSOR_FFN_NORM_EXPS, - LLM_TENSOR_FFN_DOWN_EXPS, // merged experts - LLM_TENSOR_FFN_GATE_EXPS, - LLM_TENSOR_FFN_UP_EXPS, - LLM_TENSOR_FFN_DOWN_SHEXP, - LLM_TENSOR_FFN_GATE_SHEXP, - LLM_TENSOR_FFN_UP_SHEXP, - LLM_TENSOR_ATTN_Q_NORM, - LLM_TENSOR_ATTN_K_NORM, - LLM_TENSOR_LAYER_OUT_NORM, - LLM_TENSOR_SSM_IN, - LLM_TENSOR_SSM_CONV1D, - LLM_TENSOR_SSM_X, - LLM_TENSOR_SSM_DT, - LLM_TENSOR_SSM_A, - LLM_TENSOR_SSM_D, - LLM_TENSOR_SSM_OUT, - LLM_TENSOR_ATTN_Q_A, - LLM_TENSOR_ATTN_Q_B, - LLM_TENSOR_ATTN_KV_A_MQA, - LLM_TENSOR_ATTN_KV_B, - LLM_TENSOR_ATTN_Q_A_NORM, - LLM_TENSOR_ATTN_KV_A_NORM, - LLM_TENSOR_ATTN_SUB_NORM, - LLM_TENSOR_FFN_SUB_NORM, -}; - -static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = { - { - LLM_ARCH_LLAMA, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, - { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, - { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, - { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, - { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, - { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, - }, - }, - { - LLM_ARCH_BAICHUAN, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_FALCON, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_GROK, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, - { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, - { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, - { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, - { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, - { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, - { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, - { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, - }, - }, - { - LLM_ARCH_GPT2, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_POS_EMBD, "position_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - }, - }, - { - LLM_ARCH_GPTJ, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - }, - }, - { - LLM_ARCH_GPTNEOX, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_MPT, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output"}, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" }, - { LLM_TENSOR_POS_EMBD, "position_embd" }, - { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, - { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, - }, - }, - { - LLM_ARCH_STARCODER, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_POS_EMBD, "position_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - }, - }, - { - LLM_ARCH_REFACT, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_BERT, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, - { LLM_TENSOR_TOKEN_TYPES, "token_types" }, - { LLM_TENSOR_POS_EMBD, "position_embd" }, - { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_NOMIC_BERT, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, - { LLM_TENSOR_TOKEN_TYPES, "token_types" }, - { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_JINA_BERT_V2, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, - { LLM_TENSOR_TOKEN_TYPES, "token_types" }, - { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, - { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_BLOOM, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - }, - }, - { - LLM_ARCH_STABLELM, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, - { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, - }, - }, - { - LLM_ARCH_QWEN, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_QWEN2, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_QWEN2MOE, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, - { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, - { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, - { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, - { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, - { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, - { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, - { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, - }, - }, - { - LLM_ARCH_PHI2, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_PHI3, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" }, - { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_PLAMO, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_CODESHELL, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_ORION, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_INTERNLM2, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_MINICPM, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, - { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, - { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, - }, - }, - { - LLM_ARCH_GEMMA, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_STARCODER2, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_MAMBA, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" }, - { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" }, - { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" }, - { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" }, - { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" }, - { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" }, - { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, - }, - }, - { - LLM_ARCH_XVERSE, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_COMMAND_R, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, - { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, - }, - }, - { - LLM_ARCH_DBRX, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, - { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, - { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, - { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, - { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, - }, - }, - { - LLM_ARCH_OLMO, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - }, - }, - { - LLM_ARCH_ARCTIC, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" }, - { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, - { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, - { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, - }, - }, - { - LLM_ARCH_DEEPSEEK2, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_OUTPUT, "output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, - { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, - { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" }, - { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" }, - { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, - { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, - { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, - { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, - { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, - { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, - { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, - { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, - }, - }, - { - LLM_ARCH_BITNET, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, - { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, - { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, - { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, - { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" }, - { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, - { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" }, - }, - }, - { - LLM_ARCH_UNKNOWN, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, - }, - }, -}; - -static llm_arch llm_arch_from_string(const std::string & name) { - for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT - if (kv.second == name) { - return kv.first; - } - } - - return LLM_ARCH_UNKNOWN; -} - -// helper to handle gguf constants -// usage: -// -// const auto tn = LLM_TN(LLM_ARCH_LLAMA); -// -// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output" -// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" -// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" -// -struct LLM_TN { - LLM_TN(llm_arch arch) : arch(arch) {} - - llm_arch arch; - - std::string operator()(llm_tensor tensor) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return LLM_TENSOR_NAMES.at(arch).at(tensor); - } - - std::string operator()(llm_tensor tensor, const std::string & suffix) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix; - } - - std::string operator()(llm_tensor tensor, int bid) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid); - } - - std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix; - } - - std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix; - } -}; - -// -// gguf helpers -// - -static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = { - { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, - { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, - { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, -}; - -static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { - for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { - if (kv.second == name) { - return (llama_rope_scaling_type) kv.first; - } - } - - return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; -} - -static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { - switch (type) { - case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); - case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); - case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); - case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); - case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); - case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); - case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); - case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); - case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); - case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); - case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; - default: return format("unknown type %d", type); - } -} - -static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { - const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); - - switch (type) { - case GGUF_TYPE_STRING: - return gguf_get_val_str(ctx_gguf, i); - case GGUF_TYPE_ARRAY: - { - const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); - int arr_n = gguf_get_arr_n(ctx_gguf, i); - const void * data = gguf_get_arr_data(ctx_gguf, i); - std::stringstream ss; - ss << "["; - for (int j = 0; j < arr_n; j++) { - if (arr_type == GGUF_TYPE_STRING) { - std::string val = gguf_get_arr_str(ctx_gguf, i, j); - // escape quotes - replace_all(val, "\\", "\\\\"); - replace_all(val, "\"", "\\\""); - ss << '"' << val << '"'; - } else if (arr_type == GGUF_TYPE_ARRAY) { - ss << "???"; - } else { - ss << gguf_data_to_str(arr_type, data, j); - } - if (j < arr_n - 1) { - ss << ", "; - } - } - ss << "]"; - return ss.str(); - } - default: - return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); - } -} - -// -// llama helpers -// - -#if defined(_WIN32) -static std::string llama_format_win_err(DWORD err) { - LPSTR buf; - size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, - NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL); - if (!size) { - return "FormatMessageA failed"; - } - std::string ret(buf, size); - LocalFree(buf); - return ret; -} -#endif - -template <typename T> -struct no_init { - T value; - no_init() { /* do nothing */ } -}; - -struct llama_file { - -#if defined(_WIN32) - // use FILE * so we don't have to re-open the file to mmap - FILE * fp; - HANDLE fp_win32; - size_t size; - -private: - std::string GetErrorMessageWin32(DWORD error_code) const { - std::string ret; - LPSTR lpMsgBuf = NULL; - DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, - NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL); - if (!bufLen) { - ret = format("Win32 error code: %s", error_code); - } else { - ret = lpMsgBuf; - LocalFree(lpMsgBuf); - } - - return ret; - } - -public: - - llama_file(const char * fname, const char * mode) { - fp = ggml_fopen(fname, mode); - if (fp == NULL) { - throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); - } - fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp)); - seek(0, SEEK_END); - size = tell(); - seek(0, SEEK_SET); - } - - size_t tell() const { - // SetFilePointerEx returns the current position when seeking relative 0 bytes - LARGE_INTEGER li; - li.QuadPart = 0; - BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT); - if (!ret) { - throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); - } - - return li.QuadPart; - } - - void seek(size_t offset, int whence) const { - // no need to convert SEEK_* to FILE_*. The enums are the same. - // Still, keep static asserts to avoid failures in the future. - static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN"); - static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT"); - static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END"); - - LARGE_INTEGER li; - li.QuadPart = offset; - BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence); - if (!ret) { - throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); - } - } - - void read_raw(void * ptr, size_t len) const { - // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus - // use the Win32 API to do file io instead of the C/C++ library functions. - - // There are conditions under which ReadFile cannot read chunks >64MB. - // Thus split the operation into smaller chunks if len exceeds this limit. - size_t bytes_read = 0; - while (bytes_read < len) { - size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024); - DWORD chunk_read = 0; - BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL); - if (!result) { - throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str())); - } - if (chunk_read < chunk_size || chunk_read == 0) { - throw std::runtime_error("unexpectedly reached end of file"); - } - - bytes_read += chunk_read; - } ; - } - - uint32_t read_u32() const { - uint32_t val; - read_raw(&val, sizeof(val)); - return val; - } - - void write_raw(const void * ptr, size_t len) const { - // There are conditions under which WriteFile cannot write chunks >64MB. - // Thus split the operation into smaller chunks if len exceeds this limit. - size_t bytes_written = 0; - while (bytes_written < len) { - size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024); - DWORD chunk_written = 0; - BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL); - if (!result) { - throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str())); - } - if (chunk_written < chunk_size || chunk_written == 0) { - throw std::runtime_error("unexpectedly failed to write bytes"); - } - - bytes_written += chunk_written; - } - } - - void write_u32(std::uint32_t val) const { - write_raw(&val, sizeof(val)); - } - - ~llama_file() { - if (fp) { - std::fclose(fp); - } - } -#else - // use FILE * so we don't have to re-open the file to mmap - FILE * fp; - size_t size; - - llama_file(const char * fname, const char * mode) { - fp = ggml_fopen(fname, mode); - if (fp == NULL) { - throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); - } - seek(0, SEEK_END); - size = tell(); - seek(0, SEEK_SET); - } - - size_t tell() const { -#ifdef _WIN32 - __int64 ret = _ftelli64(fp); -#else - long ret = std::ftell(fp); -#endif - if (ret == -1) { - throw std::runtime_error(format("ftell error: %s", strerror(errno))); - } - - return (size_t) ret; - } - - void seek(size_t offset, int whence) const { -#ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset, whence); -#else - int ret = std::fseek(fp, (long) offset, whence); -#endif - if (ret != 0) { - throw std::runtime_error(format("seek error: %s", strerror(errno))); - } - } - - void read_raw(void * ptr, size_t len) const { - if (len == 0) { - return; - } - errno = 0; - std::size_t ret = std::fread(ptr, len, 1, fp); - if (ferror(fp)) { - throw std::runtime_error(format("read error: %s", strerror(errno))); - } - if (ret != 1) { - throw std::runtime_error("unexpectedly reached end of file"); - } - } - - uint32_t read_u32() const { - uint32_t ret; - read_raw(&ret, sizeof(ret)); - return ret; - } - - void write_raw(const void * ptr, size_t len) const { - if (len == 0) { - return; - } - errno = 0; - size_t ret = std::fwrite(ptr, len, 1, fp); - if (ret != 1) { - throw std::runtime_error(format("write error: %s", strerror(errno))); - } - } - - void write_u32(std::uint32_t val) const { - write_raw(&val, sizeof(val)); - } - - ~llama_file() { - if (fp) { - std::fclose(fp); - } - } -#endif -}; -using llama_files = std::vector<std::unique_ptr<llama_file>>; - -struct llama_mmap { - void * addr; - size_t size; - - llama_mmap(const llama_mmap &) = delete; - -#ifdef _POSIX_MAPPED_FILES - static constexpr bool SUPPORTED = true; - - // list of mapped fragments (first_offset, last_offset) - std::vector<std::pair<size_t, size_t>> mapped_fragments; - - llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { - size = file->size; - int fd = fileno(file->fp); - int flags = MAP_SHARED; - // prefetch/readahead impairs performance on NUMA systems - if (numa) { prefetch = 0; } -#ifdef __linux__ - // advise the kernel to read the file sequentially (increases readahead) - if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) { - LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n", - strerror(errno)); - } - if (prefetch) { flags |= MAP_POPULATE; } -#endif - addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); - if (addr == MAP_FAILED) { // NOLINT - throw std::runtime_error(format("mmap failed: %s", strerror(errno))); - } - - if (prefetch > 0) { - // advise the kernel to preload the mapped memory - if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) { - LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n", - strerror(errno)); - } - } - if (numa) { - // advise the kernel not to use readahead - // (because the next page might not belong on the same node) - if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) { - LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n", - strerror(errno)); - } - } - - // initialize list of mapped_fragments - mapped_fragments.emplace_back(0, file->size); - } - - static void align_range(size_t * first, size_t * last, size_t page_size) { - // align first to the next page - size_t offset_in_page = *first & (page_size - 1); - size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page; - *first += offset_to_page; - - // align last to the previous page - *last = *last & ~(page_size - 1); - - if (*last <= *first) { - *last = *first; - } - } - - // partially unmap the file in the range [first, last) - void unmap_fragment(size_t first, size_t last) { - // note: this function must not be called multiple times with overlapping ranges - // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings - int page_size = sysconf(_SC_PAGESIZE); - align_range(&first, &last, page_size); - size_t len = last - first; - - if (len == 0) { - return; - } - - GGML_ASSERT(first % page_size == 0); - GGML_ASSERT(last % page_size == 0); - GGML_ASSERT(last > first); - - void * next_page_start = (uint8_t *) addr + first; - - // unmap the range - if (munmap(next_page_start, len)) { - LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); - } - - // update the list of mapped fragments to avoid unmapping the same range again in the destructor - std::vector<std::pair<size_t, size_t>> new_mapped_fragments; - for (const auto & frag : mapped_fragments) { - if (frag.first < first && frag.second > last) { - // the range is in the middle of the fragment, split it - new_mapped_fragments.emplace_back(frag.first, first); - new_mapped_fragments.emplace_back(last, frag.second); - } else if (frag.first < first && frag.second > first) { - // the range starts in the middle of the fragment - new_mapped_fragments.emplace_back(frag.first, first); - } else if (frag.first < last && frag.second > last) { - // the range ends in the middle of the fragment - new_mapped_fragments.emplace_back(last, frag.second); - } else if (frag.first >= first && frag.second <= last) { - // the range covers the entire fragment - } else { - // the range is outside the fragment - new_mapped_fragments.push_back(frag); - } - } - mapped_fragments = std::move(new_mapped_fragments); - } - - ~llama_mmap() { - for (const auto & frag : mapped_fragments) { - if (munmap((char *) addr + frag.first, frag.second - frag.first)) { - LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); - } - } - } -#elif defined(_WIN32) - static constexpr bool SUPPORTED = true; - - llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) { - GGML_UNUSED(numa); - - size = file->size; - - HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); - - HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); - - if (hMapping == NULL) { - DWORD error = GetLastError(); - throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str())); - } - - addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); - DWORD error = GetLastError(); - CloseHandle(hMapping); - - if (addr == NULL) { - throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str())); - } - - if (prefetch > 0) { -#if _WIN32_WINNT >= 0x602 - // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it - BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); - HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); - - // may fail on pre-Windows 8 systems - pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory")); - - if (pPrefetchVirtualMemory) { - // advise the kernel to preload the mapped memory - WIN32_MEMORY_RANGE_ENTRY range; - range.VirtualAddress = addr; - range.NumberOfBytes = (SIZE_T) std::min(size, prefetch); - if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) { - LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n", - llama_format_win_err(GetLastError()).c_str()); - } - } -#else - throw std::runtime_error("PrefetchVirtualMemory unavailable"); -#endif - } - } - - void unmap_fragment(size_t first, size_t last) { - // not supported - GGML_UNUSED(first); - GGML_UNUSED(last); - } - - ~llama_mmap() { - if (!UnmapViewOfFile(addr)) { - LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n", - llama_format_win_err(GetLastError()).c_str()); - } - } -#else - static constexpr bool SUPPORTED = false; - - llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) { - GGML_UNUSED(file); - GGML_UNUSED(prefetch); - GGML_UNUSED(numa); - - throw std::runtime_error("mmap not supported"); - } - - void unmap_fragment(size_t first, size_t last) { - GGML_UNUSED(first); - GGML_UNUSED(last); - - throw std::runtime_error("mmap not supported"); - } -#endif -}; -using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>; - -// Represents some region of memory being locked using mlock or VirtualLock; -// will automatically unlock on destruction. -struct llama_mlock { - void * addr = NULL; - size_t size = 0; - - bool failed_already = false; - - llama_mlock() {} - llama_mlock(const llama_mlock &) = delete; - - ~llama_mlock() { - if (size) { - raw_unlock(addr, size); - } - } - - void init(void * ptr) { - GGML_ASSERT(addr == NULL && size == 0); // NOLINT - addr = ptr; - } - - void grow_to(size_t target_size) { - GGML_ASSERT(addr); - if (failed_already) { - return; - } - size_t granularity = lock_granularity(); - target_size = (target_size + granularity - 1) & ~(granularity - 1); - if (target_size > size) { - if (raw_lock((uint8_t *) addr + size, target_size - size)) { - size = target_size; - } else { - failed_already = true; - } - } - } - -#ifdef _POSIX_MEMLOCK_RANGE - static constexpr bool SUPPORTED = true; - - static size_t lock_granularity() { - return (size_t) sysconf(_SC_PAGESIZE); - } - - #ifdef __APPLE__ - #define MLOCK_SUGGESTION \ - "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \ - "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n" - #else - #define MLOCK_SUGGESTION \ - "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n" - #endif - - bool raw_lock(const void * addr, size_t size) const { - if (!mlock(addr, size)) { - return true; - } - - char* errmsg = std::strerror(errno); - bool suggest = (errno == ENOMEM); - - // Check if the resource limit is fine after all - struct rlimit lock_limit; - if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) { - suggest = false; - } - if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) { - suggest = false; - } - - LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", - size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); - return false; - } - - #undef MLOCK_SUGGESTION - - static void raw_unlock(void * addr, size_t size) { - if (munlock(addr, size)) { - LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno)); - } - } -#elif defined(_WIN32) - static constexpr bool SUPPORTED = true; - - static size_t lock_granularity() { - SYSTEM_INFO si; - GetSystemInfo(&si); - return (size_t) si.dwPageSize; - } - - bool raw_lock(void * ptr, size_t len) const { - for (int tries = 1; ; tries++) { - if (VirtualLock(ptr, len)) { - return true; - } - if (tries == 2) { - LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", - len, size, llama_format_win_err(GetLastError()).c_str()); - return false; - } - - // It failed but this was only the first try; increase the working - // set size and try again. - SIZE_T min_ws_size, max_ws_size; - if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { - LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n", - llama_format_win_err(GetLastError()).c_str()); - return false; - } - // Per MSDN: "The maximum number of pages that a process can lock - // is equal to the number of pages in its minimum working set minus - // a small overhead." - // Hopefully a megabyte is enough overhead: - size_t increment = len + 1048576; - // The minimum must be <= the maximum, so we need to increase both: - min_ws_size += increment; - max_ws_size += increment; - if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { - LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n", - llama_format_win_err(GetLastError()).c_str()); - return false; - } - } - } - - static void raw_unlock(void * ptr, size_t len) { - if (!VirtualUnlock(ptr, len)) { - LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n", - llama_format_win_err(GetLastError()).c_str()); - } - } -#else - static constexpr bool SUPPORTED = false; - - static size_t lock_granularity() { - return (size_t) 65536; - } - - bool raw_lock(const void * addr, size_t len) const { - LLAMA_LOG_WARN("warning: mlock not supported on this system\n"); - return false; - } - - static void raw_unlock(const void * addr, size_t len) {} -#endif -}; -using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>; - -// NOTE: avoid ever using this except for building the token_to_piece caches -static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) { - std::vector<char> result(8, 0); - const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special); - if (n_tokens < 0) { - result.resize(-n_tokens); - int check = llama_token_to_piece(model, token, result.data(), result.size(), special); - GGML_ASSERT(check == -n_tokens); - } - else { - result.resize(n_tokens); - } - - return std::string(result.data(), result.size()); -} - -static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { - ggml_backend_buffer_type_t buft = nullptr; - -#if defined(GGML_USE_CUDA) - // host buffers should only be used when data is expected to be copied to/from the GPU - if (host_buffer) { - buft = ggml_backend_cuda_host_buffer_type(); - } -#elif defined(GGML_USE_SYCL) - if (host_buffer) { - buft = ggml_backend_sycl_host_buffer_type(); - } -#elif defined(GGML_USE_CPU_HBM) - buft = ggml_backend_cpu_hbm_buffer_type(); -#elif defined(GGML_USE_VULKAN) - if (host_buffer) { - buft = ggml_backend_vk_host_buffer_type(); - } -#endif - - if (buft == nullptr) { - buft = ggml_backend_cpu_buffer_type(); - } - return buft; - - GGML_UNUSED(host_buffer); -} - -// -// globals -// - -struct llama_state { - llama_state() { -#ifdef GGML_USE_METAL - ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data); -#elif defined(GGML_USE_CUDA) - ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data); -#endif - } - - // We save the log callback globally - ggml_log_callback log_callback = llama_log_callback_default; - void * log_callback_user_data = nullptr; -}; - -static llama_state g_state; - -// available llama models -enum e_model { - MODEL_UNKNOWN, - MODEL_14M, - MODEL_17M, - MODEL_22M, - MODEL_33M, - MODEL_70M, - MODEL_109M, - MODEL_137M, - MODEL_160M, - MODEL_335M, - MODEL_410M, - MODEL_0_5B, - MODEL_1B, - MODEL_1_4B, - MODEL_2B, - MODEL_2_8B, - MODEL_3B, - MODEL_4B, - MODEL_6_9B, - MODEL_7B, - MODEL_8B, - MODEL_12B, - MODEL_13B, - MODEL_14B, - MODEL_15B, - MODEL_16B, - MODEL_20B, - MODEL_30B, - MODEL_34B, - MODEL_35B, - MODEL_40B, - MODEL_65B, - MODEL_70B, - MODEL_236B, - MODEL_314B, - MODEL_SMALL, - MODEL_MEDIUM, - MODEL_LARGE, - MODEL_XL, - MODEL_A2_7B, - MODEL_8x7B, - MODEL_8x22B, - MODEL_16x12B, - MODEL_10B_128x3_66B, -}; - -static const size_t kiB = 1024; -static const size_t MiB = 1024*kiB; -static const size_t GiB = 1024*MiB; - -struct llama_hparams { - bool vocab_only; - bool rope_finetuned; - bool use_par_res; - - uint32_t n_vocab; - uint32_t n_ctx_train; // context size the model was trained on - uint32_t n_embd; - uint32_t n_head; - uint32_t n_head_kv; - uint32_t n_layer; - uint32_t n_rot; - uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads - uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head - uint32_t n_ff; - uint32_t n_expert = 0; - uint32_t n_expert_used = 0; - uint32_t n_vocab_type = 0; // for BERT-style token types - - uint32_t n_layer_dense_lead = 0; - uint32_t n_lora_q = 0; - uint32_t n_lora_kv = 0; - uint32_t n_ff_exp = 0; - uint32_t n_ff_shexp = 0; - uint32_t n_expert_shared = 0; - float expert_weights_scale = 0.0; - - float f_norm_eps; - float f_norm_rms_eps; - - float rope_attn_factor = 1.0f; - float rope_freq_base_train; - float rope_freq_scale_train; - uint32_t n_ctx_orig_yarn; - float rope_yarn_log_mul; - - // for State Space Models - uint32_t ssm_d_conv = 0; - uint32_t ssm_d_inner = 0; - uint32_t ssm_d_state = 0; - uint32_t ssm_dt_rank = 0; - - float f_clamp_kqv = 0.0f; - float f_max_alibi_bias = 0.0f; - float f_logit_scale = 0.0f; - - bool causal_attn = true; - bool use_alibi = false; - - enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; - enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; - enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; - - bool operator!=(const llama_hparams & other) const { - if (this->vocab_only != other.vocab_only) return true; - if (this->n_vocab != other.n_vocab) return true; - if (this->n_ctx_train != other.n_ctx_train) return true; - if (this->n_embd != other.n_embd) return true; - if (this->n_head != other.n_head) return true; - if (this->n_head_kv != other.n_head_kv) return true; - if (this->n_layer != other.n_layer) return true; - if (this->n_rot != other.n_rot) return true; - if (this->n_embd_head_k != other.n_embd_head_k) return true; - if (this->n_embd_head_v != other.n_embd_head_v) return true; - if (this->n_ff != other.n_ff) return true; - if (this->n_expert != other.n_expert) return true; - if (this->n_expert_used != other.n_expert_used) return true; - - if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true; - if (this->n_lora_q != other.n_lora_q) return true; - if (this->n_lora_kv != other.n_lora_kv) return true; - if (this->n_ff_exp != other.n_ff_exp) return true; - if (this->n_ff_shexp != other.n_ff_shexp) return true; - if (this->n_expert_shared != other.n_expert_shared) return true; - - if (this->rope_finetuned != other.rope_finetuned) return true; - if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true; - - if (this->ssm_d_conv != other.ssm_d_conv) return true; - if (this->ssm_d_inner != other.ssm_d_inner) return true; - if (this->ssm_d_state != other.ssm_d_state) return true; - if (this->ssm_dt_rank != other.ssm_dt_rank) return true; - - const float EPSILON = 1e-9f; - - if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; - if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; - if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true; - if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; - if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; - if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true; - if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true; - - return false; - } - - uint32_t n_gqa() const { - if (n_head_kv == 0) { - return 0; - } - return n_head/n_head_kv; - } - - uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads - return n_embd_head_k * n_head_kv; - } - - uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads - return n_embd_head_v * n_head_kv; - } - - uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings - // corresponds to Mamba's conv_states size - // TODO: maybe support other convolution strides than 1 - // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed - return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; - } - - uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings - // corresponds to Mamba's ssm_states size - return ssm_d_state * ssm_d_inner; - } -}; - -struct llama_cparams { - uint32_t n_ctx; // context size used during inference - uint32_t n_batch; - uint32_t n_ubatch; - uint32_t n_seq_max; - uint32_t n_threads; // number of threads to use for generation - uint32_t n_threads_batch; // number of threads to use for batch processing - - float rope_freq_base; - float rope_freq_scale; - - uint32_t n_ctx_orig_yarn; - // These hyperparameters are not exposed in GGUF, because all - // existing YaRN models use the same values for them. - float yarn_ext_factor; - float yarn_attn_factor; - float yarn_beta_fast; - float yarn_beta_slow; - float defrag_thold; - - bool embeddings; - bool causal_attn; - bool offload_kqv; - bool flash_attn; - - enum llama_pooling_type pooling_type; - - ggml_backend_sched_eval_callback cb_eval; - void * cb_eval_user_data; -}; - -struct llama_layer { - // normalization - struct ggml_tensor * attn_norm; - struct ggml_tensor * attn_norm_b; - struct ggml_tensor * attn_norm_2; - struct ggml_tensor * attn_norm_2_b; - struct ggml_tensor * attn_q_norm; - struct ggml_tensor * attn_q_norm_b; - struct ggml_tensor * attn_k_norm; - struct ggml_tensor * attn_k_norm_b; - struct ggml_tensor * attn_out_norm; - struct ggml_tensor * attn_out_norm_b; - struct ggml_tensor * attn_q_a_norm; - struct ggml_tensor * attn_kv_a_norm; - struct ggml_tensor * attn_sub_norm; - struct ggml_tensor * ffn_sub_norm; - - // attention - struct ggml_tensor * wq; - struct ggml_tensor * wk; - struct ggml_tensor * wv; - struct ggml_tensor * wo; - struct ggml_tensor * wqkv; - struct ggml_tensor * wq_a; - struct ggml_tensor * wq_b; - struct ggml_tensor * wkv_a_mqa; - struct ggml_tensor * wkv_b; - - // attention bias - struct ggml_tensor * bq; - struct ggml_tensor * bk; - struct ggml_tensor * bv; - struct ggml_tensor * bo; - struct ggml_tensor * bqkv; - - // normalization - struct ggml_tensor * ffn_norm; - struct ggml_tensor * ffn_norm_b; - struct ggml_tensor * layer_out_norm; - struct ggml_tensor * layer_out_norm_b; - struct ggml_tensor * ffn_norm_exps; - - // ff - struct ggml_tensor * ffn_gate; // w1 - struct ggml_tensor * ffn_down; // w2 - struct ggml_tensor * ffn_up; // w3 - - // ff MoE - struct ggml_tensor * ffn_gate_inp; - struct ggml_tensor * ffn_gate_exps; - struct ggml_tensor * ffn_down_exps; - struct ggml_tensor * ffn_up_exps ; - - // ff shared expert (shexp) - struct ggml_tensor * ffn_gate_inp_shexp; - struct ggml_tensor * ffn_gate_shexp; - struct ggml_tensor * ffn_down_shexp; - struct ggml_tensor * ffn_up_shexp; - - // ff bias - struct ggml_tensor * ffn_gate_b = nullptr; - struct ggml_tensor * ffn_down_b = nullptr; // b2 - struct ggml_tensor * ffn_up_b = nullptr; // b3 - struct ggml_tensor * ffn_act; - - // mamba proj - struct ggml_tensor * ssm_in; - struct ggml_tensor * ssm_x; - struct ggml_tensor * ssm_dt; - struct ggml_tensor * ssm_out; - - // mamba - struct ggml_tensor * ssm_conv1d; - struct ggml_tensor * ssm_a; - struct ggml_tensor * ssm_d; - - // mamba bias - struct ggml_tensor * ssm_conv1d_b; - struct ggml_tensor * ssm_dt_b; - - // long rope factors - struct ggml_tensor * rope_long = nullptr; - struct ggml_tensor * rope_short = nullptr; - - // bitnet scale - struct ggml_tensor * wq_scale; - struct ggml_tensor * wk_scale; - struct ggml_tensor * wv_scale; - struct ggml_tensor * wo_scale; - struct ggml_tensor * ffn_gate_scale; - struct ggml_tensor * ffn_up_scale; - struct ggml_tensor * ffn_down_scale; -}; - -struct llama_kv_cell { - llama_pos pos = -1; - llama_pos delta = 0; - int32_t src = 0; // used by recurrent state models to copy states - - std::set<llama_seq_id> seq_id; - - bool has_seq_id(const llama_seq_id & id) const { - return seq_id.find(id) != seq_id.end(); - } - - bool is_empty() const { - return seq_id.empty(); - } - - bool is_same_seq(const llama_kv_cell & other) const { - return seq_id == other.seq_id; - } -}; - -// ring-buffer of cached KV data -struct llama_kv_cache { - bool has_shift = false; - bool do_defrag = false; - bool do_copy = false; - bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token - bool v_trans = true; // the value tensor is transposed - - // Note: The value of head isn't only used to optimize searching - // for a free KV slot. llama_decode_internal also uses it, so it - // cannot be freely changed after a slot has been allocated. - uint32_t head = 0; - uint32_t size = 0; - uint32_t used = 0; // used cells (i.e. at least one seq_id) - - // computed before each graph build - uint32_t n = 0; - - ggml_type type_k = GGML_TYPE_F16; - ggml_type type_v = GGML_TYPE_F16; - - std::vector<llama_kv_cell> cells; - - std::vector<struct ggml_tensor *> k_l; // per layer - std::vector<struct ggml_tensor *> v_l; - - std::vector<struct ggml_context *> ctxs; - std::vector<ggml_backend_buffer_t> bufs; - - size_t total_size() const { - size_t size = 0; - for (ggml_backend_buffer_t buf : bufs) { - size += ggml_backend_buffer_get_size(buf); - } - return size; - } - - ~llama_kv_cache() { - for (struct ggml_context * ctx : ctxs) { - ggml_free(ctx); - } - for (ggml_backend_buffer_t buf : bufs) { - ggml_backend_buffer_free(buf); - } - } -}; - -struct llama_control_vector { - std::vector<struct ggml_tensor *> tensors; // per layer - std::vector<struct ggml_context *> ctxs; - std::vector<ggml_backend_buffer_t> bufs; - - int32_t layer_start = -1; - int32_t layer_end = -1; - - ggml_tensor * tensor_for(int il) const { - if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { - return nullptr; - } - return tensors[il]; - } - - ~llama_control_vector() { - for (struct ggml_context * ctx : ctxs) { - ggml_free(ctx); - } - for (ggml_backend_buffer_t buf : bufs) { - ggml_backend_buffer_free(buf); - } - } -}; - -struct llama_vocab { - using id = int32_t; - using token = std::string; - using tattr = llama_token_attr; - - struct token_data { - token text; - float score; - tattr attr; - }; - - enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; - enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; - - int max_token_len = 0; // used for optimizing longest token search - - std::unordered_map<token, id> token_to_id; - std::vector<token_data> id_to_token; - - std::vector<id> cache_special_tokens; - std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true); - - std::map<std::pair<std::string, std::string>, int> bpe_ranks; - - // default LLaMA special tokens - id special_bos_id = 1; - id special_eos_id = 2; - id special_unk_id = 0; - id special_sep_id = -1; - id special_pad_id = -1; - id special_cls_id = -1; - id special_mask_id = -1; - - id linefeed_id = 13; - id special_prefix_id = -1; - id special_suffix_id = -1; - id special_middle_id = -1; - id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token - - // tokenizer flags - bool tokenizer_add_space_prefix = true; - bool tokenizer_add_bos = false; - bool tokenizer_add_eos = false; - bool tokenizer_ignore_merges = false; - - int find_bpe_rank(const std::string & token_left, const std::string & token_right) const { - GGML_ASSERT(token_left.find(' ') == std::string::npos); - GGML_ASSERT(token_left.find('\n') == std::string::npos); - GGML_ASSERT(token_right.find(' ') == std::string::npos); - GGML_ASSERT(token_right.find('\n') == std::string::npos); - - auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); - if (it == bpe_ranks.end()) { - return -1; - } - - return it->second; - } -}; - -struct llama_model { - e_model type = MODEL_UNKNOWN; - llm_arch arch = LLM_ARCH_UNKNOWN; - llama_ftype ftype = LLAMA_FTYPE_ALL_F32; - - std::string name = "n/a"; - - llama_hparams hparams = {}; - llama_vocab vocab; - - struct ggml_tensor * tok_embd; - struct ggml_tensor * type_embd; - struct ggml_tensor * pos_embd; - struct ggml_tensor * tok_norm; - struct ggml_tensor * tok_norm_b; - - struct ggml_tensor * output_norm; - struct ggml_tensor * output_norm_b; - struct ggml_tensor * output; - struct ggml_tensor * output_b; - - std::vector<llama_layer> layers; - - llama_split_mode split_mode; - int main_gpu; - int n_gpu_layers; - - std::vector<std::string> rpc_servers; - - // gguf metadata - std::unordered_map<std::string, std::string> gguf_kv; - - // layer -> buffer type mapping - struct layer_buft { - layer_buft() : buft_matrix(nullptr), buft(nullptr) {} - layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {} - layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {} - - ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication - ggml_backend_buffer_type_t buft; // everything else - }; - - layer_buft buft_input; - layer_buft buft_output; - std::vector<layer_buft> buft_layer; - - // contexts where the model tensors metadata is stored - std::vector<struct ggml_context *> ctxs; - - // the model memory buffers for the tensor data - std::vector<ggml_backend_buffer_t> bufs; - - // model memory mapped files - llama_mmaps mappings; - - // objects representing data potentially being locked in memory - llama_mlocks mlock_bufs; - llama_mlocks mlock_mmaps; - - // for quantize-stats only - std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name; - - int64_t t_load_us = 0; - int64_t t_start_us = 0; - - ~llama_model() { - for (struct ggml_context * ctx : ctxs) { - ggml_free(ctx); - } - for (ggml_backend_buffer_t buf : bufs) { -#ifdef GGML_USE_CUDA - if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) { - ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf)); - } -#endif - ggml_backend_buffer_free(buf); - } - } -}; - -struct llama_context { - llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} - ~llama_context() { - ggml_backend_sched_free(sched); - - for (ggml_backend_t backend : backends) { - ggml_backend_free(backend); - } - - ggml_backend_buffer_free(buf_output); - } - - llama_cparams cparams; - - std::vector<ggml_backend_t> backends; -#ifdef GGML_USE_METAL - ggml_backend_t backend_metal = nullptr; -#endif -#ifdef GGML_USE_BLAS - ggml_backend_t backend_blas = nullptr; -#endif - ggml_backend_t backend_cpu = nullptr; - - - const llama_model & model; - - // key + value cache for the self attention - struct llama_kv_cache kv_self; - - std::mt19937 rng; - - bool has_evaluated_once = false; - - int64_t t_start_us; - int64_t t_load_us; - int64_t t_sample_us = 0; - int64_t t_p_eval_us = 0; - int64_t t_eval_us = 0; - - int64_t t_compute_start_us = 0; - int64_t n_queued_tokens = 0; - - int32_t n_sample = 0; // number of tokens sampled - int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) - int32_t n_eval = 0; // number of eval calls - - // host buffer for the model output (logits and embeddings) - ggml_backend_buffer_t buf_output = nullptr; - - // decode output (2-dimensional array: [n_outputs][n_vocab]) - size_t logits_size = 0; // capacity (of floats) for logits - float * logits = nullptr; - - std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers - size_t output_size = 0; // capacity (of tokens positions) for the output buffers - int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch - - bool logits_all = false; - - // embeddings output (2-dimensional array: [n_outputs][n_embd]) - // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE - size_t embd_size = 0; // capacity (of floats) for embeddings - float * embd = nullptr; - - // sequence embeddings output (map of [n_embd] vectors) - // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE - std::map<llama_seq_id, std::vector<float>> embd_seq; - - // memory buffers used to evaluate the model - std::vector<uint8_t> buf_compute_meta; - ggml_backend_sched_t sched = nullptr; - - ggml_abort_callback abort_callback = nullptr; - void * abort_callback_data = nullptr; - - // input tensors - struct ggml_tensor * inp_tokens; // I32 [n_batch] - struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] - struct ggml_tensor * inp_pos; // I32 [n_batch] - struct ggml_tensor * inp_out_ids; // I32 [n_outputs] - struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] - struct ggml_tensor * inp_K_shift; // I32 [kv_size] - struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] - struct ggml_tensor * inp_cls; // I32 [n_batch] - struct ggml_tensor * inp_s_copy; // I32 [kv_size] - struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] - struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] - - // control vectors - struct llama_control_vector cvec; -}; - -static size_t llama_get_device_count(const llama_model & model) { - size_t count = 1; -#if defined(GGML_USE_CUDA) - count = ggml_backend_cuda_get_device_count(); -#elif defined(GGML_USE_SYCL) - count = ggml_backend_sycl_get_device_count(); -#elif defined(GGML_USE_VULKAN) - count = ggml_backend_vk_get_device_count(); -#endif -#if defined(GGML_USE_RPC) - count += model.rpc_servers.size(); -#endif - return count; - GGML_UNUSED(model); -} - -static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) { - ggml_backend_buffer_type_t buft = nullptr; - -#if defined(GGML_USE_RPC) - int dev_count = (int)llama_get_device_count(model); - int rpc_count = (int)model.rpc_servers.size(); - if (gpu >= dev_count - rpc_count) { - const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str(); - return ggml_backend_rpc_buffer_type(endpoint); - } -#endif -#if defined(GGML_USE_METAL) - buft = ggml_backend_metal_buffer_type(); -#elif defined(GGML_USE_CUDA) - buft = ggml_backend_cuda_buffer_type(gpu); -#elif defined(GGML_USE_VULKAN) - buft = ggml_backend_vk_buffer_type(gpu); -#elif defined(GGML_USE_SYCL) - buft = ggml_backend_sycl_buffer_type(gpu); -#elif defined(GGML_USE_KOMPUTE) - buft = ggml_backend_kompute_buffer_type(gpu); - if (buft == nullptr) { - LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); - } -#endif - - if (buft == nullptr) { - buft = llama_default_buffer_type_cpu(true); - } - return buft; - GGML_UNUSED(model); - GGML_UNUSED(gpu); -} - -static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) { - ggml_backend_buffer_type_t buft = nullptr; - -#ifdef GGML_USE_CUDA - if (ggml_backend_cuda_get_device_count() > 1) { - buft = ggml_backend_cuda_split_buffer_type(tensor_split); - } -#endif - -#ifdef GGML_USE_SYCL - if (ggml_backend_sycl_get_device_count() > 1) { - buft = ggml_backend_sycl_split_buffer_type(tensor_split); - } -#endif - - if (buft == nullptr) { - buft = llama_default_buffer_type_offload(model, fallback_gpu); - } - return buft; - - GGML_UNUSED(tensor_split); -} - -static size_t llama_get_device_memory(const llama_model & model, int device) { -#if defined(GGML_USE_RPC) - int dev_count = (int)llama_get_device_count(model); - int rpc_count = (int)model.rpc_servers.size(); - if (device >= dev_count - rpc_count) { - size_t total; - size_t free; - const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str(); - ggml_backend_rpc_get_device_memory(endpoint, &free, &total); - return free; - } -#endif -#if defined(GGML_USE_CUDA) - size_t total; - size_t free; - ggml_backend_cuda_get_device_memory(device, &free, &total); - return free; -#elif defined(GGML_USE_SYCL) - size_t total; - size_t free; - ggml_backend_sycl_get_device_memory(device, &free, &total); - return free; -#elif defined(GGML_USE_VULKAN) - size_t total; - size_t free; - ggml_backend_vk_get_device_memory(device, &free, &total); - return free; -#else - return 1; -#endif - GGML_UNUSED(model); - GGML_UNUSED(device); -} - -// -// kv cache helpers -// - -static bool llama_kv_cache_init( - struct llama_kv_cache & cache, - const llama_context * ctx, - ggml_type type_k, - ggml_type type_v, - uint32_t kv_size, - bool offload) { - const llama_model & model = ctx->model; - const llama_cparams & cparams = ctx->cparams; - - const struct llama_hparams & hparams = model.hparams; - - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); - const int64_t n_layer = hparams.n_layer; - - cache.has_shift = false; - - // TODO: find a nicer way to add other recurrent model architectures - cache.recurrent = model.arch == LLM_ARCH_MAMBA; - cache.v_trans = !cparams.flash_attn; - - // TODO: support mixed recurrent Transformer architectures - // NOTE: (!a || b) is a logical implication (a -> b) - GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s()); - GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s()); - GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa()); - GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa()); - - cache.head = 0; - cache.size = kv_size; - cache.used = 0; - - cache.type_k = type_k; - cache.type_v = type_v; - - cache.cells.clear(); - cache.cells.resize(kv_size); - - if (cache.recurrent) { - // init state copy sources - for (uint32_t i = 0; i < cache.size; ++i) { - cache.cells[i].src = i; - } - } - - // count used buffer types - std::map<ggml_backend_buffer_type_t, int> buft_layer_count; - if (offload) { - for (int64_t i = 0; i < n_layer; ++i) { - buft_layer_count[model.buft_layer[i].buft]++; - } - } else { - buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer; - } - - // create a context for each buffer type - std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; - for (auto & it : buft_layer_count) { - int n_layers = it.second; - struct ggml_init_params params = { - /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(), - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - ggml_context * ctx = ggml_init(params); - if (!ctx) { - LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__); - return false; - } - ctx_map[it.first] = ctx; - cache.ctxs.push_back(ctx); - } - - cache.k_l.reserve(n_layer); - cache.v_l.reserve(n_layer); - - for (int i = 0; i < (int) n_layer; i++) { - struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); - ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); - ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); - ggml_format_name(k, "cache_k_l%d", i); - ggml_format_name(v, "cache_v_l%d", i); - cache.k_l.push_back(k); - cache.v_l.push_back(v); - } - - // allocate tensors and initialize the buffers to avoid NaNs in the padding - for (auto it : ctx_map) { - ggml_backend_buffer_type_t buft = it.first; - ggml_context * ctx = it.second; - ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); - if (!buf) { - LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); - return false; - } - ggml_backend_buffer_clear(buf, 0); - LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); - cache.bufs.push_back(buf); - } - - return true; -} - -// find an empty slot of size "n_tokens" in the cache -// updates the cache head -// Note: On success, it's important that cache.head points -// to the first cell of the slot. -static bool llama_kv_cache_find_slot( - struct llama_kv_cache & cache, - const struct llama_batch & batch) { - const uint32_t n_tokens = batch.n_tokens; - - if (cache.recurrent) { - // For recurrent state architectures (like Mamba), - // each KV cache cell can store the state for a whole sequence. - - llama_seq_id min = cache.size - 1; - llama_seq_id max = 0; - - for (uint32_t i = 0; i < n_tokens; ++i) { - for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) { - llama_seq_id seq_id = batch.seq_id[i][j]; - // make sure it's a valid seq_id - if ((uint32_t) seq_id < cache.size) { - if (seq_id > max) { - max = seq_id; - } - if (seq_id < min) { - min = seq_id; - } - // Assuming the tokens are in-order - if (batch.pos[i] != cache.cells[seq_id].pos + 1) { - // What should happen when the pos backtracks or skips a value? - // Clearing the state mid-batch would require special-casing which isn't done. - LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n", - __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id); - } - if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) { - cache.used += 1; - } - cache.cells[seq_id].pos = batch.pos[i]; - // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set - } else { - // too big seq_id - // TODO: would it be possible to resize the KV cache size instead? - LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); - return false; - } - } - } - - // allow getting the range of used cells, from head to head + n - cache.head = min; - cache.n = max - min + 1; - - // sanity check - return max >= min; - } - // otherwise, one cell per token. - - if (n_tokens > cache.size) { - LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size); - return false; - } - - uint32_t n_tested = 0; - - while (true) { - if (cache.head + n_tokens > cache.size) { - n_tested += cache.size - cache.head; - cache.head = 0; - continue; - } - - bool found = true; - for (uint32_t i = 0; i < n_tokens; i++) { - if (cache.cells[cache.head + i].pos >= 0) { - found = false; - cache.head += i + 1; - n_tested += i + 1; - break; - } - } - - if (found) { - break; - } - - if (n_tested >= cache.size) { - //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); - return false; - } - } - - for (uint32_t i = 0; i < n_tokens; i++) { - cache.cells[cache.head + i].pos = batch.pos[i]; - - for (int32_t j = 0; j < batch.n_seq_id[i]; j++) { - cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]); - } - } - - cache.used += n_tokens; - - return true; -} - -// find how many cells are currently in use -static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { - for (uint32_t i = cache.size; i > 0; --i) { - const llama_kv_cell & cell = cache.cells[i - 1]; - - if (cell.pos >= 0 && !cell.is_empty()) { - return i; - } - } - - return 0; -} - -static void llama_kv_cache_clear(struct llama_kv_cache & cache) { - for (int32_t i = 0; i < (int32_t) cache.size; ++i) { - cache.cells[i].pos = -1; - cache.cells[i].seq_id.clear(); - } - cache.head = 0; - cache.used = 0; - - for (auto & buf : cache.bufs) { - ggml_backend_buffer_clear(buf, 0); - } -} - -static bool llama_kv_cache_seq_rm( - struct llama_kv_cache & cache, - llama_seq_id seq_id, - llama_pos p0, - llama_pos p1) { - uint32_t new_head = cache.size; - - if (p0 < 0) p0 = 0; - if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); - - // models like Mamba can't have a state partially erased - if (cache.recurrent) { - if (seq_id >= (int64_t) cache.size) { - // could be fatal - return false; - } - if (0 <= seq_id) { - // partial intersection is invalid - if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) { - return false; - } - } else { - // seq_id is negative, then the range should include everything or nothing - if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) { - return false; - } - } - } - - for (uint32_t i = 0; i < cache.size; ++i) { - if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { - if (seq_id < 0) { - cache.cells[i].seq_id.clear(); - } else if (cache.cells[i].has_seq_id(seq_id)) { - cache.cells[i].seq_id.erase(seq_id); - } else { - continue; - } - if (cache.cells[i].is_empty()) { - // keep count of the number of used cells - if (cache.cells[i].pos >= 0) cache.used--; - - cache.cells[i].pos = -1; - if (new_head == cache.size) new_head = i; - } - } - } - - // If we freed up a slot, set head to it so searching can start there. - if (new_head != cache.size && new_head < cache.head) cache.head = new_head; - - return true; -} - -static void llama_kv_cache_seq_cp( - struct llama_kv_cache & cache, - llama_seq_id seq_id_src, - llama_seq_id seq_id_dst, - llama_pos p0, - llama_pos p1) { - if (p0 < 0) p0 = 0; - if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); - - if (cache.recurrent) { - if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) { - seq_id_src = cache.cells[seq_id_src].src; - GGML_ASSERT((uint32_t) seq_id_src < cache.size); - // intent to "copy from" - // supports copy chains thanks to taking the source of the source - cache.cells[seq_id_dst].src = seq_id_src; - - // preserve the "keep or clear" status of the copied sequence - if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) { - cache.cells[seq_id_dst].seq_id.insert(seq_id_dst); - } else { - cache.cells[seq_id_dst].seq_id.erase(seq_id_dst); - } - - cache.do_copy = true; - - cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos; - } - return; - } - // otherwise, this is the KV cache of a Transformer-like model - - cache.head = 0; - - for (uint32_t i = 0; i < cache.size; ++i) { - if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { - cache.cells[i].seq_id.insert(seq_id_dst); - } - } -} - -static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { - uint32_t new_head = cache.size; - - for (uint32_t i = 0; i < cache.size; ++i) { - if (!cache.cells[i].has_seq_id(seq_id)) { - if (cache.cells[i].pos >= 0) cache.used--; - cache.cells[i].pos = -1; - cache.cells[i].seq_id.clear(); - if (new_head == cache.size) new_head = i; - } else { - cache.cells[i].seq_id.clear(); - cache.cells[i].seq_id.insert(seq_id); - } - } - - // If we freed up a slot, set head to it so searching can start there. - if (new_head != cache.size && new_head < cache.head) cache.head = new_head; -} - -static void llama_kv_cache_seq_add( - struct llama_kv_cache & cache, - llama_seq_id seq_id, - llama_pos p0, - llama_pos p1, - llama_pos delta) { - uint32_t new_head = cache.size; - - if (p0 < 0) p0 = 0; - if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); - - if (cache.recurrent) { - // for Mamba-like models, only the pos needs to be shifted - if (0 <= seq_id && seq_id < (int64_t) cache.size) { - llama_kv_cell & cell = cache.cells[seq_id]; - if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { - cell.pos += delta; - } - } - return; - } - - for (uint32_t i = 0; i < cache.size; ++i) { - if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { - cache.has_shift = true; - cache.cells[i].pos += delta; - cache.cells[i].delta += delta; - - if (cache.cells[i].pos < 0) { - if (!cache.cells[i].is_empty()) { - cache.used--; - } - cache.cells[i].pos = -1; - cache.cells[i].seq_id.clear(); - if (new_head == cache.size) { - new_head = i; - } - } - } - } - - // If we freed up a slot, set head to it so searching can start there. - // Otherwise we just start the next search from the beginning. - cache.head = new_head != cache.size ? new_head : 0; -} - -static void llama_kv_cache_seq_div( - struct llama_kv_cache & cache, - llama_seq_id seq_id, - llama_pos p0, - llama_pos p1, - int d) { - if (p0 < 0) p0 = 0; - if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max(); - - if (cache.recurrent) { - // for Mamba-like models, only the pos needs to be changed - if (0 <= seq_id && seq_id < (int64_t) cache.size) { - llama_kv_cell & cell = cache.cells[seq_id]; - if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { - cell.pos /= d; - } - } - return; - } - - for (uint32_t i = 0; i < cache.size; ++i) { - if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { - cache.has_shift = true; - - { - llama_pos p_old = cache.cells[i].pos; - cache.cells[i].pos /= d; - cache.cells[i].delta += cache.cells[i].pos - p_old; - } - } - } -} - -static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { - llama_pos result = 0; - - for (uint32_t i = 0; i < cache.size; ++i) { - if (cache.cells[i].has_seq_id(seq_id)) { - result = std::max(result, cache.cells[i].pos); - } - } - - return result; -} - -static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { - cache.do_defrag = true; -} - -static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) { - // the FA kernels require padding to avoid extra runtime boundary checks - return cparams.flash_attn ? 256u : 32u; -} - -// -// model loading and saving -// - -enum llama_fver { - GGUF_FILE_VERSION_V1 = 1, - GGUF_FILE_VERSION_V2 = 2, - GGUF_FILE_VERSION_V3 = 3, -}; - -static const char * llama_file_version_name(llama_fver version) { - switch (version) { - case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; - case GGUF_FILE_VERSION_V2: return "GGUF V2"; - case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)"; - } - - return "unknown"; -} - -static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) { - char buf[256]; - snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0)); - for (size_t i = 1; i < ne.size(); i++) { - snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i)); - } - return buf; -} - -static std::string llama_format_tensor_shape(const struct ggml_tensor * t) { - char buf[256]; - snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]); - for (int i = 1; i < GGML_MAX_DIMS; i++) { - snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]); - } - return buf; -} - -namespace GGUFMeta { - template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)> - struct GKV_Base_Type { - static constexpr gguf_type gt = gt_; - - static T getter(const gguf_context * ctx, const int kid) { - return gfun(ctx, kid); - } - }; - - template<typename T> struct GKV_Base; - - template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {}; - template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {}; - template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {}; - template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {}; - template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {}; - template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {}; - template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {}; - template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {}; - template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {}; - template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {}; - template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {}; - template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {}; - - template<> struct GKV_Base<std::string> { - static constexpr gguf_type gt = GGUF_TYPE_STRING; - - static std::string getter(const gguf_context * ctx, const int kid) { - return gguf_get_val_str(ctx, kid); - } - }; - - struct ArrayInfo { - const gguf_type gt; - const size_t length; - const void * data; - }; - - template<> struct GKV_Base<ArrayInfo> { - public: - static constexpr gguf_type gt = GGUF_TYPE_ARRAY; - static ArrayInfo getter(const gguf_context *ctx, const int k) { - return ArrayInfo { - gguf_get_arr_type(ctx, k), - size_t(gguf_get_arr_n(ctx, k)), - gguf_get_arr_data(ctx, k), - }; - } - }; - - template<typename T> - class GKV : public GKV_Base<T> { - GKV() = delete; - - public: - static T get_kv(const gguf_context * ctx, const int k) { - const enum gguf_type kt = gguf_get_kv_type(ctx, k); - - if (kt != GKV::gt) { - throw std::runtime_error(format("key %s has wrong type %s but expected type %s", - gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt))); - } - return GKV::getter(ctx, k); - } - - static const char * override_type_to_str(const llama_model_kv_override_type ty) { - switch (ty) { - case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; - case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; - case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; - case LLAMA_KV_OVERRIDE_TYPE_STR: return "str"; - } - return "unknown"; - } - - static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { - if (!ovrd) { return false; } - if (ovrd->tag == expected_type) { - LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", - __func__, override_type_to_str(ovrd->tag), ovrd->key); - switch (ovrd->tag) { - case LLAMA_KV_OVERRIDE_TYPE_BOOL: { - LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false"); - } break; - case LLAMA_KV_OVERRIDE_TYPE_INT: { - LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64); - } break; - case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { - LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64); - } break; - case LLAMA_KV_OVERRIDE_TYPE_STR: { - LLAMA_LOG_INFO("%s\n", ovrd->val_str); - } break; - default: - // Shouldn't be possible to end up here, but just in case... - throw std::runtime_error( - format("Unsupported attempt to override %s type for metadata key %s\n", - override_type_to_str(ovrd->tag), ovrd->key)); - } - return true; - } - LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", - __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); - return false; - } - - template<typename OT> - static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type - try_override(OT & target, const struct llama_model_kv_override * ovrd) { - if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { - target = ovrd->val_bool; - return true; - } - return false; - } - - template<typename OT> - static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type - try_override(OT & target, const struct llama_model_kv_override * ovrd) { - if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { - target = ovrd->val_i64; - return true; - } - return false; - } - - template<typename OT> - static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type - try_override(T & target, const struct llama_model_kv_override * ovrd) { - if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { - target = ovrd->val_f64; - return true; - } - return false; - } - - template<typename OT> - static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type - try_override(T & target, const struct llama_model_kv_override * ovrd) { - if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) { - target = ovrd->val_str; - return true; - } - return false; - } - - static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { - if (try_override<T>(target, ovrd)) { - return true; - } - if (k < 0) { return false; } - target = get_kv(ctx, k); - return true; - } - - static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { - return set(ctx, gguf_find_key(ctx, key), target, ovrd); - } - - static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { - return set(ctx, key.c_str(), target, ovrd); - } - }; -} - -using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>; - -struct llama_model_loader { - int n_kv = 0; - int n_tensors = 0; - int n_created = 0; - - int64_t n_elements = 0; - size_t n_bytes = 0; - - bool use_mmap = false; - bool check_tensors; - - llama_files files; - llama_ftype ftype; - llama_fver fver; - - llama_mmaps mappings; - - // Holds information on a model weight - struct llama_tensor_weight { - uint16_t idx; // source file index - size_t offs; // tensor data offset in the original file - - ggml_tensor * tensor; - - llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { - const int tensor_idx = gguf_find_tensor(gguf_ctx, name); - offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); - - if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) { - throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name)); - } - } - }; - std::vector<llama_tensor_weight> weights; - - std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides; - - struct gguf_context * meta = NULL; - std::vector<ggml_context *> contexts; - - std::string arch_name; - LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); - - llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) { - int trace = 0; - if (getenv("LLAMA_TRACE")) { - trace = atoi(getenv("LLAMA_TRACE")); - } - - if (param_overrides_p != nullptr) { - for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) { - kv_overrides.insert({std::string(p->key), *p}); - } - } - - struct ggml_context * ctx = NULL; - struct gguf_init_params params = { - /*.no_alloc = */ true, - /*.ctx = */ &ctx, - }; - - meta = gguf_init_from_file(fname.c_str(), params); - if (!meta) { - throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); - } - - get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); - llm_kv = LLM_KV(llm_arch_from_string(arch_name)); - - files.emplace_back(new llama_file(fname.c_str(), "rb")); - contexts.emplace_back(ctx); - - // Save tensors data offset of the main file. - // For subsidiary files, `meta` tensor data offset must not be used, - // so we build a unified tensors index for weights. - for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(files.back().get(), 0, cur->name, meta, cur); - } - uint16_t n_split = 0; - get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); - - // Load additional GGML contexts - if (n_split > 1) { - uint16_t idx = 0; - get_key(llm_kv(LLM_KV_SPLIT_NO), idx); - if (idx != 0) { - throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx)); - } - - char split_prefix[PATH_MAX] = {0}; - if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) { - throw std::runtime_error(format("invalid split file: %s", fname.c_str())); - } - - if (trace > 0) { - LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); - } - - char split_path[PATH_MAX] = {0}; - for (idx = 1; idx < n_split; idx++) { - llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); - - struct gguf_init_params split_params = { - /*.no_alloc = */ true, - /*.ctx = */ &ctx, - }; - struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params); - if (!ctx_gguf) { - throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); - } - - files.emplace_back(new llama_file(split_path, "rb")); - contexts.emplace_back(ctx); - - // Save tensors data offset info of the shard. - for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur); - } - - gguf_free(ctx_gguf); - } - - get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); - - // sanity check - { - const int n_tensors_loaded = (int) weights.size(); - if (n_tensors != n_tensors_loaded) { - throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); - } - } - - LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); - } - - n_kv = gguf_get_n_kv(meta); - n_tensors = weights.size(); - - fver = (enum llama_fver) gguf_get_version(meta); - - std::set<std::string> tensor_names; - for (auto & w : weights) { - n_elements += ggml_nelements(w.tensor); - n_bytes += ggml_nbytes(w.tensor); - // make sure there is no duplicated tensor names - const std::string name(w.tensor->name); - auto found = tensor_names.find(name); - if (found != tensor_names.end()) { - throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name)); - } - tensor_names.insert(name); - } - - LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", - __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); - - // determine file type based on the number of tensors for each quantization and print meta data - // TODO: make optional - { - std::map<enum ggml_type, uint32_t> n_type; - - uint32_t n_type_max = 0; - enum ggml_type type_max = GGML_TYPE_F32; - - for (int i = 0; i < n_tensors; i++) { - const ggml_tensor * tensor = weights.at(i).tensor; - enum ggml_type type = tensor->type; - - n_type[type]++; - - if (n_type_max < n_type[type]) { - n_type_max = n_type[type]; - type_max = type; - } - - if (trace > 0) { - const uint16_t sid = weights.at(i).idx; - LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); - } - } - - switch (type_max) { - case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; - case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; - case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break; - case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; - case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; - case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; - case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; - case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; - case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; - case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; - case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; - case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; - case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; - case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; - case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; - case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; - case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; - case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; - case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; - case GGML_TYPE_IQ1_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ1_BN; break; - case GGML_TYPE_IQ2_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ2_BN; break; - case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; - case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; - case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; - default: - { - LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); - ftype = LLAMA_FTYPE_ALL_F32; - } break; - } - - // this is a way to mark that we have "guessed" the file type - ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); - - { - const int kid = gguf_find_key(meta, "general.file_type"); - if (kid >= 0) { - ftype = (llama_ftype) gguf_get_val_u32(meta, kid); - } - } - - LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); - - for (int i = 0; i < n_kv; i++) { - const char * name = gguf_get_key(meta, i); - const enum gguf_type type = gguf_get_kv_type(meta, i); - const std::string type_name = - type == GGUF_TYPE_ARRAY - ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i)) - : gguf_type_name(type); - - std::string value = gguf_kv_to_str(meta, i); - const size_t MAX_VALUE_LEN = 40; - if (value.size() > MAX_VALUE_LEN) { - value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); - } - replace_all(value, "\n", "\\n"); - - LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); - } - - // print type counts - for (auto & kv : n_type) { - if (kv.second == 0) { - continue; - } - - LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); - } - } - - if (!llama_mmap::SUPPORTED) { - LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); - use_mmap = false; - } - - this->use_mmap = use_mmap; - this->check_tensors = check_tensors; - } - - ~llama_model_loader() { - if (meta) { - gguf_free(meta); - } - for (auto * ctx : contexts) { - ggml_free(ctx); - } - } - - template<typename T> - typename std::enable_if<std::is_integral<T>::value, bool>::type - get_arr_n(const std::string & key, T & result, const bool required = true) { - const int kid = gguf_find_key(meta, key.c_str()); - - if (kid < 0) { - if (required) { - throw std::runtime_error(format("key not found in model: %s", key.c_str())); - } - return false; - } - - struct GGUFMeta::ArrayInfo arr_info = - GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid); - - - result = arr_info.length; - return true; - } - - template<typename T> - typename std::enable_if<std::is_integral<T>::value, bool>::type - get_arr_n(const enum llm_kv kid, T & result, const bool required = true) { - return get_arr_n(llm_kv(kid), result, required); - } - - template<typename T> - bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) { - const int kid = gguf_find_key(meta, key.c_str()); - - if (kid < 0) { - if (required) { - throw std::runtime_error(format("key not found in model: %s", key.c_str())); - } - return false; - } - - struct GGUFMeta::ArrayInfo arr_info = - GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid); - - if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) { - throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str())); - } - - // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T)); - GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value)); - GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value)); - - result.resize(arr_info.length); - result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); - - return true; - } - - template<typename T> - bool get_arr(const enum llm_kv kid, T& result, const bool required = true) { - return get_arr(llm_kv(kid), result, required); - } - - template<typename T> - bool get_key(const std::string & key, T & result, const bool required = true) { - auto it = kv_overrides.find(key); - - const struct llama_model_kv_override * override = - it != kv_overrides.end() ? &it->second : nullptr; - - const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override); - - if (required && !found) { - throw std::runtime_error(format("key not found in model: %s", key.c_str())); - } - - return found; - } - - template<typename T> - bool get_key(const enum llm_kv kid, T & result, const bool required = true) { - return get_key(llm_kv(kid), result, required); - } - - std::string get_arch_name() const { - return arch_name; - } - - enum llm_arch get_arch() const { - return llm_kv.arch; - } - - const char * get_tensor_name(int i) const { - return weights.at(i).tensor->name; - } - - const llama_tensor_weight * get_weight(const char * name) const { - for (const auto & weight : weights) { - if (strcmp(name, weight.tensor->name) == 0) { - return &weight; - } - } - return nullptr; - } - - const llama_tensor_weight * get_weight(int i) const { - return get_weight(get_tensor_name(i)); - } - - const llama_tensor_weight & require_weight(const char * name) const { - const llama_tensor_weight * weight = get_weight(name); - if (!weight) { - throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); - } - return *weight; - } - - struct ggml_tensor * get_tensor_meta(const char * name) const { - const auto * weight = get_weight(name); - if (!weight) { - return nullptr; - } - return weight->tensor; - } - - struct ggml_tensor * require_tensor_meta(const char * name) const { - struct ggml_tensor * tensor = get_tensor_meta(name); - if (!tensor) { - throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); - } - return tensor; - } - - struct ggml_tensor * get_tensor_meta(int i) const { - return get_tensor_meta(get_tensor_name(i)); - } - - struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) { - struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); - ggml_set_name(tensor, ggml_get_name(cur)); - - if (duplicated) { - size_data += ggml_nbytes(cur); - } else { - n_created++; - } - - return tensor; - } - - const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const { - const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); - - if (cur == NULL) { - if (!required) { - return NULL; - } - throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); - } - - { - bool is_ok = true; - for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { - if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { - is_ok = false; - break; - } - } - if (!is_ok) { - throw std::runtime_error( - format("%s: tensor '%s' has wrong shape; expected %s, got %s", - __func__, name.c_str(), - llama_format_tensor_shape(ne).c_str(), - llama_format_tensor_shape(cur).c_str())); - } - } - - return cur; - } - - static const int TENSOR_NOT_REQUIRED = 1; - static const int TENSOR_DUPLICATED = 2; - - struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) { - const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED)); - - if (cur == NULL) { - return NULL; - } - - return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED); - } - - struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) { - const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); - - if (cur == NULL) { - return NULL; - } - - if (cur->type != base->type) { - throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); - } - - std::array<int64_t, GGML_MAX_DIMS> dims; - for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { - dims[i] = i < ne.size() ? ne[i] : 1; - } - - struct ggml_tensor * tensor = ggml_view_4d(ctx, base, - dims[0], dims[1], dims[2], dims[3], - cur->nb[1], cur->nb[2], cur->nb[3], - offset); - - ggml_set_name(tensor, name.c_str()); - - n_created++; - - return tensor; - } - - void done_getting_tensors() const { - if (n_created != n_tensors) { - throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); - } - } - - void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) { - if (use_mmap) { - mappings.reserve(files.size()); - mmaps_used.reserve(files.size()); - for (const auto & file : files) { - std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa())); - mmaps_used.emplace_back(mapping->size, 0); - if (mlock_mmaps) { - std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock()); - mlock_mmap->init(mapping->addr); - mlock_mmaps->emplace_back(std::move(mlock_mmap)); - } - mappings.emplace_back(std::move(mapping)); - } - } - - // compute the total size of all tensors for progress reporting - for (auto & w : weights) { - size_data += ggml_nbytes(w.tensor); - } - } - - void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const { - GGML_ASSERT(!mappings.empty()); - const auto & mapping = mappings.at(idx); - - *first = mapping->size; - *last = 0; - *addr = mapping->addr; - for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { - try { - const auto * weight = get_weight(ggml_get_name(tensor)); - if (!weight) { - continue; - } - if (weight->idx != idx) { - continue; - } - *first = std::min(*first, weight->offs); - *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); - } catch(...) { - // the tensor is not in the model - } - } - } - - // for backwards compatibility, does not support ggml-backend - void load_data_for(struct ggml_tensor * cur) const { - const auto & w = require_weight(ggml_get_name(cur)); - - if (use_mmap) { - const auto & mapping = mappings.at(w.idx); - if (cur->data == nullptr) { - cur->data = (uint8_t *)mapping->addr + w.offs; - } else { - memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur)); - } - } else { - GGML_ASSERT(cur->data != nullptr); - GGML_ASSERT(w.idx < files.size()); - const auto & file = files.at(w.idx); - file->seek(w.offs, SEEK_SET); - file->read_raw(cur->data, ggml_nbytes(cur)); - } - - if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) { - throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); - } - } - - size_t size_done = 0; - size_t size_data = 0; - std::vector<std::pair<size_t, size_t>> mmaps_used; - - // Returns false if cancelled by progress_callback - bool load_all_data( - struct ggml_context * ctx, - llama_buf_map & bufs_mmap, - llama_mlocks * lmlocks, - llama_progress_callback progress_callback, - void * progress_callback_user_data) { - GGML_ASSERT(size_data != 0 && "call init_mappings() first"); - - std::vector<no_init<uint8_t>> read_buf; - std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result; - -#if defined(GGML_USE_CUDA) - // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives. - // NVMe raid configurations might require more / larger buffers. - constexpr size_t num_buffers = 4; - constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB - - std::vector<ggml_backend_buffer_t> host_buffers; - std::vector<void*> host_ptrs; - std::vector<ggml_backend_event_t> events; - size_t buffer_idx = 0; // buffer to use for async loads - - ggml_backend_t cuda_backend = nullptr; - if (!use_mmap && !check_tensors) { - // When not using mmaped io use async uploads from pinned memory to GPU memory. - // First determine if the CUDA backend is active, and if so, determine the device ID. - ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr; - if (buf) { - ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf); - for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { - auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i); - if (buffer_type == cuda_buffer_type) { - cuda_backend = ggml_backend_cuda_init(i); - break; - } - } - } - - // If the cuda backend is active create pinned memory buffers and events for synchronisation. - if (cuda_backend) { - for (size_t idx = 0; idx < num_buffers; ++idx) { - host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size)); - host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx])); - events.emplace_back(ggml_backend_event_new(cuda_backend)); - } - } - } -#endif - - for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { - const auto * weight = get_weight(ggml_get_name(cur)); - if (weight == nullptr) { - // this can happen with split experts models - continue; - } - - if (progress_callback) { - if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { - return false; - } - } - - size_t n_size = ggml_nbytes(cur); - - if (use_mmap) { - const auto & mapping = mappings.at(weight->idx); - ggml_backend_buffer_t buf_mmap = nullptr; - if (bufs_mmap.count(weight->idx)) { - buf_mmap = bufs_mmap.at(weight->idx); - } - uint8_t * data = (uint8_t *) mapping->addr + weight->offs; - - if (check_tensors) { - validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { - return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size)); - })); - } - - GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated - if (buf_mmap && cur->data == nullptr) { - ggml_backend_tensor_alloc(buf_mmap, cur, data); - if (lmlocks) { - const auto & lmlock = lmlocks->at(weight->idx); - lmlock->grow_to(weight->offs + n_size); - } - - auto & mmap_used = mmaps_used[weight->idx]; - mmap_used.first = std::min(mmap_used.first, weight->offs); - mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); - } else { - ggml_backend_tensor_set(cur, data, 0, n_size); - } - } else { - GGML_ASSERT(weight->idx < files.size()); - const auto & file = files.at(weight->idx); - if (ggml_backend_buffer_is_host(cur->buffer)) { - file->seek(weight->offs, SEEK_SET); - file->read_raw(cur->data, n_size); - if (check_tensors) { - validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] { - return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)); - })); - } - } else { -#if defined(GGML_USE_CUDA) - // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU. - if (cuda_backend) { - file->seek(weight->offs, SEEK_SET); - - size_t bytes_read = 0; - - while (bytes_read < n_size) { - size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read); - - ggml_backend_event_synchronize(events[buffer_idx]); - file->read_raw(host_ptrs[buffer_idx], read_iteration); - ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration); - ggml_backend_event_record(events[buffer_idx]); - - bytes_read += read_iteration; - ++buffer_idx; - buffer_idx %= num_buffers; - } - } - else -#endif - { - read_buf.resize(n_size); - file->seek(weight->offs, SEEK_SET); - file->read_raw(read_buf.data(), n_size); - ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); - if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) { - throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur))); - } - } - } - } - - size_done += n_size; - } - -#if defined(GGML_USE_CUDA) - // free temporary resources used for async cuda uploads - if (cuda_backend) { - for (size_t idx = 0; idx < num_buffers;++idx) { - ggml_backend_event_synchronize(events[idx]); - ggml_backend_event_free(events[idx]); - ggml_backend_buffer_free(host_buffers[idx]); - } - ggml_backend_free(cuda_backend); - } -#endif - - // check validation results - bool validation_failed = false; - for (auto & future : validation_result) { - auto result = future.get(); - if (!result.second) { - LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first)); - validation_failed = true; - } - } - if (validation_failed) { - throw std::runtime_error("found tensors with invalid data"); - } - - // check if this is the last call and do final cleanup - if (size_done >= size_data) { - // unmap offloaded tensors and metadata - if (use_mmap) { - for (uint32_t idx = 0; idx < mappings.size(); idx++) { - const auto & mmap_used = mmaps_used.at(idx); - auto & mapping = mappings.at(idx); - mapping->unmap_fragment(0, mmap_used.first); - if (mmap_used.second != 0) { - mapping->unmap_fragment(mmap_used.second, mapping->size); - } - } - } - if (progress_callback) { - // Even though the model is done loading, we still honor - // cancellation since we need to free allocations. - return progress_callback(1.0f, progress_callback_user_data); - } - } - - return true; - } -}; - -template<> -bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) { - uint32_t tmp; - const bool found = get_key(kid, tmp, required); - if (found) { - result = (enum llama_pooling_type) tmp; - } else { - result = LLAMA_POOLING_TYPE_UNSPECIFIED; - } - return found; -} - - -// -// load LLaMA models -// - -static const char * llama_model_arch_name(llm_arch arch) { - auto it = LLM_ARCH_NAMES.find(arch); - if (it == LLM_ARCH_NAMES.end()) { - return "unknown"; - } - return it->second; -} - -static std::string llama_model_ftype_name(llama_ftype ftype) { - if (ftype & LLAMA_FTYPE_GUESSED) { - return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; - } - - switch (ftype) { - case LLAMA_FTYPE_ALL_F32: return "all F32"; - case LLAMA_FTYPE_MOSTLY_F16: return "F16"; - case LLAMA_FTYPE_MOSTLY_BF16: return "BF16"; - case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; - case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; - case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: - return "Q4_1, some F16"; - case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0"; - case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1"; - case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0"; - - // K-quants - case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium"; - case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small"; - case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small"; - case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium"; - case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large"; - case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small"; - case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium"; - case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; - case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; - case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; - case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ1_BN :return "IQ1_BN - 1.625 bpw Bitnet"; - case LLAMA_FTYPE_MOSTLY_IQ2_BN :return "IQ2_BN - 2.00 bpw Bitnet"; - case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; - case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; - - default: return "unknown, may not work"; - } -} - -static const char * llama_model_type_name(e_model type) { - switch (type) { - case MODEL_14M: return "14M"; - case MODEL_17M: return "17M"; - case MODEL_22M: return "22M"; - case MODEL_33M: return "33M"; - case MODEL_70M: return "70M"; - case MODEL_109M: return "109M"; - case MODEL_137M: return "137M"; - case MODEL_160M: return "160M"; - case MODEL_335M: return "335M"; - case MODEL_410M: return "410M"; - case MODEL_0_5B: return "0.5B"; - case MODEL_1B: return "1B"; - case MODEL_1_4B: return "1.4B"; - case MODEL_2B: return "2B"; - case MODEL_2_8B: return "2.8B"; - case MODEL_3B: return "3B"; - case MODEL_4B: return "4B"; - case MODEL_6_9B: return "6.9B"; - case MODEL_7B: return "7B"; - case MODEL_8B: return "8B"; - case MODEL_12B: return "12B"; - case MODEL_13B: return "13B"; - case MODEL_14B: return "14B"; - case MODEL_15B: return "15B"; - case MODEL_16B: return "16B"; - case MODEL_20B: return "20B"; - case MODEL_30B: return "30B"; - case MODEL_34B: return "34B"; - case MODEL_35B: return "35B"; - case MODEL_40B: return "40B"; - case MODEL_65B: return "65B"; - case MODEL_70B: return "70B"; - case MODEL_236B: return "236B"; - case MODEL_314B: return "314B"; - case MODEL_SMALL: return "0.1B"; - case MODEL_MEDIUM: return "0.4B"; - case MODEL_LARGE: return "0.8B"; - case MODEL_XL: return "1.5B"; - case MODEL_A2_7B: return "A2.7B"; - case MODEL_8x7B: return "8x7B"; - case MODEL_8x22B: return "8x22B"; - case MODEL_16x12B: return "16x12B"; - case MODEL_10B_128x3_66B: return "10B+128x3.66B"; - default: return "?B"; - } -} - -static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ - switch (type) { - case LLAMA_VOCAB_TYPE_NONE: return "no vocab"; - case LLAMA_VOCAB_TYPE_SPM: return "SPM"; - case LLAMA_VOCAB_TYPE_BPE: return "BPE"; - case LLAMA_VOCAB_TYPE_WPM: return "WPM"; - default: return "unknown"; - } -} - -static void llm_load_arch(llama_model_loader & ml, llama_model & model) { - model.arch = ml.get_arch(); - if (model.arch == LLM_ARCH_UNKNOWN) { - throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); - } -} - -static void llm_load_hparams( - llama_model_loader & ml, - llama_model & model) { - auto & hparams = model.hparams; - const gguf_context * ctx = ml.meta; - - // get metadata as string - for (int i = 0; i < gguf_get_n_kv(ctx); i++) { - enum gguf_type type = gguf_get_kv_type(ctx, i); - if (type == GGUF_TYPE_ARRAY) { - continue; - } - const char * name = gguf_get_key(ctx, i); - const std::string value = gguf_kv_to_str(ctx, i); - model.gguf_kv.emplace(name, value); - } - - // get general kv - ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); - - // get hparams kv - ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); - - // everything past this point is not vocab-related - if (hparams.vocab_only) { - return; - } - - ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); - ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); - ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff); - ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head); - ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); - ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); - ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); - - GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); - GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); - if (hparams.n_expert > 0) { - GGML_ASSERT(hparams.n_expert_used > 0); - } else { - GGML_ASSERT(hparams.n_expert_used == 0); - } - - // n_head_kv is optional, default to n_head - hparams.n_head_kv = hparams.n_head; - ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false); - - bool rope_finetuned = false; - ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); - hparams.rope_finetuned = rope_finetuned; - - hparams.n_ctx_orig_yarn = hparams.n_ctx_train; - ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false); - - // rope_freq_base (optional) - hparams.rope_freq_base_train = 10000.0f; - ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false); - - std::string rope_scaling("linear"); - ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); - hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); - GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); - - // rope_freq_scale (inverse of the kv) is optional - float ropescale = 0.0f; - if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) { - // try the old key name - ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false); - } - hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; - - ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false); - - // sanity check for n_rot (optional) - { - hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; - - ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); - - if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { - if (hparams.n_rot != hparams.n_embd / hparams.n_head) { - throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head)); - } - } - // gpt-neox n_rot = rotary_pct * (n_embd / n_head) - // gpt-j n_rot = rotary_dim - } - - hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; - ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); - - hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; - ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); - - // arch-specific KVs - switch (model.arch) { - case LLM_ARCH_LLAMA: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - if (hparams.n_expert == 8) { - switch (hparams.n_layer) { - case 32: model.type = e_model::MODEL_8x7B; break; - case 56: model.type = e_model::MODEL_8x22B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } else { - switch (hparams.n_layer) { - case 22: model.type = e_model::MODEL_1B; break; - case 26: model.type = e_model::MODEL_3B; break; - // granite uses a vocab with len 49152 - case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break; - case 36: model.type = e_model::MODEL_8B; break; // granite - case 40: model.type = e_model::MODEL_13B; break; - case 48: model.type = e_model::MODEL_34B; break; - case 60: model.type = e_model::MODEL_30B; break; - case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } - } break; - case LLM_ARCH_MINICPM: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - switch (hparams.n_layer) { - case 40: model.type = e_model::MODEL_2B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_GROK: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - switch (hparams.n_layer) { - case 64: model.type = e_model::MODEL_314B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_FALCON: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - - switch (hparams.n_layer) { - case 32: model.type = e_model::MODEL_7B; break; - case 60: model.type = e_model::MODEL_40B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_BAICHUAN: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - switch (hparams.n_layer) { - case 32: model.type = e_model::MODEL_7B; break; - case 40: model.type = e_model::MODEL_13B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - - if (model.type == e_model::MODEL_13B) { - // TODO: become GGUF KV parameter - hparams.f_max_alibi_bias = 8.0f; - } - } break; - case LLM_ARCH_STARCODER: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - switch (hparams.n_layer) { - case 24: model.type = e_model::MODEL_1B; break; - case 36: model.type = e_model::MODEL_3B; break; - case 42: model.type = e_model::MODEL_7B; break; - case 40: model.type = e_model::MODEL_15B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_REFACT: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - switch (hparams.n_layer) { - case 32: model.type = e_model::MODEL_1B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - - // TODO: become GGUF KV parameter - hparams.f_max_alibi_bias = 8.0f; - } break; - case LLM_ARCH_BERT: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); - ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); - ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); - - switch (hparams.n_layer) { - case 3: - model.type = e_model::MODEL_17M; break; // bge-micro - case 6: - model.type = e_model::MODEL_22M; break; // MiniLM-L6 - case 12: - switch (hparams.n_embd) { - case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small - case 768: model.type = e_model::MODEL_109M; break; // bge-base - } break; - case 24: - model.type = e_model::MODEL_335M; break; // bge-large - } - } break; - case LLM_ARCH_JINA_BERT_V2: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); - ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); - ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); - hparams.f_max_alibi_bias = 8.0f; - - switch (hparams.n_layer) { - case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small - case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base - } - } break; - case LLM_ARCH_NOMIC_BERT: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); - ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); - ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); - - if (hparams.n_layer == 12 && hparams.n_embd == 768) { - model.type = e_model::MODEL_137M; - } - } break; - case LLM_ARCH_BLOOM: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - - switch (hparams.n_layer) { - case 24: model.type = e_model::MODEL_1B; break; - case 30: - switch (hparams.n_embd) { - case 2560: model.type = e_model::MODEL_3B; break; - case 4096: model.type = e_model::MODEL_7B; break; - } break; - } - - // TODO: become GGUF KV parameter - hparams.f_max_alibi_bias = 8.0f; - } break; - case LLM_ARCH_MPT: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); - ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); - - switch (hparams.n_layer) { - case 32: model.type = e_model::MODEL_7B; break; - case 48: model.type = e_model::MODEL_30B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_STABLELM: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - - switch (hparams.n_layer) { - case 24: model.type = e_model::MODEL_1B; break; - case 32: model.type = e_model::MODEL_3B; break; - case 40: model.type = e_model::MODEL_12B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_QWEN: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - switch (hparams.n_layer) { - case 32: model.type = e_model::MODEL_7B; break; - case 40: model.type = e_model::MODEL_13B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_QWEN2: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - switch (hparams.n_layer) { - case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break; - case 32: model.type = e_model::MODEL_7B; break; - case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break; - case 80: model.type = e_model::MODEL_70B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_QWEN2MOE: - { - ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); - ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); - - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - switch (hparams.n_layer) { - case 24: model.type = e_model::MODEL_A2_7B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_PHI2: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - - switch (hparams.n_layer) { - case 24: model.type = e_model::MODEL_1B; break; - case 32: model.type = e_model::MODEL_3B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_PHI3: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - switch (hparams.n_layer) { - case 24: model.type = e_model::MODEL_1B; break; - case 32: model.type = e_model::MODEL_3B; break; - case 40: model.type = e_model::MODEL_14B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_PLAMO: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - switch (hparams.n_layer) { - case 40: model.type = e_model::MODEL_13B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_GPT2: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - switch (hparams.n_layer) { - case 12: model.type = e_model::MODEL_SMALL; break; - case 24: model.type = e_model::MODEL_MEDIUM; break; - case 36: model.type = e_model::MODEL_LARGE; break; - case 48: model.type = e_model::MODEL_XL; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_CODESHELL: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - switch (hparams.n_layer) { - case 42: model.type = e_model::MODEL_SMALL; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_ORION: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - - switch (hparams.n_layer) { - case 40: model.type = e_model::MODEL_14B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_INTERNLM2: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - switch (hparams.n_layer) { - case 32: model.type = e_model::MODEL_7B; break; - case 48: model.type = e_model::MODEL_20B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_GEMMA: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - switch (hparams.n_layer) { - case 18: model.type = e_model::MODEL_2B; break; - case 28: model.type = e_model::MODEL_7B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_STARCODER2: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - switch (hparams.n_layer) { - case 30: model.type = e_model::MODEL_3B; break; - case 32: model.type = e_model::MODEL_7B; break; - case 40: model.type = e_model::MODEL_15B; break; - case 52: model.type = e_model::MODEL_20B; break; // granite - case 88: model.type = e_model::MODEL_34B; break; // granite - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_MAMBA: - { - ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); - ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); - ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); - ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); - - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - switch (hparams.n_layer) { - case 24: - switch (hparams.n_embd) { - case 768: model.type = e_model::MODEL_SMALL; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - case 48: - switch (hparams.n_embd) { - case 1024: model.type = e_model::MODEL_MEDIUM; break; - case 1536: model.type = e_model::MODEL_LARGE; break; - case 2048: model.type = e_model::MODEL_XL; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - case 64: - switch (hparams.n_embd) { - case 2560: model.type = e_model::MODEL_3B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_XVERSE: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - switch (hparams.n_layer) { - case 32: model.type = e_model::MODEL_7B; break; - case 40: model.type = e_model::MODEL_13B; break; - case 80: model.type = e_model::MODEL_65B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_COMMAND_R: - { - ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - switch (hparams.n_layer) { - case 40: model.type = e_model::MODEL_35B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_DBRX: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv); - - switch (hparams.n_layer) { - case 40: model.type = e_model::MODEL_16x12B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_OLMO: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); - - switch (hparams.n_layer) { - case 22: model.type = e_model::MODEL_1B; break; - case 32: model.type = e_model::MODEL_7B; break; - case 80: model.type = e_model::MODEL_70B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_GPTNEOX: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res); - switch (hparams.n_layer) { - case 6: - switch (hparams.n_ff) { - case 512: model.type = e_model::MODEL_14M; break; - case 2048: model.type = e_model::MODEL_70M; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - case 12: - switch (hparams.n_ff) { - case 3072: model.type = e_model::MODEL_160M; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - case 16: - switch (hparams.n_ff) { - case 8192: model.type = e_model::MODEL_1B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - case 24: - switch (hparams.n_ff) { - case 4096: model.type = e_model::MODEL_410M; break; - case 8192: model.type = e_model::MODEL_1_4B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - case 32: - switch (hparams.n_ff) { - case 10240: model.type = e_model::MODEL_2_8B; break; - case 16384: model.type = e_model::MODEL_6_9B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - case 36: - switch (hparams.n_ff) { - case 20480: model.type = e_model::MODEL_12B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - case 44: - switch (hparams.n_ff) { - case 24576: model.type = e_model::MODEL_20B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_ARCTIC: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - if (hparams.n_expert == 128) { - switch (hparams.n_layer) { - case 35: model.type = e_model::MODEL_10B_128x3_66B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } else { - model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_DEEPSEEK2: - { - bool is_lite = (hparams.n_layer == 27); - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); - if (!is_lite) { - ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); - } - ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); - ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); - ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); - ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); - ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul); - - switch (hparams.n_layer) { - case 27: model.type = e_model::MODEL_16B; break; - case 60: model.type = e_model::MODEL_236B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - case LLM_ARCH_BITNET: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); - - switch (hparams.n_layer) { - case 26: model.type = e_model::MODEL_3B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; - default: (void)0; - } - - model.ftype = ml.ftype; - - if (hparams.f_max_alibi_bias > 0.0f) { - hparams.use_alibi = true; - } - - hparams.rope_type = llama_rope_type(&model); -} - -// TODO: This should probably be in llama.h -static std::vector<llama_vocab::id> llama_tokenize_internal( - const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false -); -static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch); - -static void llm_load_vocab( - llama_model_loader & ml, - llama_model & model) { - auto & vocab = model.vocab; - - struct gguf_context * ctx = ml.meta; - - const auto kv = LLM_KV(model.arch); - - // determine vocab type - { - std::string tokenizer_model; - std::string tokenizer_pre; - - ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model); - ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); - - if (tokenizer_model == "no_vocab") { - vocab.type = LLAMA_VOCAB_TYPE_NONE; - - // default special tokens - vocab.special_bos_id = -1; - vocab.special_eos_id = -1; - vocab.special_unk_id = -1; - vocab.special_sep_id = -1; - vocab.special_pad_id = -1; - vocab.special_cls_id = -1; - vocab.special_mask_id = -1; - vocab.linefeed_id = -1; - - return; - } else if (tokenizer_model == "llama") { - vocab.type = LLAMA_VOCAB_TYPE_SPM; - - // default special tokens - vocab.special_bos_id = 1; - vocab.special_eos_id = 2; - vocab.special_unk_id = 0; - vocab.special_sep_id = -1; - vocab.special_pad_id = -1; - vocab.special_cls_id = -1; - vocab.special_mask_id = -1; - - const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); - if (add_space_prefix_keyidx != -1) { - vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); - } // The default value of add_space_prefix is true. - } else if (tokenizer_model == "bert") { - vocab.type = LLAMA_VOCAB_TYPE_WPM; - - // default special tokens - vocab.special_bos_id = -1; - vocab.special_eos_id = -1; - vocab.special_unk_id = 100; - vocab.special_sep_id = 102; - vocab.special_pad_id = 0; - vocab.special_cls_id = 101; - vocab.special_mask_id = 103; - vocab.tokenizer_add_space_prefix = false; - } else if (tokenizer_model == "gpt2") { - vocab.type = LLAMA_VOCAB_TYPE_BPE; - - const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); - if (add_space_prefix_keyidx != -1) { - vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); - } - - // read bpe merges and populate bpe ranks - const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); - if (merges_keyidx == -1) { - throw std::runtime_error("cannot find tokenizer merges in model file\n"); - } - - const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); - - for (int i = 0; i < n_merges; i++) { - const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); - GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); - - std::string first; - std::string second; - - const size_t pos = word.find(' ', 1); - - if (pos != std::string::npos) { - first = word.substr(0, pos); - second = word.substr(pos + 1); - } - - vocab.bpe_ranks.emplace(std::make_pair(first, second), i); - } - - // default special tokens - vocab.special_bos_id = 11; - vocab.special_eos_id = 11; - vocab.special_unk_id = -1; - vocab.special_sep_id = -1; - vocab.special_pad_id = -1; - vocab.special_cls_id = -1; - vocab.special_mask_id = -1; - } else { - throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str())); - } - - // for now, only BPE models have pre-tokenizers - if (vocab.type == LLAMA_VOCAB_TYPE_BPE) { - if (tokenizer_pre.empty()) { - //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - // OK - I don't feel like recreati8ng the LLaMA-v3 models. Considering that, at least for now, - // LLaMA-v3 is the only model wehere we end up here, let's just force the pre-tokanizer to be - // llama3. - tokenizer_pre = "llama3"; - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; - LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'llama3'\n", __func__); - LLAMA_LOG_WARN("%s: \n", __func__); - LLAMA_LOG_WARN("%s: ************************************ \n", __func__); - LLAMA_LOG_WARN("%s: GENERATION QUALITY MAY BE DEGRADED! \n", __func__); - LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__); - LLAMA_LOG_WARN("%s: ************************************ \n", __func__); - LLAMA_LOG_WARN("%s: \n", __func__); - //vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; - //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! - } else if (tokenizer_pre == "default") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; - } else if ( - tokenizer_pre == "llama3" || - tokenizer_pre == "llama-v3" || - tokenizer_pre == "llama-bpe") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; - vocab.tokenizer_ignore_merges = true; - vocab.tokenizer_add_bos = true; - } else if ( - tokenizer_pre == "deepseek-llm") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM; - } else if ( - tokenizer_pre == "deepseek-coder") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER; - } else if ( - tokenizer_pre == "falcon") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON; - } else if ( - tokenizer_pre == "mpt") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT; - } else if ( - tokenizer_pre == "starcoder") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER; - } else if ( - tokenizer_pre == "gpt-2" || - tokenizer_pre == "jina-es" || - tokenizer_pre == "jina-de" || - tokenizer_pre == "jina-v2-es" || - tokenizer_pre == "jina-v2-de" || - tokenizer_pre == "jina-v2-code") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2; - } else if ( - tokenizer_pre == "refact") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT; - } else if ( - tokenizer_pre == "command-r") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R; - } else if ( - tokenizer_pre == "qwen2") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; - } else if ( - tokenizer_pre == "stablelm2") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2; - } else if ( - tokenizer_pre == "olmo") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO; - } else if ( - tokenizer_pre == "dbrx") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX; - } else if ( - tokenizer_pre == "smaug-bpe") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG; - } else if ( - tokenizer_pre == "poro-chat") { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO; - } else { - throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); - } - } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; - vocab.tokenizer_add_bos = true; - vocab.tokenizer_add_eos = false; - } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; - vocab.tokenizer_add_bos = true; - vocab.tokenizer_add_eos = false; - } else { - vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; - } - } - - const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); - if (token_idx == -1) { - throw std::runtime_error("cannot find tokenizer vocab in model file\n"); - } - - const float * scores = nullptr; - const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); - if (score_idx != -1) { - scores = (const float * ) gguf_get_arr_data(ctx, score_idx); - } - - const int * toktypes = nullptr; - const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); - if (toktype_idx != -1) { - toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); - } - - const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); - - vocab.id_to_token.resize(n_vocab); - - for (uint32_t i = 0; i < n_vocab; i++) { - std::string word = gguf_get_arr_str(ctx, token_idx, i); - GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); - - vocab.token_to_id[word] = i; - vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size()); - - auto & token_data = vocab.id_to_token[i]; - token_data.text = std::move(word); - token_data.score = scores ? scores[i] : 0.0f; - token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; - - if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file - switch(toktypes[i]) { - case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break; - case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break; - case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break; - case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break; - case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break; - case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break; - case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; - default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; - } - } - } - GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size()); - - // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' - if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { - // For Fill-In-the-Middle (FIM)/infill models which where converted - // prior to support of FIM special tokens in GGUF, the following - // will allow those models to continue to work. The general names - // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and - // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once - // new versions of these models have been published. - std::string gen_name; - ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false); - - std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(), - [](unsigned char c){ return std::tolower(c); }); - - if (gen_name.find("code") != std::string::npos) { - if (model.arch == LLM_ARCH_LLAMA - && 32010 < vocab.id_to_token.size() - && vocab.id_to_token[32007].text == "<PRE>" - && vocab.id_to_token[32008].text == "<SUF>" - && vocab.id_to_token[32009].text == "<MID>" - && vocab.id_to_token[32010].text == "<EOT>") { - vocab.special_prefix_id = 32007; - vocab.special_suffix_id = 32008; - vocab.special_middle_id = 32009; - vocab.special_eot_id = 32010; - } else if (model.arch == LLM_ARCH_GEMMA - && 107 < vocab.id_to_token.size() - && vocab.id_to_token[67].text == "<|fim_prefix|>" - && vocab.id_to_token[69].text == "<|fim_suffix|>" - && vocab.id_to_token[68].text == "<|fim_middle|>" - && vocab.id_to_token[107].text == "<end_of_turn>") { - vocab.special_prefix_id = 67; - vocab.special_suffix_id = 69; - vocab.special_middle_id = 68; - // TODO: this is not EOT, it is "file separator" token, needs fix - // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572 - //vocab.special_eot_id = 70; - vocab.special_eot_id = 107; - } - } - - try { - vocab.linefeed_id = llama_byte_to_token(vocab, '\n'); - } catch (const std::exception & e) { - LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what()); - vocab.linefeed_id = vocab.special_pad_id; - } - } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { - vocab.linefeed_id = vocab.special_pad_id; - } else { - const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A - GGML_ASSERT(!ids.empty() && "model vocab missing newline token"); - vocab.linefeed_id = ids[0]; - } - - // special tokens - { - const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = { - { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id }, - { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id }, - { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id }, - { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id }, - { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id }, - { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id }, - { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id }, - { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id }, - { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id }, - { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id }, - { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id }, - }; - - for (const auto & it : special_token_types) { - const std::string & key = kv(std::get<0>(it)); - int32_t & id = std::get<1>(it); - - uint32_t new_id; - if (!ml.get_key(std::get<0>(it), new_id, false)) { - continue; - } - if (new_id >= vocab.id_to_token.size()) { - LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n", - __func__, key.c_str(), new_id, id); - } else { - id = new_id; - } - } - - // Handle add_bos_token and add_eos_token - { - bool temp = true; - - if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) { - vocab.tokenizer_add_bos = temp; - } - if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) { - vocab.tokenizer_add_eos = temp; - } - } - - // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc. - // - // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID - // for now, we apply this workaround to find the EOT token based on its text - if (vocab.special_eot_id == -1) { - for (const auto & t : vocab.token_to_id) { - if ( - // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work - // need to fix convert script - //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL && - (t.first == "<|eot_id|>" || - t.first == "<|im_end|>" || - t.first == "<|end|>" || - t.first == "<end_of_turn>" || - t.first == "<|endoftext|>" - ) - ) { - vocab.special_eot_id = t.second; - break; - } - } - } - } - - // build special tokens cache - { - for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) { - if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) { - vocab.cache_special_tokens.push_back(id); - } - } - - std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(), - [&] (const llama_vocab::id a, const llama_vocab::id b) { - return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size(); - } - ); - - LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size()); - } - - // build token to piece cache - { - size_t size_cache = 0; - - std::vector<llama_vocab::token> cache_token_to_piece(n_vocab); - - for (uint32_t id = 0; id < n_vocab; ++id) { - cache_token_to_piece[id] = llama_token_to_piece(&model, id, true); - - size_cache += cache_token_to_piece[id].size(); - } - - std::swap(vocab.cache_token_to_piece, cache_token_to_piece); - - LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0); - } - - // Handle per token attributes - //NOTE: Each model customizes per token attributes. - //NOTE: Per token attributes are missing from the GGUF file. - //TODO: Extract attributes from GGUF file. - { - auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool { - for (auto substr : substrs) { - if (str.find(substr) < std::string::npos) { - return true; - } - } - return false; - }; - - auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) { - uint32_t current = vocab.id_to_token.at(id).attr; - current = value ? (current | attr) : (current & ~attr); - vocab.id_to_token[id].attr = (llama_token_attr) current; - }; - - auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) { - _set_tokenid_attr(vocab.token_to_id.at(token), attr, value); - }; - - std::string model_name; - std::string tokenizer_pre; - - ml.get_key(LLM_KV_GENERAL_NAME, model_name, false); - ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); - - // model name to lowercase - std::transform(model_name.begin(), model_name.end(), model_name.begin(), - [] (const std::string::value_type x) { - return std::tolower(x); - } - ); - - // set attributes by model/tokenizer name - if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) { - _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true); - } else if (_contains_any(model_name, {"phi-3", "phi3"})) { - for (auto id : vocab.cache_special_tokens) { - _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true); - } - for (auto token : {"</s>"}) { - _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true); - } - for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) { - _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false); - } - } - } -} - -static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { - const auto & hparams = model.hparams; - const auto & vocab = model.vocab; - - const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train); - - // hparams - LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); - LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch)); - LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type)); - LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); - LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); - LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); - LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); - LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); - LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); - LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); - LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); - LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k); - LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v); - LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); - LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa()); - LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa()); - LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); - LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); - LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); - LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias); - LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale); - LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); - LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert); - LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used); - LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn); - LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type); - LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type); - LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type); - LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); - LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); - LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn); - LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown"); - LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv); - LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner); - LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state); - LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank); - LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); - LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); - if (ml.n_elements >= 1e12) { - LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12); - } else if (ml.n_elements >= 1e9) { - LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); - } else if (ml.n_elements >= 1e6) { - LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6); - } else { - LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3); - } - if (ml.n_bytes < GiB) { - LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); - } else { - LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); - } - - // general kv - LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str()); - - // special tokens - if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); } - if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); } - if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); } - if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); } - if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); } - if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); } - if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); } - - if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); } - if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); } - if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); } - if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); } - if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); } - - LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len); - - if (model.arch == LLM_ARCH_DEEPSEEK2) { - LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); - LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q); - LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv); - LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); - LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); - LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); - LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul); - } - - if (model.arch == LLM_ARCH_QWEN2MOE) { - LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); - LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); - } -} - -// Returns false if cancelled by progress_callback -static bool llm_load_tensors( - llama_model_loader & ml, - llama_model & model, - int n_gpu_layers, - enum llama_split_mode split_mode, - int main_gpu, - const float * tensor_split, - bool use_mlock, - llama_progress_callback progress_callback, - void * progress_callback_user_data) { - model.t_start_us = ggml_time_us(); - - auto & hparams = model.hparams; - -#ifdef GGML_USE_SYCL - // disable MoE with SYCL until mul_mat_id is updated - if (hparams.n_expert > 0) { - n_gpu_layers = 0; - } -#endif - - model.split_mode = split_mode; - model.main_gpu = main_gpu; - model.n_gpu_layers = n_gpu_layers; - - const int64_t n_layer = hparams.n_layer; - const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0); - bool use_mmap_buffer = true; - - // there is very little benefit to offloading the input layer, so always keep it on the CPU - model.buft_input = llama_default_buffer_type_cpu(true); - - model.buft_layer.resize(n_layer); - - // assign cpu layers - for (int64_t i = 0; i < i_gpu_start; ++i) { - model.buft_layer[i] = llama_default_buffer_type_cpu(true); - } - - if (split_mode == LLAMA_SPLIT_MODE_LAYER) { - // calculate the split points - int device_count = llama_get_device_count(model); - bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; }); - std::vector<float> splits(device_count); - if (all_zero) { - // default split, by free memory - for (int i = 0; i < device_count; ++i) { - splits[i] = llama_get_device_memory(model, i); - } - } else { - std::copy(tensor_split, tensor_split + device_count, splits.begin()); - } - - // sum and normalize the splits to get the split points - float split_sum = 0.0f; - for (int i = 0; i < device_count; ++i) { - split_sum += splits[i]; - splits[i] = split_sum; - } - for (int i = 0; i < device_count; ++i) { - splits[i] /= split_sum; - } - - // assign the repeating layers to the devices according to the splits - int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1); - for (int64_t i = i_gpu_start; i < n_layer; ++i) { - int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin(); - model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu); - } - // assign the output layer - if (n_gpu_layers > n_layer) { - int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin(); - model.buft_output = llama_default_buffer_type_offload(model, layer_gpu); - } else { - model.buft_output = llama_default_buffer_type_cpu(true); - } - } else { - ggml_backend_buffer_type_t split_buft; - if (split_mode == LLAMA_SPLIT_MODE_ROW) { - split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split); - } else { - // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported - split_buft = llama_default_buffer_type_offload(model, main_gpu); - } - // assign the repeating layers - for (int64_t i = i_gpu_start; i < n_layer; ++i) { - model.buft_layer[i] = { - split_buft, - llama_default_buffer_type_offload(model, main_gpu) - }; - } - // assign the output layer - if (n_gpu_layers > n_layer) { - model.buft_output = { - split_buft, - llama_default_buffer_type_offload(model, main_gpu) - }; - } else { - model.buft_output = llama_default_buffer_type_cpu(true); - } - } - - // count used buffer types - std::map<ggml_backend_buffer_type_t, int> buft_layer_count; - buft_layer_count[model.buft_input.buft]++; - buft_layer_count[model.buft_input.buft_matrix]++; - buft_layer_count[model.buft_output.buft]++; - buft_layer_count[model.buft_output.buft_matrix]++; - for (int64_t i = 0; i < n_layer; ++i) { - buft_layer_count[model.buft_layer[i].buft]++; - buft_layer_count[model.buft_layer[i].buft_matrix]++; - } - - // create one context per buffer type - size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output - - // for moe merged tensors - ctx_size += ggml_tensor_overhead()*n_layer*3; - - std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; - for (auto & it : buft_layer_count) { - struct ggml_init_params params = { - /*.mem_size =*/ ctx_size, - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - ggml_context * ctx = ggml_init(params); - if (!ctx) { - throw std::runtime_error(format("failed to create context")); - } - ctx_map[it.first] = ctx; - model.ctxs.push_back(ctx); - } - - LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0); - - // create tensors for the weights - { - const int64_t n_embd = hparams.n_embd; - const int64_t n_embd_head = (hparams.n_head == 0) ? 0 : n_embd / hparams.n_head; - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); - const int64_t n_embd_gqa = n_embd_v_gqa; - const int64_t n_vocab = hparams.n_vocab; - const int64_t n_vocab_type = hparams.n_vocab_type; - const int64_t n_ff = hparams.n_ff; - const int64_t n_expert = hparams.n_expert; - - if (n_expert > 0 && hparams.n_expert_used == 0) { - throw std::runtime_error("model has expert layers but no expert layers are used"); - } - - ggml_context * ctx_input = ctx_map.at(model.buft_input.buft); - ggml_context * ctx_output = ctx_map.at(model.buft_output.buft); - ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix); - auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); }; - auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); }; - - model.layers.resize(n_layer); - - const auto tn = LLM_TN(model.arch); - switch (model.arch) { - case LLM_ARCH_LLAMA: - case LLM_ARCH_REFACT: - case LLM_ARCH_MINICPM: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - - if (n_expert == 0) { - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - - // optional MLP bias - layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - } else { - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED); - if (layer.ffn_gate_exps) { - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - } else { - // merge split expert into a single tensor for compatibility with older models - // requires disabling mmap - use_mmap_buffer = false; - - ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; - ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; - ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; - - layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); - layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); - layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); - - ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); - ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); - ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); - - for (uint32_t x = 0; x < n_expert; ++x) { - // the individual experts are loaded into a view of the merged tensor - ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); - ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); - ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); - } - } - } - } - } break; - case LLM_ARCH_GROK: - { - if (n_expert == 0) { - throw std::runtime_error("Grok model cannot have zero experts"); - } - - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED); - if (layer.ffn_gate_exps) { - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - } else { - // merge split expert into a single tensor for compatibility with older models - // requires disabling mmap - use_mmap_buffer = false; - - ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; - ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; - ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; - - layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); - layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); - layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); - - ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); - ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); - ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); - - for (uint32_t x = 0; x < n_expert; ++x) { - // the individual experts are loaded into a view of the merged tensor - ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); - ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); - ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); - } - } - - layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); - } - } break; - case LLM_ARCH_DBRX: - { - if (n_expert == 0) { - throw std::runtime_error("DBRX model cannot have zero experts"); - } - - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); - - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - } - } break; - case LLM_ARCH_BAICHUAN: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_FALCON: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - if (!model.output) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU - } - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_STARCODER: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - if (!model.output) { - // needs to be on GPU - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - } - } break; - case LLM_ARCH_BERT: - case LLM_ARCH_NOMIC_BERT: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); - if (model.arch == LLM_ARCH_BERT) { - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); - } - - model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); - model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - if (model.arch == LLM_ARCH_BERT) { - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); - } else { - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - } - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); - layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - - if (model.arch == LLM_ARCH_BERT) { - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - } else { - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - } - - layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); - layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}); - } - } break; - case LLM_ARCH_JINA_BERT_V2: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings - model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings - model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm - model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; // JinaBertLayer - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens - layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens - - layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm - layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}); - - layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - - layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); - layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}); - } - } break; - case LLM_ARCH_BLOOM: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); - model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - } - } break; - case LLM_ARCH_MPT: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - if (!model.output) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU - } - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - // AWQ ScaleActivation layer - layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - } - } break; - case LLM_ARCH_STABLELM: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - // optional bias tensors, present in Stable LM 2 1.6B - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - - // optional q and k layernorms, present in StableLM 2 12B - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED); - - // optional FFN norm, not present in StableLM 2 12B which uses parallel residual - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_QWEN: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}); - } - } break; - case LLM_ARCH_QWEN2: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_QWEN2MOE: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - - GGML_ASSERT(hparams.n_expert > 0); - GGML_ASSERT(hparams.n_expert_used > 0); - - // MoE branch - auto n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / hparams.n_expert_used; - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); - - // Shared expert branch - auto n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff; - layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}); - layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}); - layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}); - layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}); - } - } break; - case LLM_ARCH_PHI2: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - - if (layer.wqkv == nullptr) { - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); - } - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - } - } break; - case LLM_ARCH_PHI3: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context* ctx_layer = ctx_for_layer(i); - ggml_context* ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }); - - layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); - layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); - } - } break; - case LLM_ARCH_PLAMO: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_GPT2: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - } - } break; - case LLM_ARCH_CODESHELL: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - } - } break; - case LLM_ARCH_ORION: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_INTERNLM2: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_GEMMA: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading - - const int64_t n_ff = hparams.n_ff; - const int64_t n_embd_head_k = hparams.n_embd_head_k; - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); - - for (uint32_t i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - } - } break; - case LLM_ARCH_STARCODER2: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - - // optional bias tensors - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}); - } - } break; - case LLM_ARCH_MAMBA: - { - const int64_t d_conv = hparams.ssm_d_conv; - const int64_t d_inner = hparams.ssm_d_inner; - const int64_t d_state = hparams.ssm_d_state; - const int64_t dt_rank = hparams.ssm_dt_rank; - // only an expansion factor of 2 is supported for now - GGML_ASSERT(2 * n_embd == d_inner); - - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed, duplicated to allow offloading - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - // norm - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}); - - layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}); - layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}); - - layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}); - - layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}); - layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}); - - // no "weight" suffix for these - layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}); - layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner}); - - // out_proj - layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}); - } - } break; - case LLM_ARCH_XVERSE: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_COMMAND_R: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - // init output from the input tok embed - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - if (n_layer >= 64){ - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}); - } - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } - } break; - case LLM_ARCH_GPTNEOX: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - } - } break; - case LLM_ARCH_ARCTIC: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}); - - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}); - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - } - } break; - case LLM_ARCH_DEEPSEEK2: - { - bool is_lite = (hparams.n_layer == 27); - - const uint32_t n_embd_head_qk_rope = hparams.n_rot; - const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; - const uint32_t q_lora_rank = hparams.n_lora_q; - const uint32_t kv_lora_rank = hparams.n_lora_kv; - const uint32_t n_ff_exp = hparams.n_ff_exp; - - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - if (!is_lite) { - layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}); - } - layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}); - - if (!is_lite) { - layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}); - layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k}); - } else { - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}); - } - layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}); - layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - - if ((uint32_t) i < hparams.n_layer_dense_lead) { - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - } else { - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - - GGML_ASSERT(hparams.n_expert > 0); - GGML_ASSERT(hparams.n_expert_used > 0); - - // MoE branch - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); - - // Shared expert branch - layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared}); - layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd}); - layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared}); - } - } - } break; - case LLM_ARCH_BITNET: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading - } - - const uint32_t n_ff = hparams.n_ff; - model.layers.resize(n_layer); - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}); - - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wq_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wk_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "scale", i), {1}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wv_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "scale", i), {1}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.wo_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}); - - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_gate_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}); - } - } break; - default: - throw std::runtime_error("unknown architecture"); - } - } - - ml.done_getting_tensors(); - - ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr); - model.mappings.reserve(ml.mappings.size()); - - // create the backend buffers - std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs; - ctx_bufs.reserve(ctx_map.size()); - - // Ensure we have enough capacity for the maximum backend buffer we will potentially create - size_t n_max_backend_buffer = ctx_map.size() * ml.files.size(); - model.bufs.reserve(n_max_backend_buffer); - - for (auto & it : ctx_map) { - ggml_backend_buffer_type_t buft = it.first; - ggml_context * ctx = it.second; - - llama_buf_map bufs; - bufs.reserve(n_max_backend_buffer); - - // only the mmap region containing the tensors in the model is mapped to the backend buffer - // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers - // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size - if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) { - for (uint32_t idx = 0; idx < ml.files.size(); idx++) { - void * addr = nullptr; - size_t first, last; - ml.get_mapping_range(&first, &last, &addr, idx, ctx); - if (first >= last) { - continue; - } - ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first); - if (buf == nullptr) { - throw std::runtime_error("unable to allocate backend CPU buffer"); - } - model.bufs.push_back(buf); - bufs.emplace(idx, buf); -#ifdef GGML_USE_CUDA - if (n_layer >= n_gpu_layers) { - ggml_backend_cuda_register_host_buffer( - ggml_backend_buffer_get_base(buf), - ggml_backend_buffer_get_size(buf)); - } -#endif - } - } -#ifdef GGML_USE_METAL - else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) { - for (uint32_t idx = 0; idx < ml.files.size(); idx++) { - const size_t max_size = ggml_get_max_tensor_size(ctx); - void * addr = nullptr; - size_t first, last; - ml.get_mapping_range(&first, &last, &addr, idx, ctx); - if (first >= last) { - continue; - } - ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size); - if (buf == nullptr) { - throw std::runtime_error("unable to allocate backend metal buffer"); - } - model.bufs.push_back(buf); - bufs.emplace(idx, buf); - } - } -#endif - else { - ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); - if (buf == nullptr) { - throw std::runtime_error("unable to allocate backend buffer"); - } - model.bufs.push_back(buf); - if (use_mlock && ggml_backend_buffer_is_host(buf)) { - model.mlock_bufs.emplace_back(new llama_mlock); - auto & mlock_buf = model.mlock_bufs.back(); - mlock_buf->init (ggml_backend_buffer_get_base(buf)); - mlock_buf->grow_to(ggml_backend_buffer_get_size(buf)); - } - for (uint32_t idx = 0; idx < ml.files.size(); idx++) { - bufs.emplace(idx, buf); - } - } - - if (bufs.empty()) { - throw std::runtime_error("failed to allocate buffer"); - } - - for (auto & buf : bufs) { - // indicate that this buffer contains weights - // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight - ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); - } - - ctx_bufs.emplace_back(ctx, bufs); - } - - if (llama_supports_gpu_offload()) { - const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); - - LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); - if (n_gpu_layers > (int) hparams.n_layer) { - LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); - } - - const int max_backend_supported_layers = hparams.n_layer + 1; - const int max_offloadable_layers = hparams.n_layer + 1; - - LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); - } - - // print memory requirements - for (ggml_backend_buffer_t buf : model.bufs) { - LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0); - } - - // populate tensors_by_name - for (ggml_context * ctx : model.ctxs) { - for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { - model.tensors_by_name.emplace_back(ggml_get_name(cur), cur); - } - } - - // load tensor data - for (auto & it : ctx_bufs) { - ggml_context * ctx = it.first; - auto & bufs = it.second; - if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) { - return false; - } - } - - if (use_mmap_buffer) { - for (auto & mapping : ml.mappings) { - model.mappings.emplace_back(std::move(mapping)); - } - } - - if (model.arch == LLM_ARCH_BITNET) { - auto set_scale = [] (ggml_tensor * w, ggml_tensor * s) { - float scale = 1; - if (ggml_backend_buffer_is_host(s->buffer)) { - scale = *(const float *)s->data; - } else { - ggml_backend_tensor_get(s, &scale, 0, sizeof(float)); - } - std::memcpy(w->op_params, &scale, sizeof(scale)); - }; - for (auto& l : model.layers) { - set_scale(l.ffn_up, l.ffn_up_scale); - set_scale(l.ffn_gate, l.ffn_gate_scale); - set_scale(l.ffn_down, l.ffn_down_scale); - set_scale(l.wq, l.wq_scale); - set_scale(l.wk, l.wk_scale); - set_scale(l.wv, l.wv_scale); - set_scale(l.wo, l.wo_scale); - } - } - - // loading time will be recalculate after the first eval, so - // we take page faults deferred by mmap() into consideration - model.t_load_us = ggml_time_us() - model.t_start_us; - return true; -} - -// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback -static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) { - try { - llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides); - - model.hparams.vocab_only = params.vocab_only; - - try { - llm_load_arch(ml, model); - } catch(const std::exception & e) { - throw std::runtime_error("error loading model architecture: " + std::string(e.what())); - } - try { - llm_load_hparams(ml, model); - } catch(const std::exception & e) { - throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what())); - } - try { - llm_load_vocab(ml, model); - } catch(const std::exception & e) { - throw std::runtime_error("error loading model vocabulary: " + std::string(e.what())); - } - - llm_load_print_meta(ml, model); - - if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE && - model.hparams.n_vocab != model.vocab.id_to_token.size()) { - throw std::runtime_error("vocab size mismatch"); - } - - if (params.vocab_only) { - LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__); - return 0; - } - -#ifdef GGML_USE_KOMPUTE - if (params.n_gpu_layers > 0 && ( - !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) - || !( - model.ftype == LLAMA_FTYPE_ALL_F32 || - model.ftype == LLAMA_FTYPE_MOSTLY_F16 || - model.ftype == LLAMA_FTYPE_MOSTLY_BF16 || - model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || - model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 - ) - )) { - // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file - LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__); - params.n_gpu_layers = 0; - } -#endif - - if (!llm_load_tensors( - ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock, - params.progress_callback, params.progress_callback_user_data - )) { - return -2; - } - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what()); - return -1; - } - - return 0; -} - -// -// llm_build -// - -using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>; - -enum llm_ffn_op_type { - LLM_FFN_SILU, - LLM_FFN_GELU, - LLM_FFN_RELU, - LLM_FFN_RELU_SQR, -}; - -enum llm_ffn_gate_type { - LLM_FFN_SEQ, - LLM_FFN_PAR, // ffn_gate is parallel to ffn_up -}; - -enum llm_norm_type { - LLM_NORM, - LLM_NORM_RMS, -}; - -static struct ggml_tensor * llm_build_inp_embd( - struct ggml_context * ctx, - struct llama_context & lctx, - const llama_hparams & hparams, - const llama_batch & batch, - struct ggml_tensor * tok_embd, - const llm_build_cb & cb) { - const int64_t n_embd = hparams.n_embd; - - struct ggml_tensor * inpL; - - if (batch.token) { - lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens); - cb(lctx.inp_tokens, "inp_tokens", -1); - ggml_set_input(lctx.inp_tokens); - - inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens); - } else { - lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); - inpL = lctx.inp_embd; - ggml_set_input(lctx.inp_embd); - } - - cb(inpL, "inp_embd", -1); - - return inpL; -} - -static void llm_build_kv_store( - struct ggml_context * ctx, - const llama_hparams & hparams, - const llama_cparams & cparams, - const llama_kv_cache & kv, - struct ggml_cgraph * graph, - struct ggml_tensor * k_cur, - struct ggml_tensor * v_cur, - int32_t n_tokens, - int32_t kv_head, - const llm_build_cb & cb, - int64_t il) { - const int64_t n_ctx = cparams.n_ctx; - - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); - - GGML_ASSERT(kv.size == n_ctx); - - struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, - (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head); - cb(k_cache_view, "k_cache_view", il); - - // note: storing RoPE-ed version of K in the KV cache - ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view)); - - assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens); - - struct ggml_tensor * v_cache_view = nullptr; - - if (cparams.flash_attn) { - v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa, - (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa)); - } else { - // note: the V cache is transposed when not using flash attention - v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa, - ( n_ctx)*ggml_element_size(kv.v_l[il]), - (kv_head)*ggml_element_size(kv.v_l[il])); - - v_cur = ggml_transpose(ctx, v_cur); - } - cb(v_cache_view, "v_cache_view", il); - - ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view)); -} - -static struct ggml_tensor * llm_build_norm( - struct ggml_context * ctx, - struct ggml_tensor * cur, - const llama_hparams & hparams, - struct ggml_tensor * mw, - struct ggml_tensor * mb, - llm_norm_type type, - const llm_build_cb & cb, - int il, float scale_eps = 1) { - switch (type) { - case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break; - case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, scale_eps * hparams.f_norm_rms_eps); break; - } - - if (mw || mb) { - cb(cur, "norm", il); - } - - if (mw) { - cur = ggml_mul(ctx, cur, mw); - if (mb) { - cb(cur, "norm_w", il); - } - } - - if (mb) { - cur = ggml_add(ctx, cur, mb); - } - - return cur; -} - -static struct ggml_tensor * llm_build_ffn( - struct ggml_context * ctx, - struct ggml_tensor * cur, - struct ggml_tensor * up, - struct ggml_tensor * up_b, - struct ggml_tensor * gate, - struct ggml_tensor * gate_b, - struct ggml_tensor * down, - struct ggml_tensor * down_b, - struct ggml_tensor * act_scales, - llm_ffn_op_type type_op, - llm_ffn_gate_type type_gate, - const llm_build_cb & cb, - int il) { - struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur; - cb(tmp, "ffn_up", il); - - if (up_b) { - tmp = ggml_add(ctx, tmp, up_b); - cb(tmp, "ffn_up_b", il); - } - - if (gate) { - switch (type_gate) { - case LLM_FFN_SEQ: - { - cur = ggml_mul_mat(ctx, gate, tmp); - cb(cur, "ffn_gate", il); - } break; - case LLM_FFN_PAR: - { - cur = ggml_mul_mat(ctx, gate, cur); - cb(cur, "ffn_gate", il); - } break; - } - - if (gate_b) { - cur = ggml_add(ctx, cur, gate_b); - cb(cur, "ffn_gate_b", il); - } - } else { - cur = tmp; - } - - switch (type_op) { - case LLM_FFN_SILU: - { - cur = ggml_silu(ctx, cur); - cb(cur, "ffn_silu", il); - } break; - case LLM_FFN_GELU: - { - cur = ggml_gelu(ctx, cur); - cb(cur, "ffn_gelu", il); - if (act_scales != NULL) { - cur = ggml_div(ctx, cur, act_scales); - cb(cur, "ffn_act", il); - } - } break; - case LLM_FFN_RELU: - { - cur = ggml_relu(ctx, cur); - cb(cur, "ffn_relu", il); - } break; - case LLM_FFN_RELU_SQR: - { - cur = ggml_relu(ctx, cur); - cb(cur, "ffn_relu", il); - - cur = ggml_sqr(ctx, cur); - cb(cur, "ffn_sqr(relu)", il); - } break; - } - - if (type_gate == LLM_FFN_PAR) { - cur = ggml_mul(ctx, cur, tmp); - cb(cur, "ffn_gate_par", il); - } - - cur = ggml_mul_mat(ctx, down, cur); - if (down_b) { - cb(cur, "ffn_down", il); - } - - if (down_b) { - cur = ggml_add(ctx, cur, down_b); - } - - return cur; -} - -static struct ggml_tensor * llm_build_moe_ffn( - struct ggml_context * ctx, - struct ggml_tensor * cur, - struct ggml_tensor * gate_inp, - struct ggml_tensor * up_exps, - struct ggml_tensor * gate_exps, - struct ggml_tensor * down_exps, - int64_t n_expert, - int64_t n_expert_used, - llm_ffn_op_type type_op, - bool norm_w, - bool scale_w, - float w_scale, - const llm_build_cb & cb, - int il) { - int64_t n_embd = cur->ne[0]; - int64_t n_tokens = cur->ne[1]; - - ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens] - cb(logits, "ffn_moe_logits", il); - - ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens] - cb(probs, "ffn_moe_probs", il); - - // select experts - ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens] - cb(selected_experts->src[0], "ffn_moe_argsort", il); - cb(selected_experts, "ffn_moe_topk", il); - - ggml_tensor * weights = ggml_get_rows(ctx, - ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens] - cb(weights, "ffn_moe_weights", il); - - if (norm_w) { - weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens); - - ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens] - cb(weights_sum, "ffn_moe_weights_sum", il); - - weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens] - cb(weights, "ffn_moe_weights_norm", il); - - weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens); - } - if (scale_w) { - weights = ggml_scale(ctx, weights, w_scale); - cb(weights, "ffn_moe_weights_scaled", il); - } - - cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens); - ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] - cb(up, "ffn_moe_up", il); - - ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] - cb(gate, "ffn_moe_gate", il); - - switch (type_op) { - case LLM_FFN_SILU: - { - gate = ggml_silu(ctx, gate); - cb(gate, "ffn_moe_silu", il); - } break; - case LLM_FFN_GELU: - { - gate = ggml_gelu(ctx, gate); - cb(gate, "ffn_moe_gelu", il); - } break; - default: - GGML_ASSERT(false); - } - - ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens] - cb(par, "ffn_moe_gate_par", il); - - ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens] - cb(experts, "ffn_moe_down", il); - - experts = ggml_mul(ctx, experts, weights); - - // aggregate experts - ggml_tensor * moe_out = nullptr; - for (int i = 0; i < n_expert_used; ++i) { - ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens, - experts->nb[2], i*experts->nb[1]); - - if (i == 0) { - moe_out = cur_expert; - } else { - moe_out = ggml_add(ctx, moe_out, cur_expert); - } - } - - if (n_expert_used == 1) { - // avoid returning a non-contiguous tensor - moe_out = ggml_cont(ctx, moe_out); - } - - return moe_out; -} - -static struct ggml_tensor * llm_build_kqv( - struct ggml_context * ctx, - const llama_model & model, - const llama_hparams & hparams, - const llama_cparams & cparams, - const llama_kv_cache & kv, - struct ggml_cgraph * graph, - struct ggml_tensor * wo, - struct ggml_tensor * wo_b, - struct ggml_tensor * q_cur, - struct ggml_tensor * kq_mask, - int32_t n_tokens, - int32_t n_kv, - float kq_scale, - const llm_build_cb & cb, - int il) { - const int64_t n_ctx = cparams.n_ctx; - const int64_t n_head = hparams.n_head; - const int64_t n_head_kv = hparams.n_head_kv; - const int64_t n_embd_head_k = hparams.n_embd_head_k; - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int64_t n_embd_head_v = hparams.n_embd_head_v; - const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); - - struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); - cb(q, "q", il); - - struct ggml_tensor * k = - ggml_view_3d(ctx, kv.k_l[il], - n_embd_head_k, n_kv, n_head_kv, - ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa), - ggml_row_size(kv.k_l[il]->type, n_embd_head_k), - 0); - cb(k, "k", il); - - struct ggml_tensor * cur; - - if (cparams.flash_attn) { - GGML_UNUSED(model); - GGML_UNUSED(n_ctx); - - // split cached v into n_head heads (not transposed) - struct ggml_tensor * v = - ggml_view_3d(ctx, kv.v_l[il], - n_embd_head_v, n_kv, n_head_kv, - ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa), - ggml_row_size(kv.v_l[il]->type, n_embd_head_v), - 0); - cb(v, "v", il); - - cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias); - - if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) { - ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); - } - - cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens); - } else { - struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); - cb(kq, "kq", il); - - if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) { - // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs - // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 - ggml_mul_mat_set_prec(kq, GGML_PREC_F32); - } - - if (model.arch == LLM_ARCH_GROK) { - // need to do the following: - // multiply by attn_output_multiplyer of 0.08838834764831845 - // and then : - // kq = 30 * tanh(kq / 30) - // before the softmax below - - //try from phi2 - //ggml_mul_mat_set_prec(kq, GGML_PREC_F32); - - kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f)); - kq = ggml_scale(ctx, kq, 30); - } - - kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias); - cb(kq, "kq_soft_max_ext", il); - - GGML_ASSERT(kv.size == n_ctx); - - // split cached v into n_head heads - struct ggml_tensor * v = - ggml_view_3d(ctx, kv.v_l[il], - n_kv, n_embd_head_v, n_head_kv, - ggml_element_size(kv.v_l[il])*n_ctx, - ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v, - 0); - cb(v, "v", il); - - struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); - cb(kqv, "kqv", il); - - struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); - cb(kqv_merged, "kqv_merged", il); - - cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens); - cb(cur, "kqv_merged_cont", il); - } - - ggml_build_forward_expand(graph, cur); - - cur = ggml_mul_mat(ctx, wo, cur); - if (wo_b) { - cb(cur, "kqv_wo", il); - } - - if (wo_b) { - cur = ggml_add(ctx, cur, wo_b); - } - - return cur; -} - -static struct ggml_tensor * llm_build_kv( - struct ggml_context * ctx, - const llama_model & model, - const llama_hparams & hparams, - const llama_cparams & cparams, - const llama_kv_cache & kv, - struct ggml_cgraph * graph, - struct ggml_tensor * wo, - struct ggml_tensor * wo_b, - struct ggml_tensor * k_cur, - struct ggml_tensor * v_cur, - struct ggml_tensor * q_cur, - struct ggml_tensor * kq_mask, - int32_t n_tokens, - int32_t kv_head, - int32_t n_kv, - float kq_scale, - const llm_build_cb & cb, - int il) { - - // these nodes are added to the graph together so that they are not reordered - // by doing so, the number of splits in the graph is reduced - ggml_build_forward_expand(graph, q_cur); - ggml_build_forward_expand(graph, k_cur); - ggml_build_forward_expand(graph, v_cur); - - llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il); - - struct ggml_tensor * cur; - - cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b, - q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il); - cb(cur, "kqv_out", il); - - return cur; -} - -struct llm_build_context { - const llama_model & model; - llama_context & lctx; - const llama_hparams & hparams; - const llama_cparams & cparams; - const llama_batch & batch; - const llama_kv_cache & kv_self; - - const int64_t n_embd; - const int64_t n_layer; - const int64_t n_rot; - const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train) - const int64_t n_head; - const int64_t n_head_kv; - const int64_t n_embd_head_k; - const int64_t n_embd_k_gqa; - const int64_t n_embd_head_v; - const int64_t n_embd_v_gqa; - const int64_t n_expert; - const int64_t n_expert_used; - - const float freq_base; - const float freq_scale; - const float ext_factor; - const float attn_factor; - const float beta_fast; - const float beta_slow; - const float norm_eps; - const float norm_rms_eps; - - const int32_t n_tokens; - const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size) - const int32_t n_outputs; - const int32_t kv_head; // index of where we store new KV data in the cache - const int32_t n_ctx_orig; - - const bool flash_attn; - - const enum llama_pooling_type pooling_type; - const enum llama_rope_type rope_type; - - const llm_build_cb & cb; - - std::vector<uint8_t> & buf_compute_meta; - - struct ggml_context * ctx0 = nullptr; - - // TODO: consider making the entire interface noexcept - llm_build_context( - llama_context & lctx, - const llama_batch & batch, - const llm_build_cb & cb, - bool worst_case) : - model (lctx.model), - lctx (lctx), - hparams (model.hparams), - cparams (lctx.cparams), - batch (batch), - kv_self (lctx.kv_self), - n_embd (hparams.n_embd), - n_layer (hparams.n_layer), - n_rot (hparams.n_rot), - n_ctx (cparams.n_ctx), - n_head (hparams.n_head), - n_head_kv (hparams.n_head_kv), - n_embd_head_k (hparams.n_embd_head_k), - n_embd_k_gqa (hparams.n_embd_k_gqa()), - n_embd_head_v (hparams.n_embd_head_v), - n_embd_v_gqa (hparams.n_embd_v_gqa()), - n_expert (hparams.n_expert), - n_expert_used (hparams.n_expert_used), - freq_base (cparams.rope_freq_base), - freq_scale (cparams.rope_freq_scale), - ext_factor (cparams.yarn_ext_factor), - attn_factor (cparams.yarn_attn_factor), - beta_fast (cparams.yarn_beta_fast), - beta_slow (cparams.yarn_beta_slow), - norm_eps (hparams.f_norm_eps), - norm_rms_eps (hparams.f_norm_rms_eps), - n_tokens (batch.n_tokens), - n_kv (worst_case ? kv_self.size : kv_self.n), - n_outputs (worst_case ? n_tokens : lctx.n_outputs), - kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head), - n_ctx_orig (cparams.n_ctx_orig_yarn), - flash_attn (cparams.flash_attn), - pooling_type (cparams.pooling_type), - rope_type (hparams.rope_type), - cb (cb), - buf_compute_meta (lctx.buf_compute_meta) { - // all initializations should be done in init() - } - - void init() { - struct ggml_init_params params = { - /*.mem_size =*/ buf_compute_meta.size(), - /*.mem_buffer =*/ buf_compute_meta.data(), - /*.no_alloc =*/ true, - }; - - ctx0 = ggml_init(params); - - lctx.inp_tokens = nullptr; - lctx.inp_embd = nullptr; - lctx.inp_pos = nullptr; - lctx.inp_out_ids = nullptr; - lctx.inp_KQ_mask = nullptr; - lctx.inp_K_shift = nullptr; - lctx.inp_mean = nullptr; - lctx.inp_cls = nullptr; - lctx.inp_s_copy = nullptr; - lctx.inp_s_mask = nullptr; - lctx.inp_s_seq = nullptr; - } - - void free() { - if (ctx0) { - ggml_free(ctx0); - ctx0 = nullptr; - } - } - - struct ggml_cgraph * build_k_shift() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - GGML_ASSERT(kv_self.size == n_ctx); - - lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); - cb(lctx.inp_K_shift, "K_shift", -1); - ggml_set_input(lctx.inp_K_shift); - - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * rope_factors = build_rope_factors(il); - struct ggml_tensor * tmp = - // we rotate only the first n_rot dimensions - ggml_rope_ext_inplace(ctx0, - ggml_view_3d(ctx0, kv_self.k_l[il], - n_embd_head_k, n_head_kv, n_ctx, - ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), - ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), - 0), - lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow); - - cb(tmp, "K_shifted", il); - ggml_build_forward_expand(gf, tmp); - } - - return gf; - } - - struct ggml_cgraph * build_s_copy() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - GGML_ASSERT(kv_self.recurrent); - - struct ggml_tensor * state_copy = build_inp_s_copy(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size); - struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size); - - conv_states = ggml_get_rows(ctx0, conv_states, state_copy); - ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy); - - // TODO: name the intermediate tensors with cb() - - ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il])); - ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il])); - } - - return gf; - } - - struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - for (uint32_t i = 0; i < ids.size(); ++i) { - const uint32_t id = ids[i]; - - if (i == id || id == ids.size()) { - continue; - } - - uint32_t nm = 1; - - while (i + nm < ids.size() && ids[i + nm] == id + nm) { - nm++; - } - - for (int il = 0; il < n_layer; ++il) { - ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il], - n_embd_k_gqa, nm, - ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), - ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i)); - - ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il], - n_embd_k_gqa, nm, - ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), - ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id)); - - ggml_tensor * view_v_src; - ggml_tensor * view_v_dst; - - if (flash_attn) { - // NOTE: the V cache is not transposed when using flash attention - view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], - n_embd_v_gqa, nm, - ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), - ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i)); - - view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], - n_embd_v_gqa, nm, - ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), - ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id)); - } else { - view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], - nm, n_embd_v_gqa, - ggml_row_size(kv_self.v_l[il]->type, kv_self.size), - ggml_row_size(kv_self.v_l[il]->type, i)); - - view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], - nm, n_embd_v_gqa, - ggml_row_size(kv_self.v_l[il]->type, kv_self.size), - ggml_row_size(kv_self.v_l[il]->type, id)); - } - - ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst)); - ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst)); - } - - i += nm - 1; - } - - //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); - - return gf; - } - - struct ggml_tensor * build_inp_pos() { - lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); - cb(lctx.inp_pos, "inp_pos", -1); - ggml_set_input(lctx.inp_pos); - return lctx.inp_pos; - } - - struct ggml_tensor * build_rope_factors(int il) { - // choose long/short freq factors based on the context size - const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max; - - if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) { - return model.layers[il].rope_long; - } - - return model.layers[il].rope_short; - } - - struct ggml_tensor * build_inp_out_ids() { - lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs); - cb(lctx.inp_out_ids, "inp_out_ids", -1); - ggml_set_input(lctx.inp_out_ids); - return lctx.inp_out_ids; - } - - struct ggml_tensor * build_inp_KQ_mask(bool causal = true) { - if (causal) { - lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); - } else { - lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); - } - cb(lctx.inp_KQ_mask, "KQ_mask", -1); - ggml_set_input(lctx.inp_KQ_mask); - return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask; - } - - struct ggml_tensor * build_inp_mean() { - lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); - cb(lctx.inp_mean, "inp_mean", -1); - ggml_set_input(lctx.inp_mean); - return lctx.inp_mean; - } - - struct ggml_tensor * build_inp_cls() { - lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); - cb(lctx.inp_cls, "inp_cls", -1); - ggml_set_input(lctx.inp_cls); - return lctx.inp_cls; - } - - struct ggml_tensor * build_inp_s_copy() { - lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size); - cb(lctx.inp_s_copy, "inp_s_copy", -1); - ggml_set_input(lctx.inp_s_copy); - return lctx.inp_s_copy; - } - - struct ggml_tensor * build_inp_s_mask() { - lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv); - cb(lctx.inp_s_mask, "inp_s_mask", -1); - ggml_set_input(lctx.inp_s_mask); - return lctx.inp_s_mask; - } - - struct ggml_tensor * build_inp_s_seq() { - lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens); - cb(lctx.inp_s_seq, "inp_s_seq", -1); - ggml_set_input(lctx.inp_s_seq); - return lctx.inp_s_seq; - } - - struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) { - // find result_norm tensor for input - struct ggml_tensor * inp = nullptr; - for (int i = gf->n_nodes - 1; i >= 0; --i) { - inp = gf->nodes[i]; - if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) { - break; - } else { - inp = nullptr; - } - } - GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor"); - - struct ggml_tensor * cur; - - switch (pooling_type) { - case LLAMA_POOLING_TYPE_MEAN: - { - struct ggml_tensor * inp_mean = build_inp_mean(); - cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean); - } break; - case LLAMA_POOLING_TYPE_CLS: - case LLAMA_POOLING_TYPE_LAST: - { - struct ggml_tensor * inp_cls = build_inp_cls(); - cur = ggml_get_rows(ctx0, inp, inp_cls); - } break; - case LLAMA_POOLING_TYPE_NONE: - { - cur = inp; - } break; - default: - { - GGML_ASSERT(false && "unknown pooling type"); - } break; - } - - cb(cur, "result_embd_pooled", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_llama() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - // mutable variable, needed during the last layer of the computation to skip unused tokens - int32_t n_tokens = this->n_tokens; - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - if (model.layers[il].bq) { - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - if (model.layers[il].bk) { - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - if (model.layers[il].bv) { - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - if (model.layers[il].ffn_gate_inp == nullptr) { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } else { - // MoE branch - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_moe_ffn(ctx0, cur, - model.layers[il].ffn_gate_inp, - model.layers[il].ffn_up_exps, - model.layers[il].ffn_gate_exps, - model.layers[il].ffn_down_exps, - n_expert, n_expert_used, - LLM_FFN_SILU, true, - false, 0.0, - cb, il); - cb(cur, "ffn_moe_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "ffn_out", il); - - ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); - if (layer_dir != nullptr) { - cur = ggml_add(ctx0, cur, layer_dir); - } - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_baichuan() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr; - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - - switch (model.type) { - case MODEL_7B: - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - break; - case MODEL_13B: - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens); - break; - default: - GGML_ASSERT(false); - } - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_xverse() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_falcon() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * attn_norm; - - attn_norm = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(attn_norm, "attn_norm", il); - - // self-attention - { - if (model.layers[il].attn_norm_2) { - // Falcon-40B - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm_2, - model.layers[il].attn_norm_2_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm_2", il); - } else { - cur = attn_norm; - } - - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - - // using mode = 2 for neox mode - Qcur = ggml_rope_ext( - ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = cur; - - // feed forward - { - cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result - model.layers[il].ffn_up, NULL, - NULL, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - cur = ggml_add(ctx0, cur, inpL); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - // norm - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_grok() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - // mutable variable, needed during the last layer of the computation to skip unused tokens - int32_t n_tokens = this->n_tokens; - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // multiply by embedding_multiplier_scale of 78.38367176906169 - inpL = ggml_scale(ctx0, inpL, 78.38367176906169f); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - if (model.layers[il].bq) { - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - if (model.layers[il].bk) { - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - if (model.layers[il].bv) { - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - // Grok - // if attn_out_norm is present then apply it before adding the input - if (model.layers[il].attn_out_norm) { - cur = llm_build_norm(ctx0, cur, hparams, - model.layers[il].attn_out_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_out_norm", il); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - // MoE branch - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_moe_ffn(ctx0, cur, - model.layers[il].ffn_gate_inp, - model.layers[il].ffn_up_exps, - model.layers[il].ffn_gate_exps, - model.layers[il].ffn_down_exps, - n_expert, n_expert_used, - LLM_FFN_GELU, true, - false, 0.0, - cb, il); - cb(cur, "ffn_moe_out", il); - - // Grok - // if layer_out_norm is present then apply it before adding the input - // Idea: maybe ffn_out_norm is a better name - if (model.layers[il].layer_out_norm) { - cur = llm_build_norm(ctx0, cur, hparams, - model.layers[il].layer_out_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "layer_out_norm", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "ffn_out", il); - - ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); - if (layer_dir != nullptr) { - cur = ggml_add(ctx0, cur, layer_dir); - } - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - - // Grok - // multiply logits by output_multiplier_scale of 0.5773502691896257 - - cur = ggml_scale(ctx0, cur, 0.5773502691896257f); - - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_dbrx() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - // mutable variable, needed during the last layer of the computation to skip unused tokens - int32_t n_tokens = this->n_tokens; - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - struct ggml_tensor * Qcur = nullptr; - struct ggml_tensor * Kcur = nullptr; - struct ggml_tensor * Vcur = nullptr; - - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); - cb(cur, "wqkv_clamped", il); - - Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - // MoE branch - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].attn_out_norm, NULL, - LLM_NORM, cb, il); - cb(cur, "attn_out_norm", il); - - cur = llm_build_moe_ffn(ctx0, cur, - model.layers[il].ffn_gate_inp, - model.layers[il].ffn_up_exps, - model.layers[il].ffn_gate_exps, - model.layers[il].ffn_down_exps, - n_expert, n_expert_used, - LLM_FFN_SILU, true, - false, 0.0, - cb, il); - cb(cur, "ffn_moe_out", il); - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "ffn_out", il); - - ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); - if (layer_dir != nullptr) { - cur = ggml_add(ctx0, cur, layer_dir); - } - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_starcoder() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); - cb(pos, "pos_embd", -1); - - inpL = ggml_add(ctx0, inpL, pos); - cb(inpL, "inpL", -1); - - for (int il = 0; il < n_layer; ++il) { - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - - struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // add the input - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); - cb(ffn_inp, "ffn_inp", il); - - // FF - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - } - - inpL = ggml_add(ctx0, cur, ffn_inp); - cb(inpL, "l_out", il); - } - - cur = llm_build_norm(ctx0, inpL, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_refact() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - cb(Kcur, "Kcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - cb(Qcur, "Qcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_bert() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - struct ggml_tensor * inp_pos = nullptr; - - if (model.arch != LLM_ARCH_JINA_BERT_V2) { - inp_pos = build_inp_pos(); - } - - // construct input embeddings (token, type, position) - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // token types are hardcoded to zero ("Sentence A") - struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); - inpL = ggml_add(ctx0, inpL, type_row0); - if (model.arch == LLM_ARCH_BERT) { - inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL); - } - cb(inpL, "inp_embd", -1); - - // embed layer norm - inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1); - cb(inpL, "inp_norm", -1); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false); - - // iterate layers - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * cur = inpL; - - struct ggml_tensor * Qcur; - struct ggml_tensor * Kcur; - struct ggml_tensor * Vcur; - - // self-attention - if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) { - Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq); - cb(Qcur, "Qcur", il); - - if (model.layers[il].attn_q_norm) { - Qcur = llm_build_norm(ctx0, Qcur, hparams, - model.layers[il].attn_q_norm, - model.layers[il].attn_q_norm_b, - LLM_NORM, cb, il); - } - - Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk); - cb(Kcur, "Kcur", il); - - if (model.layers[il].attn_k_norm) { - Kcur = llm_build_norm(ctx0, Kcur, hparams, - model.layers[il].attn_k_norm, - model.layers[il].attn_k_norm_b, - LLM_NORM, cb, il); - } - Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - } else { - // compute Q and K and RoPE them - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); - struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); - - struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); - cb(kq, "kq", il); - - kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias); - cb(kq, "kq_soft_max_ext", il); - - struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens))); - cb(v, "v", il); - - struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq); - cb(kqv, "kqv", il); - - struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); - cb(kqv_merged, "kqv_merged", il); - - cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); - cb(cur, "kqv_merged_cont", il); - - ggml_build_forward_expand(gf, cur); - - cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); - if (model.layers[il].bo) { - cb(cur, "kqv_wo", il); - } - - if (model.layers[il].bo) { - cur = ggml_add(ctx0, cur, model.layers[il].bo); - } - cb(cur, "kqv_out", il); - - if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // re-add the layer input - cur = ggml_add(ctx0, cur, inpL); - - // attention layer norm - cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il); - - if (model.layers[il].attn_norm_2 != nullptr) { - cur = ggml_add(ctx0, cur, inpL); // re-add the layer input - cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il); - } - - struct ggml_tensor * ffn_inp = cur; - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - if (model.arch == LLM_ARCH_BERT) { - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - } else if (model.arch == LLM_ARCH_JINA_BERT_V2) { - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_PAR, cb, il); - } else { - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - } - cb(cur, "ffn_out", il); - - // attentions bypass the intermediate layer - cur = ggml_add(ctx0, cur, ffn_inp); - - // output layer norm - cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il); - - // input for next layer - inpL = cur; - } - - // final output - cur = inpL; - cb(cur, "result_embd", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_bloom() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - inpL = llm_build_norm(ctx0, inpL, hparams, - model.tok_norm, - model.tok_norm_b, - LLM_NORM, cb, -1); - cb(inpL, "inp_norm", -1); - - for (int il = 0; il < n_layer; ++il) { - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - - struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // Add the input - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); - cb(ffn_inp, "ffn_inp", il); - - // FF - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - } - - inpL = ggml_add(ctx0, cur, ffn_inp); - cb(inpL, "l_out", il); - } - - cur = llm_build_norm(ctx0, inpL, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_mpt() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * pos; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - if (model.pos_embd) { - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); - cb(pos, "pos_embd", -1); - - inpL = ggml_add(ctx0, inpL, pos); - cb(inpL, "inpL", -1); - } - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * attn_norm; - - attn_norm = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(attn_norm, "attn_norm", il); - - // self-attention - { - cur = attn_norm; - - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - if (model.layers[il].bqkv){ - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - } - - if (hparams.f_clamp_kqv > 0.0f) { - cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); - cb(cur, "wqkv_clamped", il); - } - - struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - // Q/K Layernorm - if (model.layers[il].attn_q_norm) { - Qcur = llm_build_norm(ctx0, Qcur, hparams, - model.layers[il].attn_q_norm, - model.layers[il].attn_q_norm_b, - LLM_NORM, cb, il); - cb(Qcur, "Qcur", il); - - Kcur = llm_build_norm(ctx0, Kcur, hparams, - model.layers[il].attn_k_norm, - model.layers[il].attn_k_norm_b, - LLM_NORM, cb, il); - cb(Kcur, "Kcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } else { - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // Add the input - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); - cb(ffn_inp, "ffn_inp", il); - - // feed forward - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - model.layers[il].ffn_act, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_stablelm() { - struct ggml_cgraph * gf = ggml_new_graph(ctx0); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - struct ggml_tensor * inpSA = cur; - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - if (model.layers[il].bq) { - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - if (model.layers[il].bk) { - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - if (model.layers[il].bv) { - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - } - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - cb(Qcur, "Qcur", il); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - cb(Kcur, "Kcur", il); - - if (model.layers[il].attn_q_norm) { - Qcur = llm_build_norm(ctx0, Qcur, hparams, - model.layers[il].attn_q_norm, - NULL, - LLM_NORM, cb, il); - cb(Qcur, "Qcur", il); - } - if (model.layers[il].attn_k_norm) { - Kcur = llm_build_norm(ctx0, Kcur, hparams, - model.layers[il].attn_k_norm, - NULL, - LLM_NORM, cb, il); - cb(Kcur, "Kcur", il); - } - - - Qcur = ggml_rope_ext( - ctx0, Qcur, inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, Kcur, inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - { - if (model.layers[il].ffn_norm) { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - } else { - // parallel residual - cur = inpSA; - } - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_qwen() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - - struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - - // using mode = 2 for neox mode - Qcur = ggml_rope_ext( - ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward forward - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_qwen2() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_qwen2moe() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - // mutable variable, needed during the last layer of the computation to skip unused tokens - int32_t n_tokens = this->n_tokens; - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self_attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // MoE branch - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - ggml_tensor * moe_out = - llm_build_moe_ffn(ctx0, cur, - model.layers[il].ffn_gate_inp, - model.layers[il].ffn_up_exps, - model.layers[il].ffn_gate_exps, - model.layers[il].ffn_down_exps, - n_expert, n_expert_used, - LLM_FFN_SILU, false, - false, 0.0, - cb, il); - cb(cur, "ffn_moe_out", il); - - // FFN shared expert - { - ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur); - cb(cur_gate_inp, "ffn_shexp_gate_inp", il); - - // sigmoid - ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp); - cb(cur_gate, "ffn_shexp_gate", il); - - ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up_shexp, NULL, - model.layers[il].ffn_gate_shexp, NULL, - model.layers[il].ffn_down_shexp, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur_ffn, "ffn_shexp", il); - - ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate); - cb(ffn_shexp_out, "ffn_shexp_out", il); - - moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out); - cb(moe_out, "ffn_out", il); - - cur = moe_out; - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_phi2() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * attn_norm_output; - struct ggml_tensor * ffn_output; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - attn_norm_output = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(attn_norm_output, "attn_norm", il); - - // self-attention - { - struct ggml_tensor * Qcur = nullptr; - struct ggml_tensor * Kcur = nullptr; - struct ggml_tensor * Vcur = nullptr; - - if (model.layers[il].wqkv) { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output); - cb(cur, "wqkv", il); - - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - - Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - } else { - Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq); - Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk); - Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv); - } - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - - Qcur = ggml_rope_ext( - ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - // with phi2, we scale the Q to avoid precision issues - // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66 - Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head))); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids); - } - - // FF - { - ffn_output = llm_build_ffn(ctx0, attn_norm_output, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(ffn_output, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_output); - cb(cur, "l_out", il); - - cur = ggml_add(ctx0, cur, inpL); - cb(cur, "l_out", il); - - inpL = cur; - } - - cur = llm_build_norm(ctx0, inpL, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output_no_bias", -1); - - cur = ggml_add(ctx0, cur, model.output_b); - cb(cur, "result_output", -1); - ggml_build_forward_expand(gf, cur); - return gf; - } - - struct ggml_cgraph * build_phi3() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - auto residual = inpL; - - // self-attention - { - // rope freq factors for 128k context - struct ggml_tensor * rope_factors = build_rope_factors(il); - - struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - NULL, - LLM_NORM_RMS, cb, il); - cb(attn_norm_output, "attn_norm", il); - - struct ggml_tensor * Qcur = nullptr; - struct ggml_tensor * Kcur = nullptr; - struct ggml_tensor * Vcur = nullptr; - - if (model.layers[il].wqkv) { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output); - cb(cur, "wqkv", il); - - Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd))); - Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd))); - Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa))); - } - else { - Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq); - Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk); - Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv); - } - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - - Qcur = ggml_rope_ext( - ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor* inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - residual = ggml_get_rows(ctx0, residual, inp_out_ids); - } - - cur = ggml_add(ctx0, cur, residual); - residual = cur; - - cur = llm_build_norm(ctx0, cur, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - // FF - // special-case: the up and gate tensors are merged into a single tensor - // TOOD: support into llm_build_ffn - { - struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur); - cb(up, "ffn_up", il); - - auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0)); - auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2)); - - y = ggml_mul(ctx0, y, ggml_silu(ctx0, g)); - cb(y, "ffn_gate", il); - - auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y); - cb(down, "ffn_down", il); - - cur = down; - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, residual, cur); - cb(cur, "l_out", il); - - inpL = cur; - } - - cur = llm_build_norm(ctx0, inpL, hparams, - model.output_norm, - NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - - struct ggml_cgraph * build_plamo() { - struct ggml_cgraph * gf = ggml_new_graph(ctx0); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - struct ggml_tensor * attention_norm = cur; - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr, - n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr, - n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - struct ggml_tensor * sa_out = cur; - - cur = attention_norm; - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // feed-forward network - { - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, sa_out); - cb(cur, "l_out", il); - - cur = ggml_add(ctx0, cur, inpL); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_gpt2() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * pos; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); - cb(pos, "pos_embd", -1); - - inpL = ggml_add(ctx0, inpL, pos); - cb(inpL, "inpL", -1); - - for (int il = 0; il < n_layer; ++il) { - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - - struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // add the input - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); - cb(ffn_inp, "ffn_inp", il); - - // FF - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - } - - inpL = ggml_add(ctx0, cur, ffn_inp); - cb(inpL, "l_out", il); - } - - cur = llm_build_norm(ctx0, inpL, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_codeshell() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - - struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(tmpq, "tmpq", il); - cb(tmpk, "tmpk", il); - cb(Vcur, "Vcur", il); - - struct ggml_tensor * Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // add the input - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); - cb(ffn_inp, "ffn_inp", il); - - // FF - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - } - - inpL = ggml_add(ctx0, cur, ffn_inp); - cb(inpL, "l_out", il); - } - - cur = llm_build_norm(ctx0, inpL, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_orion() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - // if (model.layers[il].bq) { - // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - // cb(Qcur, "Qcur", il); - // } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - // if (model.layers[il].bk) { - // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - // cb(Kcur, "Kcur", il); - // } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - // if (model.layers[il].bv) { - // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - // cb(Vcur, "Vcur", il); - // } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_internlm2() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - if (model.layers[il].bq) { - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - if (model.layers[il].bk) { - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - if (model.layers[il].bv) { - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - // ref: https://arxiv.org/abs/2203.03466 - // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738 - // based on the original build_llama() function - struct ggml_cgraph * build_minicpm() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - const int64_t n_embd = hparams.n_embd; - //TODO: if the model varies, these parameters need to be read from the model - const int64_t n_embd_base = 256; - const float scale_embd = 12.0f; - const float scale_depth = 1.4f; - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // scale the input embeddings - inpL = ggml_scale(ctx0, inpL, scale_embd); - cb(inpL, "inp_scaled", -1); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - if (model.layers[il].bq) { - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - if (model.layers[il].bk) { - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - if (model.layers[il].bv) { - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - // scale_res - scale the hidden states for residual connection - const float scale_res = scale_depth/sqrtf(float(n_layer)); - cur = ggml_scale(ctx0, cur, scale_res); - cb(cur, "hidden_scaled", -1); - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - // scale the hidden states for residual connection - cur = ggml_scale(ctx0, cur, scale_res); - cb(cur, "hidden_scaled_ffn", -1); - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head scaling - const float scale_lmhead = float(n_embd_base)/float(n_embd); - cur = ggml_scale(ctx0, cur, scale_lmhead); - cb(cur, "lmhead_scaling", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_gemma() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head_k = hparams.n_embd_head_k; - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); - cb(inpL, "inp_scaled", -1); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr, - n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow); - cb(Qcur, "Qcur", il); - - Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); - cb(Qcur, "Qcur_scaled", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr, - n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); - cb(sa_out, "sa_out", il); - - cur = llm_build_norm(ctx0, sa_out, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - // feed-forward network - { - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_GELU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, sa_out); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_starcoder2() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - if (model.layers[il].bq) { - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - if (model.layers[il].bk) { - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - if (model.layers[il].bv) { - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_mamba() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t d_model = n_embd; - const int64_t d_conv = hparams.ssm_d_conv; - const int64_t d_inner = hparams.ssm_d_inner; - GGML_ASSERT(2 * d_model == d_inner); - const int64_t d_state = hparams.ssm_d_state; - const int64_t dt_rank = hparams.ssm_dt_rank; - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - // {n_embd, n_tokens} - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - struct ggml_tensor * state_mask = build_inp_s_mask(); - struct ggml_tensor * state_seq = build_inp_s_seq(); - - for (int il = 0; il < n_layer; ++il) { - // (ab)using the KV cache to store the states - struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size); - struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size); - - // clear states of sequences which are starting at the beginning of this batch - { - conv_states = ggml_mul(ctx0, - ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]), - state_mask); - ssm_states = ggml_mul(ctx0, - ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]), - state_mask); - } - - conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv); - ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv); - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens} - struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur); - // split the above in two - // => {d_inner, n_tokens} - struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0); - struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner); - - // conv - { - // Custom operator which is needed only to ease simultaneous sequence processing. - // For a single sequence, the equivalent is to concatenate the columns of conv_states and x, - // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension, - // then element-wise multiply that with the conv1d weigth, - // then sum the elements of each row, - // (the last two steps are a dot product over rows (also doable with mul_mat)) - // then permute away the ne[0] dimension, - // and then you're left with the resulting x tensor. - // The new conv_states is the last (d_conv - 1) columns - // of the last 3rd dimensional "layer" of the self-overlapping view. - // For simultaneous sequences, it's more complicated. - struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq); - - // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache - ggml_build_forward_expand(gf, - ggml_cpy(ctx0, - ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)), - ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv)))); - - // extract x from x_conv - x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0); - - // bias - x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b); - - x = ggml_silu(ctx0, x); - } - - // ssm - { - // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens} - struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x); - // split - struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0); - struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank); - struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state)); - - // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens} - dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt); - dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b); - - // Custom operator to optimize the parallel associative scan - // as described in the Annex D of the Mamba paper. - // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined, - // because only a single tensor can be returned. - struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq); - - // store last states (the second part of y_ssm_states) - ggml_build_forward_expand(gf, - ggml_cpy(ctx0, - ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)), - ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states)))); - - struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0); - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - x = ggml_get_rows(ctx0, x, inp_out_ids); - y = ggml_get_rows(ctx0, y, inp_out_ids); - z = ggml_get_rows(ctx0, z, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens} - y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d)); - y = ggml_mul(ctx0, y, ggml_silu(ctx0, z)); - - // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens} - cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y); - } - - // residual - cur = ggml_add(ctx0, cur, inpL); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - // final rmsnorm - cur = llm_build_norm(ctx0, inpL, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_command_r() { - - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - const float f_logit_scale = hparams.f_logit_scale; - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - struct ggml_tensor * ffn_inp = cur; - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - if (model.layers[il].bq) { - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - if (model.layers[il].bk) { - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - if (model.layers[il].bv) { - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - } - - if (model.layers[il].attn_q_norm) { - Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens, - ggml_element_size(Qcur) * n_embd_head, - ggml_element_size(Qcur) * n_embd_head * n_head, - 0); - cb(Qcur, "Qcur", il); - Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens, - ggml_element_size(Kcur) * n_embd_head, - ggml_element_size(Kcur) * n_embd_head * n_head_kv, - 0); - cb(Kcur, "Kcur", il); - - Qcur = llm_build_norm(ctx0, Qcur, hparams, - model.layers[il].attn_q_norm, - NULL, - LLM_NORM, cb, il); - cb(Qcur, "Qcur", il); - - Kcur = llm_build_norm(ctx0, Kcur, hparams, - model.layers[il].attn_k_norm, - NULL, - LLM_NORM, cb, il); - cb(Kcur, "Kcur", il); - } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); - } - - struct ggml_tensor * attn_out = cur; - - // feed-forward network - { - cur = llm_build_ffn(ctx0, ffn_inp, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } - - // add together residual + FFN + self-attention - cur = ggml_add(ctx0, cur, inpL); - cur = ggml_add(ctx0, cur, attn_out); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - - if (f_logit_scale) { - cur = ggml_scale(ctx0, cur, f_logit_scale); - } - - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - - } - - // ref: https://allenai.org/olmo - // based on the original build_llama() function, changes: - // * non-parametric layer norm - // * clamp qkv - // * removed bias - // * removed MoE - struct ggml_cgraph * build_olmo() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - // mutable variable, needed during the last layer of the computation to skip unused tokens - int32_t n_tokens = this->n_tokens; - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - NULL, NULL, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - if (hparams.f_clamp_kqv > 0.0f) { - Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); - cb(Qcur, "Qcur", il); - } - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - if (hparams.f_clamp_kqv > 0.0f) { - Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); - cb(Kcur, "Kcur", il); - } - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - if (hparams.f_clamp_kqv > 0.0f) { - Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); - cb(Vcur, "Vcur", il); - } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, nullptr, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - cur = llm_build_norm(ctx0, ffn_inp, hparams, - NULL, NULL, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "ffn_out", il); - - ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); - if (layer_dir != nullptr) { - cur = ggml_add(ctx0, cur, layer_dir); - } - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - NULL, NULL, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_gptneox() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - - struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); - } - - // ffn - if (hparams.use_par_res) { - // attention and ffn are computed in parallel - // x = x + attn(ln1(x)) + ffn(ln2(x)) - - struct ggml_tensor * attn_out = cur; - - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - - cur = ggml_add(ctx0, cur, inpL); - cb(cur, "ffn_out", il); - - inpL = ggml_add(ctx0, cur, attn_out); - cb(inpL, "l_out", il); - } else { - // attention and ffn are computed sequentially - // x = x + attn(ln1(x)) - // x = x + ffn(ln2(x)) - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); - cb(ffn_inp, "ffn_inp", il); - - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - - inpL = ggml_add(ctx0, cur, ffn_inp); - cb(inpL, "l_out", il); - } - } - - cur = llm_build_norm(ctx0, inpL, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_arctic() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - // mutable variable, needed during the last layer of the computation to skip unused tokens - int32_t n_tokens = this->n_tokens; - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - cb(Vcur, "Vcur", il); - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - - struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp); - cb(ffn_out, "ffn_out", il); - - // MoE - cur = llm_build_norm(ctx0, inpSA, hparams, - model.layers[il].ffn_norm_exps, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm_exps", il); - - cur = llm_build_moe_ffn(ctx0, cur, - model.layers[il].ffn_gate_inp, - model.layers[il].ffn_up_exps, - model.layers[il].ffn_gate_exps, - model.layers[il].ffn_down_exps, - n_expert, n_expert_used, - LLM_FFN_SILU, true, - false, 0.0, - cb, il); - cb(cur, "ffn_moe_out", il); - - cur = ggml_add(ctx0, cur, ffn_out); - cb(cur, "ffn_out", il); - - ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); - if (layer_dir != nullptr) { - cur = ggml_add(ctx0, cur, layer_dir); - } - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_deepseek2() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - // mutable variable, needed during the last layer of the computation to skip unused tokens - int32_t n_tokens = this->n_tokens; - - bool is_lite = (hparams.n_layer == 27); - - // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly. - // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. - const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale)); - const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k)); - const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)); - - const uint32_t n_embd_head_qk_rope = hparams.n_rot; - const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; - const uint32_t kv_lora_rank = hparams.n_lora_kv; - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - // {n_embd, n_tokens} - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - // norm - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self_attention - { - struct ggml_tensor * q = NULL; - if (!is_lite) { - // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens} - q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur); - cb(q, "q", il); - - q = llm_build_norm(ctx0, q, hparams, - model.layers[il].attn_q_a_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(q, "q", il); - - // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens} - q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q); - cb(q, "q", il); - } else { - q = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - cb(q, "q", il); - } - - // split into {n_head * n_embd_head_qk_nope, n_tokens} - struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, - ggml_row_size(q->type, hparams.n_embd_head_k), - ggml_row_size(q->type, hparams.n_embd_head_k * n_head), - 0); - cb(q_nope, "q_nope", il); - - // and {n_head * n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, - ggml_row_size(q->type, hparams.n_embd_head_k), - ggml_row_size(q->type, hparams.n_embd_head_k * n_head), - ggml_row_size(q->type, n_embd_head_qk_nope)); - cb(q_pe, "q_pe", il); - - // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); - cb(kv_pe_compresseed, "kv_pe_compresseed", il); - - // split into {kv_lora_rank, n_tokens} - struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens, - kv_pe_compresseed->nb[1], - 0); - cb(kv_compressed, "kv_compressed", il); - - // and {n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens, - kv_pe_compresseed->nb[1], - kv_pe_compresseed->nb[1], - ggml_row_size(kv_pe_compresseed->type, kv_lora_rank)); - cb(k_pe, "k_pe", il); - - kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm - kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams, - model.layers[il].attn_kv_a_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(kv_compressed, "kv_compressed", il); - - // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} - struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed); - cb(kv, "kv", il); - - // split into {n_head * n_embd_head_qk_nope, n_tokens} - struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, - ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v), - ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)), - 0); - cb(k_nope, "k_nope", il); - - // and {n_head * n_embd_head_v, n_tokens} - struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens, - ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)), - ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head), - ggml_row_size(kv->type, (n_embd_head_qk_nope))); - cb(v_states, "v_states", il); - - v_states = ggml_cont(ctx0, v_states); - cb(v_states, "v_states", il); - - v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens, - ggml_row_size(kv->type, hparams.n_embd_head_v * n_head), - 0); - cb(v_states, "v_states", il); - - q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE - q_pe = ggml_rope_ext( - ctx0, q_pe, inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor_scaled, beta_fast, beta_slow - ); - cb(q_pe, "q_pe", il); - - // shared RoPE key - k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE - k_pe = ggml_rope_ext( - ctx0, k_pe, inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor_scaled, beta_fast, beta_slow - ); - cb(k_pe, "k_pe", il); - - struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0); - cb(q_states, "q_states", il); - - struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); - cb(k_states, "k_states", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, NULL, - k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - n_tokens = n_outputs; - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - if ((uint32_t) il < hparams.n_layer_dense_lead) { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(cur, "ffn_out", il); - } else { - // MoE branch - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - ggml_tensor * moe_out = - llm_build_moe_ffn(ctx0, cur, - model.layers[il].ffn_gate_inp, - model.layers[il].ffn_up_exps, - model.layers[il].ffn_gate_exps, - model.layers[il].ffn_down_exps, - n_expert, n_expert_used, - LLM_FFN_SILU, false, - true, hparams.expert_weights_scale, - cb, il); - cb(moe_out, "ffn_moe_out", il); - - // FFN shared expert - { - ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up_shexp, NULL, - model.layers[il].ffn_gate_shexp, NULL, - model.layers[il].ffn_down_shexp, NULL, - NULL, - LLM_FFN_SILU, LLM_FFN_PAR, cb, il); - cb(ffn_shexp, "ffn_shexp", il); - - cur = ggml_add(ctx0, moe_out, ffn_shexp); - cb(cur, "ffn_out", il); - } - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - - struct ggml_cgraph * build_bitnet() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * inpSA = inpL; - - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "attn_norm", il); - - // self-attention - { - // compute Q and K and RoPE them - struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); - float q_scale; std::memcpy(&q_scale, model.layers[il].wq->op_params, sizeof(float)); - // Note: we could save this scale operation by applying the Q scale on the K * Q product further down - // (which also uses a scale). This works on the CPU and Metal backends, but produces NaNs on CUDA. - Qcur = ggml_scale(ctx0, Qcur, q_scale); - cb(Qcur, "Qcur", il); - if (model.layers[il].bq) { - Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); - cb(Qcur, "Qcur", il); - } - - // B1.K - struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); - float k_scale; std::memcpy(&k_scale, model.layers[il].wk->op_params, sizeof(float)); - Kcur = ggml_scale(ctx0, Kcur, k_scale); - cb(Kcur, "Kcur", il); - if (model.layers[il].bk) { - Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); - cb(Kcur, "Kcur", il); - } - - // B1.V - struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); - float v_scale; std::memcpy(&v_scale, model.layers[il].wv->op_params, sizeof(float)); - cb(Vcur, "Vcur", il); - if (model.layers[il].bv) { - Vcur = ggml_scale(ctx0, Vcur, v_scale); - Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); - cb(Vcur, "Vcur", il); - v_scale = 1; - } - - Qcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Qcur, "Qcur", il); - - Kcur = ggml_rope_ext( - ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr, - n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(Kcur, "Kcur", il); - - llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il); - - const int64_t n_ctx = cparams.n_ctx; - const int64_t n_head = hparams.n_head; - const int64_t n_head_kv = hparams.n_head_kv; - const int64_t n_embd_head_k = hparams.n_embd_head_k; - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const int64_t n_embd_head_v = hparams.n_embd_head_v; - const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); - - float kq_scale = 1.0f/sqrtf(float(n_embd_head)); - // We would use this if we did not apply the Q scale above. Sadly, this fails on CUDA. - //float kq_scale = q_scale/sqrtf(float(n_embd_head)); - struct ggml_tensor * cur_attn; - struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); - cb(q, "q", il); - - struct ggml_tensor * k = - ggml_view_3d(ctx0, kv_self.k_l[il], - n_embd_head_k, n_kv, n_head_kv, - ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), - ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), - 0); - cb(k, "k", il); - - if (cparams.flash_attn) { - - // split cached v into n_head heads (not transposed) - struct ggml_tensor * v = - ggml_view_3d(ctx0, kv_self.v_l[il], - n_embd_head_v, n_kv, n_head_kv, - ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa), - ggml_row_size(kv_self.v_l[il]->type, n_embd_head_v), - 0); - cb(v, "v", il); - - cur_attn = ggml_flash_attn_ext(ctx0, q, k, v, KQ_mask, kq_scale, hparams.f_max_alibi_bias); - - cur_attn = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens); - } else { - struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); - cb(kq, "kq", il); - - kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, kq_scale, hparams.f_max_alibi_bias); - cb(kq, "kq_soft_max_ext", il); - - GGML_ASSERT(kv_self.size == n_ctx); - - // split cached v into n_head heads - struct ggml_tensor * v = - ggml_view_3d(ctx0, kv_self.v_l[il], - n_kv, n_embd_head_v, n_head_kv, - ggml_element_size(kv_self.v_l[il])*n_ctx, - ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v, - 0); - cb(v, "v", il); - - struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); - cb(kqv, "kqv", il); - - struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); - cb(kqv_merged, "kqv_merged", il); - - cur_attn = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens); - cb(cur_attn, "kqv_merged_cont", il); - } - - cur_attn = llm_build_norm(ctx0, cur_attn, hparams, - model.layers[il].attn_sub_norm, NULL, - LLM_NORM_RMS, cb, il, 1/(v_scale*v_scale)); - cb(cur_attn, "attn_sub_norm", il); - - ggml_build_forward_expand(gf, cur_attn); - - cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur_attn); - float wo_scale; std::memcpy(&wo_scale, model.layers[il].wo->op_params, sizeof(float)); - cur = ggml_scale(ctx0, cur, wo_scale); - - cb(cur, "kqv_out", il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward forward - if (model.layers[il].ffn_gate_inp == nullptr) { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, NULL, - LLM_NORM_RMS, cb, il); - cb(cur, "ffn_norm", il); - - struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur); - float ffn_up_scale; std::memcpy(&ffn_up_scale, model.layers[il].ffn_up->op_params, sizeof(float)); - - cb(tmp, "ffn_up", il); - - cur = ggml_mul_mat(ctx0, model.layers[il].ffn_gate, cur); - float ffn_gate_scale; std::memcpy(&ffn_gate_scale, model.layers[il].ffn_gate->op_params, sizeof(float)); - cur = ggml_scale(ctx0, cur, ffn_gate_scale); - - cb(cur, "ffn_gate", il); - - - // combine this with the above scale into ggml_scaled_silu - cur = ggml_silu(ctx0, cur); - cb(cur, "ffn_silu", il); - - cur = ggml_mul(ctx0, cur, tmp); - cb(cur, "ffn_gate_par", il); - - cur = llm_build_norm(ctx0, cur, hparams, - model.layers[il].ffn_sub_norm, NULL, - LLM_NORM_RMS, cb, il, 1/(ffn_up_scale*ffn_up_scale)); - cb(cur, "ffn_sub_norm", il); - - cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur); - float ffn_down_scale; std::memcpy(&ffn_down_scale, model.layers[il].ffn_down->op_params, sizeof(float)); - cur = ggml_scale(ctx0, cur, ffn_down_scale); - cb(cur, "ffn_down", il); - } - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - // input for next layer - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, NULL, - LLM_NORM_RMS, cb, -1); - cb(cur, "result_norm", -1); - - // lm_head - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - return gf; - } - -}; - -static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) { - llama_batch dummy; - dummy.n_tokens = 0; - - llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; - - struct llm_build_context llm(lctx, dummy, cb, false); - - llm.init(); - - struct ggml_cgraph * result = llm.build_defrag(ids); - - llm.free(); - - return result; -} - -static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) { - llama_batch dummy; - dummy.n_tokens = 0; - - llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; - - struct llm_build_context llm(lctx, dummy, cb, false); - - llm.init(); - - struct ggml_cgraph * result = llm.build_k_shift(); - - llm.free(); - - return result; -} - -static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) { - llama_batch dummy; - dummy.n_tokens = 0; - - llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; - - struct llm_build_context llm(lctx, dummy, cb, false); - - llm.init(); - - struct ggml_cgraph * result = llm.build_s_copy(); - - llm.free(); - - return result; -} - -static struct ggml_cgraph * llama_build_graph( - llama_context & lctx, - const llama_batch & batch, - bool worst_case) { - const auto & model = lctx.model; - - // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) - llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) { - if (il >= 0) { - ggml_format_name(cur, "%s-%d", name, il); - } else { - ggml_set_name(cur, name); - } - - if (!lctx.cparams.offload_kqv) { - if (strcmp(name, "kqv_merged_cont") == 0) { - // all nodes between the KV store and the attention output are run on the CPU - ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu); - } - } - - // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends - // FIXME: fix in ggml_backend_sched - const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer; - if (batch.n_tokens < 32 || full_offload) { - if (il != -1 && strcmp(name, "norm") == 0) { - for (auto * backend : lctx.backends) { - if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) && - (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) { - ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend); - break; - } - } - } - } - }; - - struct ggml_cgraph * result = NULL; - - struct llm_build_context llm(lctx, batch, cb, worst_case); - - llm.init(); - - switch (model.arch) { - case LLM_ARCH_LLAMA: - { - result = llm.build_llama(); - } break; - case LLM_ARCH_BAICHUAN: - { - result = llm.build_baichuan(); - } break; - case LLM_ARCH_FALCON: - { - result = llm.build_falcon(); - } break; - case LLM_ARCH_GROK: - { - result = llm.build_grok(); - } break; - case LLM_ARCH_STARCODER: - { - result = llm.build_starcoder(); - } break; - case LLM_ARCH_REFACT: - { - result = llm.build_refact(); - } break; - case LLM_ARCH_BERT: - case LLM_ARCH_JINA_BERT_V2: - case LLM_ARCH_NOMIC_BERT: - { - result = llm.build_bert(); - } break; - case LLM_ARCH_BLOOM: - { - result = llm.build_bloom(); - } break; - case LLM_ARCH_MPT: - { - result = llm.build_mpt(); - } break; - case LLM_ARCH_STABLELM: - { - result = llm.build_stablelm(); - } break; - case LLM_ARCH_QWEN: - { - result = llm.build_qwen(); - } break; - case LLM_ARCH_QWEN2: - { - result = llm.build_qwen2(); - } break; - case LLM_ARCH_QWEN2MOE: - { - result = llm.build_qwen2moe(); - } break; - case LLM_ARCH_PHI2: - { - result = llm.build_phi2(); - } break; - case LLM_ARCH_PHI3: - { - result = llm.build_phi3(); - } break; - case LLM_ARCH_PLAMO: - { - result = llm.build_plamo(); - } break; - case LLM_ARCH_GPT2: - { - result = llm.build_gpt2(); - } break; - case LLM_ARCH_CODESHELL: - { - result = llm.build_codeshell(); - } break; - case LLM_ARCH_ORION: - { - result = llm.build_orion(); - } break; - case LLM_ARCH_INTERNLM2: - { - result = llm.build_internlm2(); - } break; - case LLM_ARCH_MINICPM: - { - result = llm.build_minicpm(); - } break; - case LLM_ARCH_GEMMA: - { - result = llm.build_gemma(); - } break; - case LLM_ARCH_STARCODER2: - { - result = llm.build_starcoder2(); - } break; - case LLM_ARCH_MAMBA: - { - result = llm.build_mamba(); - } break; - case LLM_ARCH_XVERSE: - { - result = llm.build_xverse(); - } break; - case LLM_ARCH_COMMAND_R: - { - result = llm.build_command_r(); - } break; - case LLM_ARCH_DBRX: - { - result = llm.build_dbrx(); - } break; - case LLM_ARCH_OLMO: - { - result = llm.build_olmo(); - } break; - case LLM_ARCH_GPTNEOX: - { - result = llm.build_gptneox(); - } break; - case LLM_ARCH_ARCTIC: - { - result = llm.build_arctic(); - } break; - case LLM_ARCH_DEEPSEEK2: - { - result = llm.build_deepseek2(); - } break; - case LLM_ARCH_BITNET: - { - result = llm.build_bitnet(); - } break; - default: - GGML_ASSERT(false); - } - - // add on pooling layer - if (lctx.cparams.embeddings) { - result = llm.append_pooling(result); - } - - llm.free(); - - return result; -} - -static void llama_set_k_shift(llama_context & lctx) { - const int64_t kv_size = lctx.kv_self.size; - - assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); - - int32_t * data = (int32_t *) lctx.inp_K_shift->data; - - for (int i = 0; i < kv_size; ++i) { - data[i] = lctx.kv_self.cells[i].delta; - } -} - -static void llama_set_s_copy(llama_context & lctx) { - const int64_t kv_size = lctx.kv_self.size; - - assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer)); - - int32_t * data = (int32_t *) lctx.inp_s_copy->data; - - for (int i = 0; i < kv_size; ++i) { - data[i] = lctx.kv_self.cells[i].src; - } -} - -static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { - // - // set input data - // - - const auto & hparams = lctx.model.hparams; - const auto & cparams = lctx.cparams; - const auto & kv_self = lctx.kv_self; - - if (batch.token) { - const int64_t n_tokens = batch.n_tokens; - - ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens)); - } - - if (batch.embd) { - const int64_t n_embd = hparams.n_embd; - const int64_t n_tokens = batch.n_tokens; - - ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); - } - - if (batch.pos && lctx.inp_pos) { - const int64_t n_tokens = batch.n_tokens; - - ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); - } - - if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) { - GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs"); - const int64_t n_tokens = batch.n_tokens; - - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer)); - int32_t * data = (int32_t *) lctx.inp_out_ids->data; - - if (lctx.n_outputs == n_tokens) { - for (int i = 0; i < n_tokens; ++i) { - data[i] = i; - } - } else if (batch.logits) { - int32_t n_outputs = 0; - for (int i = 0; i < n_tokens; ++i) { - if (batch.logits[i]) { - data[n_outputs++] = i; - } - } - // the graph needs to have been passed the correct number of outputs - GGML_ASSERT(lctx.n_outputs == n_outputs); - } else if (lctx.n_outputs == 1) { - // only keep last output - data[0] = n_tokens - 1; - } else { - GGML_ASSERT(lctx.n_outputs == 0); - } - } - - GGML_ASSERT( - // (!a || b) is a logical implication (a -> b) - // !hparams.causal_attn -> !cparams.causal_attn - (hparams.causal_attn || !cparams.causal_attn) && - "causal attention is not supported by this model" - ); - - if (lctx.inp_KQ_mask) { - // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. - if (cparams.causal_attn) { - const int64_t n_kv = kv_self.n; - const int64_t n_tokens = batch.n_tokens; - - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); - - float * data = (float *) lctx.inp_KQ_mask->data; - - // For causal attention, use only the previous KV cells - // of the correct sequence for each token of the batch. - // It's assumed that if a token in the batch has multiple sequences, they are equivalent. - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - const llama_pos pos = batch.pos[j]; - const llama_seq_id seq_id = batch.seq_id[j][0]; - - for (int i = 0; i < n_kv; ++i) { - float f; - if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { - f = -INFINITY; - } else { - if (hparams.use_alibi) { - f = -fabs(lctx.kv_self.cells[i].pos - pos); - } else { - f = 0.0f; - } - } - data[h*(n_kv*n_tokens) + j*n_kv + i] = f; - } - } - - for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { - for (int j = 0; j < n_kv; ++j) { - data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; - } - } - } - } else { - // when using kv cache, the mask needs to match the kv cache size - const int64_t n_tokens = batch.n_tokens; - const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens; - - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); - - float * data = (float *) lctx.inp_KQ_mask->data; - - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - const llama_seq_id seq_id = batch.seq_id[j][0]; - - for (int i = 0; i < n_tokens; ++i) { - float f = -INFINITY; - for (int s = 0; s < batch.n_seq_id[i]; ++s) { - if (batch.seq_id[i][s] == seq_id) { - if (hparams.use_alibi) { - f = -fabs(batch.pos[i] - batch.pos[j]); - } else { - f = 0.0f; - } - break; - } - } - - data[h*(n_tokens*n_tokens) + j*n_stride + i] = f; - } - - for (int i = n_tokens; i < n_stride; ++i) { - data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY; - } - } - } - } - } - - if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { - const int64_t n_tokens = batch.n_tokens; - - GGML_ASSERT(lctx.inp_mean); - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer)); - - float * data = (float *) lctx.inp_mean->data; - memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean)); - - std::vector<uint64_t> sum(n_tokens, 0); - for (int i = 0; i < n_tokens; ++i) { - const llama_seq_id seq_id = batch.seq_id[i][0]; - - GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN"); - - sum[seq_id] += 1; - } - - std::vector<float> div(n_tokens, 0.0f); - for (int i = 0; i < n_tokens; ++i) { - const uint64_t s = sum[i]; - if (s > 0) { - div[i] = 1.0f/float(s); - } - } - - for (int i = 0; i < n_tokens; ++i) { - const llama_seq_id seq_id = batch.seq_id[i][0]; - data[seq_id*n_tokens + i] = div[seq_id]; - } - } - - if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) { - const int64_t n_tokens = batch.n_tokens; - - GGML_ASSERT(lctx.inp_cls); - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); - - uint32_t * data = (uint32_t *) lctx.inp_cls->data; - memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls)); - - for (int i = 0; i < n_tokens; ++i) { - const llama_seq_id seq_id = batch.seq_id[i][0]; - const llama_pos pos = batch.pos[i]; - - GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS"); - - if (pos == 0) { - data[seq_id] = i; - } - } - } - - if (cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) { - const int64_t n_tokens = batch.n_tokens; - - GGML_ASSERT(lctx.inp_cls); - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); - - uint32_t * data = (uint32_t *) lctx.inp_cls->data; - memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls)); - - std::vector<int> last_pos(n_tokens, -1); - std::vector<int> last_row(n_tokens, -1); - - for (int i = 0; i < n_tokens; ++i) { - const llama_seq_id seq_id = batch.seq_id[i][0]; - const llama_pos pos = batch.pos[i]; - - GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST"); - - if (pos >= last_pos[seq_id]) { - last_pos[seq_id] = pos; - last_row[seq_id] = i; - } - } - - for (int i = 0; i < n_tokens; ++i) { - if (last_row[i] >= 0) { - data[i] = last_row[i]; - } - } - } - - if (kv_self.recurrent) { - const int64_t n_kv = kv_self.n; - - if (lctx.inp_s_mask) { - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer)); - float * data = (float *) lctx.inp_s_mask->data; - - // states which are not affected by the current batch are left untouched - for (int i = 0; i < n_kv; ++i) { - llama_seq_id seq_id = i + lctx.kv_self.head; - llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id]; - bool has_self_seq = kv_cell.has_seq_id(seq_id); - - data[i] = (float) has_self_seq; - - // ensure current sequences will be kept - if (!has_self_seq && kv_cell.pos >= 0) { - kv_cell.seq_id.insert(seq_id); - } - } - } - // For Mamba (and other recurrent architectures), - // update the correct state(s)/sequence(s) for each token of the batch. - // Like with the KQ_mask, if a token in the batch has multiple sequences, - // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv). - if (lctx.inp_s_seq) { - const int64_t n_tokens = batch.n_tokens; - - GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer)); - int32_t * data = (int32_t *) lctx.inp_s_seq->data; - - for (int j = 0; j < n_tokens; ++j) { - const int32_t n_seq = batch.n_seq_id[j]; - GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence - - for (int i = 0; i < n_kv; ++i) { - if (i < n_seq) { - // for this type of model, the head is the minimum seq_id of the batch - data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head; - } else { - data[j*n_kv + i] = -1; - } - } - } - } - } -} - -// Make sure enough space is available for outputs. -// Returns max number of outputs for which space was reserved. -static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { - const auto & cparams = lctx.cparams; - const auto & hparams = lctx.model.hparams; - - const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max); - - const auto n_batch = cparams.n_batch; - const auto n_vocab = hparams.n_vocab; - const auto n_embd = hparams.n_embd; - - // TODO: use a per-batch flag for logits presence instead - const bool has_logits = !cparams.embeddings; - const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); - - const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; - const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0; - - if (lctx.output_ids.empty()) { - // init, never resized afterwards - lctx.output_ids.resize(n_batch); - } - - const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0; - const size_t new_size = (logits_size + embd_size) * sizeof(float); - - // alloc only when more than the current capacity is required - // TODO: also consider shrinking the buffer - if (!lctx.buf_output || prev_size < new_size) { - if (lctx.buf_output) { -#ifndef NDEBUG - // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) - LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); -#endif - ggml_backend_buffer_free(lctx.buf_output); - lctx.buf_output = nullptr; - lctx.logits = nullptr; - lctx.embd = nullptr; - } - - lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size); - if (lctx.buf_output == nullptr) { - LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); - return 0; - } - } - - float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output); - - lctx.logits = has_logits ? output_base : nullptr; - lctx.embd = has_embd ? output_base + logits_size : nullptr; - - lctx.output_size = n_outputs_max; - lctx.logits_size = logits_size; - lctx.embd_size = embd_size; - - // set all ids as invalid (negative) - std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1); - - ggml_backend_buffer_clear(lctx.buf_output, 0); - - lctx.n_outputs = 0; - - return n_outputs_max; -} - - -static void llama_graph_compute( - llama_context & lctx, - ggml_cgraph * gf, - int n_threads) { -#ifdef GGML_USE_METAL - if (ggml_backend_is_metal(lctx.backend_metal)) { - ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); - } -#endif - - if (lctx.backend_cpu != nullptr) { - ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); - ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data); - } -#ifdef GGML_USE_BLAS - if (lctx.backend_blas != nullptr) { - ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads); - } -#endif - - ggml_backend_sched_graph_compute_async(lctx.sched, gf); - - // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); -} - -// decode a batch of tokens by evaluating the transformer -// -// - lctx: llama context -// - batch: batch to evaluate -// -// return 0 on success -// return positive int on warning -// return negative int on error -// -static int llama_decode_internal( - llama_context & lctx, - llama_batch batch_all) { // TODO: rename back to batch - - const uint32_t n_tokens_all = batch_all.n_tokens; - - if (n_tokens_all == 0) { - LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__); - return -1; - } - - const auto & model = lctx.model; - const auto & hparams = model.hparams; - const auto & cparams = lctx.cparams; - - GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT - - GGML_ASSERT(n_tokens_all <= cparams.n_batch); - - GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); - - if (lctx.t_compute_start_us == 0) { - lctx.t_compute_start_us = ggml_time_us(); - } - lctx.n_queued_tokens += n_tokens_all; - - auto & kv_self = lctx.kv_self; - - const int64_t n_embd = hparams.n_embd; - const int64_t n_vocab = hparams.n_vocab; - - uint32_t n_outputs = 0; - uint32_t n_outputs_prev = 0; - - const auto n_ubatch = cparams.n_ubatch; - - std::vector<llama_pos> pos; - std::vector<int32_t> n_seq_id; - std::vector<llama_seq_id *> seq_id_arr; - std::vector<std::vector<llama_seq_id>> seq_id; - - // count outputs - if (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE) { - n_outputs = n_tokens_all; - } else if (batch_all.logits) { - for (uint32_t i = 0; i < n_tokens_all; ++i) { - n_outputs += batch_all.logits[i] != 0; - } - } else if (lctx.logits_all) { - n_outputs = n_tokens_all; - } else { - // keep last output only - n_outputs = 1; - } - - // reserve output buffer - if (llama_output_reserve(lctx, n_outputs) < n_outputs) { - LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs); - return -2; - }; - - // set output mappings - if (batch_all.logits) { - int32_t i_logits = 0; - for (uint32_t i = 0; i < n_tokens_all; ++i) { - if (batch_all.logits[i]) { - lctx.output_ids[i] = i_logits++; - } - } - } else { - for (uint32_t i = 0; i < n_outputs; ++i) { - lctx.output_ids[i] = i; - } - } - - for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) { - const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token); - llama_batch u_batch = { - /* .n_tokens = */ (int32_t) n_tokens, - /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr, - /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr, - /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr, - /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr, - /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr, - /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr, - /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1, - /* .all_pos_1 = */ batch_all.all_pos_1, - /* .all_seq_id = */ batch_all.all_seq_id, - }; - - // count the outputs in this u_batch - { - int32_t n_outputs_new = 0; - - if (u_batch.logits) { - for (uint32_t i = 0; i < n_tokens; i++) { - n_outputs_new += u_batch.logits[i] != 0; - } - } else if (n_outputs == n_tokens_all) { - n_outputs_new = n_tokens; - } else { - // keep last output only - if (cur_token + n_tokens >= n_tokens_all) { - n_outputs_new = 1; - } - } - - // needs to happen before the graph is built - lctx.n_outputs = n_outputs_new; - } - - int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; - GGML_ASSERT(n_threads > 0); - - // helpers for smoother batch API transition - // after deprecating the llama_eval calls, these will be removed - if (u_batch.pos == nullptr) { - pos.resize(n_tokens); - for (uint32_t i = 0; i < n_tokens; i++) { - pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1; - } - - u_batch.pos = pos.data(); - } - - if (u_batch.seq_id == nullptr) { - n_seq_id.resize(n_tokens); - seq_id.resize(n_tokens); - seq_id_arr.resize(n_tokens); - for (uint32_t i = 0; i < n_tokens; i++) { - n_seq_id[i] = 1; - seq_id[i].resize(1); - seq_id[i][0] = u_batch.all_seq_id; - seq_id_arr[i] = seq_id[i].data(); - } - - u_batch.n_seq_id = n_seq_id.data(); - u_batch.seq_id = seq_id_arr.data(); - } - - // non-causal masks do not use the KV cache - if (hparams.causal_attn) { - llama_kv_cache_update(&lctx); - - // if we have enough unused cells before the current head -> - // better to start searching from the beginning of the cache, hoping to fill it - if (kv_self.head > kv_self.used + 2*n_tokens) { - kv_self.head = 0; - } - - if (!llama_kv_cache_find_slot(kv_self, u_batch)) { - return 1; - } - - if (!kv_self.recurrent) { - // a heuristic, to avoid attending the full cache if it is not yet utilized - // after enough generations, the benefit from this heuristic disappears - // if we start defragmenting the cache, the benefit from this will be more important - const uint32_t pad = llama_kv_cache_get_padding(cparams); - kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad))); - //kv_self.n = llama_kv_cache_cell_max(kv_self); - } - } - - //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); - - ggml_backend_sched_reset(lctx.sched); - ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); - - ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false); - - // the output is always the last tensor in the graph - struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; - struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2]; - - if (lctx.n_outputs == 0) { - // no output - res = nullptr; - embd = nullptr; - } else if (cparams.embeddings) { - res = nullptr; // do not extract logits for embedding case - embd = gf->nodes[gf->n_nodes - 1]; - if (strcmp(embd->name, "result_embd_pooled") != 0) { - embd = gf->nodes[gf->n_nodes - 2]; - } - GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor"); - } else { - embd = nullptr; // do not extract embeddings when not needed - GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); - } - // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); - - ggml_backend_sched_alloc_graph(lctx.sched, gf); - - llama_set_inputs(lctx, u_batch); - - llama_graph_compute(lctx, gf, n_threads); - - // update the kv ring buffer - { - kv_self.head += n_tokens; - - // Ensure kv cache head points to a valid index. - if (kv_self.head >= kv_self.size) { - kv_self.head = 0; - } - } - -#ifdef GGML_PERF - // print timing information per ggml operation (for debugging purposes) - // requires GGML_PERF to be defined - ggml_graph_print(gf); -#endif - - // plot the computation graph in dot format (for debugging purposes) - //if (n_past%100 == 0) { - // ggml_graph_dump_dot(gf, NULL, "llama.dot"); - //} - - // extract logits - if (res) { - ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res); - GGML_ASSERT(backend_res != nullptr); - GGML_ASSERT(lctx.logits != nullptr); - - float * logits_out = lctx.logits + n_outputs_prev*n_vocab; - const int32_t n_outputs_new = lctx.n_outputs; - - if (n_outputs_new) { - GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs); - GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size); - ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float)); - } - } - - // extract embeddings - if (embd) { - ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd); - GGML_ASSERT(backend_embd != nullptr); - - switch (cparams.pooling_type) { - case LLAMA_POOLING_TYPE_NONE: - { - // extract token embeddings - GGML_ASSERT(lctx.embd != nullptr); - float * embd_out = lctx.embd + n_outputs_prev*n_embd; - const int32_t n_outputs_new = lctx.n_outputs; - - if (n_outputs_new) { - GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs); - GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size); - ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float)); - } - } break; - case LLAMA_POOLING_TYPE_MEAN: - case LLAMA_POOLING_TYPE_CLS: - case LLAMA_POOLING_TYPE_LAST: - { - // extract sequence embeddings - auto & embd_seq_out = lctx.embd_seq; - embd_seq_out.clear(); - - for (uint32_t i = 0; i < n_tokens; i++) { - const llama_seq_id seq_id = u_batch.seq_id[i][0]; - if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { - continue; - } - embd_seq_out[seq_id].resize(n_embd); - ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); - } - } break; - case LLAMA_POOLING_TYPE_UNSPECIFIED: - { - GGML_ASSERT(false && "unknown pooling type"); - } break; - } - } - n_outputs_prev += lctx.n_outputs; - } - - // set to total number of outputs in the batch, for use in llama_get_logits_ith - lctx.n_outputs = n_outputs; - - // wait for the computation to finish (automatically done when obtaining the model output) - //llama_synchronize(&lctx); - - // decide if we need to defrag the kv cache - if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) { - const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f; - - // queue defragmentation for next llama_kv_cache_update - if (fragmentation > cparams.defrag_thold) { - //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation); - - llama_kv_cache_defrag(kv_self); - } - } - - // Reset state for the next token before backend sync, to allow the CPU activities in the reset to - // overlap with device computation. - ggml_backend_sched_reset(lctx.sched); - - return 0; -} - - -// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache -static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { - auto & kv_self = lctx.kv_self; - - const auto & hparams = lctx.model.hparams; - - const uint32_t n_layer = hparams.n_layer; - - const uint32_t n_kv = llama_kv_cache_cell_max(kv_self); - const uint32_t n_used = kv_self.used; - - assert(n_used <= n_kv); - - //const int64_t t_start = ggml_time_us(); - - // number of cells moved - uint32_t n_moves = 0; - - // each move requires 6*n_layer tensors (see build_defrag) - // - source view, destination view, copy operation - // - x2 for keys and values - //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer); - // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 - const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer); - - // determine which KV cells to move where - // - // cell i moves to ids[i] - // - // if ids[i] == i || ids[i] == n_kv, then cell i is not moved - // - std::vector<uint32_t> ids(n_kv, n_kv); - - for (uint32_t i0 = 0; i0 < n_used; ++i0) { - const auto & cell0 = kv_self.cells[i0]; - - if (!cell0.is_empty()) { - ids[i0] = i0; - - continue; - } - - // found a hole - fill it with data from the end of the cache - - uint32_t nh = 1; - - // determine the size of the hole - while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) { - nh++; - } - - uint32_t nf = 0; - uint32_t is = n_kv - 1; - - // starting from the end, find nh non-empty cells - for (; is > i0; --is) { - const auto & cell1 = kv_self.cells[is]; - - if (cell1.is_empty() || ids[is] != n_kv) { - continue; - } - - // non-empty cell which is not yet moved - nf++; - - if (nf == nh) { - break; - } - } - - // this can only happen if `n_used` is not accurate, which would be a bug - GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); - - nf = 0; - - uint32_t i1 = is; - - // are we moving a continuous block of memory? - bool cont = false; - - // should we stop searching for the next move? - bool stop = false; - - // go back and move the nf cells to the hole - for (; i1 < n_kv; ++i1) { - auto & cell1 = kv_self.cells[i1]; - - if (cell1.is_empty() || ids[i1] != n_kv) { - if (n_moves == max_moves) { - stop = true; - break; - } - - cont = false; - continue; - } - - // this cell goes to (i0 + nf) - ids[i1] = i0 + nf; - - // move the cell meta data - kv_self.cells[i0 + nf] = cell1; - - // clear the old cell and move the head there - cell1 = llama_kv_cell(); - kv_self.head = n_used; - - if (!cont) { - n_moves++; - cont = true; - } - - nf++; - - if (nf == nh) { - break; - } - } - - if (stop || n_moves == max_moves) { - break; - } - - //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); - - i0 += nh - 1; - } - - if (n_moves == 0) { - return; - } - - //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves); - - //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer); - -#if 0 - // CPU defrag - // - // TODO: optimizations are possible: - // - multiple threads - // - avoid copying to the host memory when already there - // - // likely not worth the effort, as we have ggml_graph based defrag - // - - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); - - const uint32_t kv_size = kv_self.size; - - std::vector<uint8_t> buf_k; - std::vector<uint8_t> buf_v; - - for (uint32_t il = 0; il < n_layer; ++il) { - const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); - const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size); - - const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); - const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size); - - buf_k.resize(k_size); - buf_v.resize(v_size); - - ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); - ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); - - // batch move [i, i+nm) to [id, id+nm) - // note: cells can move only to a lower index - for (uint32_t i = 0; i < n_kv; ++i) { - const uint32_t id = ids[i]; - - if (i == id || id == n_kv) { - continue; - } - - uint32_t nm = 1; - - while (i + nm < n_kv && ids[i + nm] == id + nm) { - nm++; - } - - // move keys - { - const int64_t os = i*k_size_row; - const int64_t od = id*k_size_row; - - memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); - } - - // move values (note: they are transposed) - { - const int64_t os = i; - const int64_t od = id; - - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); - } - } - - i += nm - 1; - } - - ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); - ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); - } -#else - // ggml_graph defrag - - ggml_backend_sched_reset(lctx.sched); - - ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids); - - llama_graph_compute(lctx, gf, lctx.cparams.n_threads); -#endif - - //const int64_t t_end = ggml_time_us(); - - //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0); -} - -static void llama_kv_cache_update_internal(struct llama_context & lctx) { - bool need_reserve = false; - - // apply K-shift if needed - if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) { - { - ggml_backend_sched_reset(lctx.sched); - - ggml_cgraph * gf = llama_build_graph_k_shift(lctx); - - ggml_backend_sched_alloc_graph(lctx.sched, gf); - - llama_set_k_shift(lctx); - - llama_graph_compute(lctx, gf, lctx.cparams.n_threads); - - need_reserve = true; - } - - { - auto & kv_self = lctx.kv_self; - - kv_self.has_shift = false; - - for (uint32_t i = 0; i < kv_self.size; ++i) { - kv_self.cells[i].delta = 0; - } - } - } - - if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) { - { - ggml_backend_sched_reset(lctx.sched); - - ggml_cgraph * gf = llama_build_graph_s_copy(lctx); - - ggml_backend_sched_alloc_graph(lctx.sched, gf); - - llama_set_s_copy(lctx); - - llama_graph_compute(lctx, gf, lctx.cparams.n_threads); - - need_reserve = true; - } - - { - auto & kv_self = lctx.kv_self; - - kv_self.do_copy = false; - - for (uint32_t i = 0; i < kv_self.size; ++i) { - kv_self.cells[i].src = i; - } - } - } - - // defragment the KV cache if needed - if (lctx.kv_self.do_defrag) { - llama_kv_cache_defrag_internal(lctx); - - need_reserve = true; - - lctx.kv_self.do_defrag = false; - } - - // reserve a worst case graph again - if (need_reserve) { - // TODO: extract to a function - // build worst-case graph - int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch); - int n_past = lctx.cparams.n_ctx - n_tokens; - llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph - ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); - - // initialize scheduler with the worst-case graph - ggml_backend_sched_reset(lctx.sched); - if (!ggml_backend_sched_reserve(lctx.sched, gf)) { - LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); - } - } -} - -// -// tokenizer -// - -static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) { - return vocab.type; -} - -static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) { - GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL; -} - -static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) { - GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN; -} - -static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { - GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL; -} - -static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { - GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE; -} - -static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) { - GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); - return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED; -} - -static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { - GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); - GGML_ASSERT(llama_is_byte_token(vocab, id)); - const auto & token_data = vocab.id_to_token.at(id); - switch (llama_vocab_get_type(vocab)) { - case LLAMA_VOCAB_TYPE_SPM: { - auto buf = token_data.text.substr(3, 2); - return strtol(buf.c_str(), NULL, 16); - } - case LLAMA_VOCAB_TYPE_BPE: { - GGML_ASSERT(false); - return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT? - } - case LLAMA_VOCAB_TYPE_WPM: { - GGML_ASSERT(false); - } - default: - GGML_ASSERT(false); - } -} - -static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) { - GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); - static const char * hex = "0123456789ABCDEF"; - switch (llama_vocab_get_type(vocab)) { - case LLAMA_VOCAB_TYPE_SPM: { - const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; - auto token = vocab.token_to_id.find(buf); - if (token != vocab.token_to_id.end()) { - return (*token).second; - } - // Try to fall back to just the byte as a string - const char buf2[2] = { (char)ch, 0 }; - return vocab.token_to_id.at(buf2); - } - case LLAMA_VOCAB_TYPE_WPM: - case LLAMA_VOCAB_TYPE_BPE: { - return vocab.token_to_id.at(unicode_byte_to_utf8(ch)); - } - default: - GGML_ASSERT(false); - } -} - -static void llama_escape_whitespace(std::string & text) { - replace_all(text, " ", "\xe2\x96\x81"); -} - -static void llama_unescape_whitespace(std::string & word) { - replace_all(word, "\xe2\x96\x81", " "); -} - -struct llm_symbol { - using index = int; - index prev; - index next; - const char * text; - size_t n; -}; - -static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable"); - -// SPM tokenizer -// original implementation: -// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 - -struct llm_bigram_spm { - struct comparator { - bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { - return (l.score < r.score) || (l.score == r.score && l.left > r.left); - } - }; - using queue_storage = std::vector<llm_bigram_spm>; - using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>; - llm_symbol::index left; - llm_symbol::index right; - float score; - size_t size; -}; - -struct llm_tokenizer_spm { - llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {} - - void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { - // split string into utf8 chars - int index = 0; - size_t offs = 0; - while (offs < text.size()) { - llm_symbol sym; - size_t len = utf8_len(text[offs]); - sym.text = text.c_str() + offs; - sym.n = std::min(len, text.size() - offs); - offs += sym.n; - sym.prev = index - 1; - sym.next = offs == text.size() ? -1 : index + 1; - index++; - symbols.emplace_back(sym); - } - - // seed the work queue with all possible 2-character tokens. - for (size_t i = 1; i < symbols.size(); ++i) { - try_add_bigram(i - 1, i); - } - - // keep substituting the highest frequency pairs for as long as we can. - while (!work_queue.empty()) { - auto bigram = work_queue.top(); - work_queue.pop(); - - auto & left_sym = symbols[bigram.left]; - auto & right_sym = symbols[bigram.right]; - - // if one of the symbols already got merged, skip it. - if (left_sym.n == 0 || right_sym.n == 0 || - left_sym.n + right_sym.n != bigram.size) { - continue; - } - - // merge the right sym into the left one - left_sym.n += right_sym.n; - right_sym.n = 0; - - //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); - - // remove the right sym from the chain - left_sym.next = right_sym.next; - if (right_sym.next >= 0) { - symbols[right_sym.next].prev = bigram.left; - } - - // find more substitutions - try_add_bigram(left_sym.prev, bigram.left); - try_add_bigram(bigram.left, left_sym.next); - } - - for (int i = 0; i != -1; i = symbols[i].next) { - auto & symbol = symbols[i]; - resegment(symbol, output); - } - } - -private: - void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) { - auto text = std::string(symbol.text, symbol.n); - auto token = vocab.token_to_id.find(text); - - // Do we need to support is_unused? - if (token != vocab.token_to_id.end()) { - output.push_back((*token).second); - return; - } - - const auto p = rev_merge.find(text); - - if (p == rev_merge.end()) { - // output any symbols that did not form tokens as bytes. - output.reserve(output.size() + symbol.n); - for (int j = 0; j < (int)symbol.n; ++j) { - llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]); - output.push_back(token_id); - } - return; - } - - resegment(symbols[p->second.first], output); - resegment(symbols[p->second.second], output); - } - - void try_add_bigram(int left, int right) { - if (left == -1 || right == -1) { - return; - } - - const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); - auto token = vocab.token_to_id.find(text); - - if (token == vocab.token_to_id.end()) { - return; - } - - if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) { - return; - } - - const auto & tok_data = vocab.id_to_token[(*token).second]; - - llm_bigram_spm bigram; - bigram.left = left; - bigram.right = right; - bigram.score = tok_data.score; - bigram.size = text.size(); - - work_queue.push(bigram); - - // Do we need to support is_unused? - rev_merge[text] = std::make_pair(left, right); - } - - const llama_vocab & vocab; - - std::vector<llm_symbol> symbols; - llm_bigram_spm::queue work_queue; - - std::map<std::string, std::pair<int, int>> rev_merge; -}; - -// BPE tokenizer -// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License] -// tried to simplify unicode stuff, so most likely does not work 100% correctly! - -// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused - -struct llm_bigram_bpe { - struct comparator { - bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { - return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); - } - }; - - using queue_storage = std::vector<llm_bigram_bpe>; - using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>; - llm_symbol::index left; - llm_symbol::index right; - std::string text; - int rank; - size_t size; -}; - -struct llm_tokenizer_bpe { - llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) { - GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE); - switch (vocab.type_pre) { - case LLAMA_VOCAB_PRE_TYPE_LLAMA3: - regex_exprs = { - // original regex from tokenizer.json - //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - - // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989 - "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_DBRX: - case LLAMA_VOCAB_PRE_TYPE_SMAUG: - regex_exprs = { - // same as llama3 - "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM: - regex_exprs = { - "[\r\n]", - "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+", - "\\s?[!-/:-~!-/:-~‘-‟ -。]+", - "\\s+$", - "[一-龥ࠀ-一가-]+", - "\\p{N}+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER: - regex_exprs = { - "[\r\n]", - "\\s?\\p{L}+", - "\\s?\\p{P}+", - "[一-龥ࠀ-一가-]+", - "\\p{N}", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_FALCON: - regex_exprs = { - "[\\p{P}\\$\\+<=>\\^~\\|`]+", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - "[0-9][0-9][0-9]", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_MPT: - // TODO: MPT pre-tokenization regexes are unknown - // the following are close, but not exact. run the following: - // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf - GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed"); - regex_exprs = { - "\\s?\\p{L}+", - "\\s?\\p{P}+", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_STARCODER: - case LLAMA_VOCAB_PRE_TYPE_REFACT: - case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: - regex_exprs = { - "\\p{N}", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_GPT2: - case LLAMA_VOCAB_PRE_TYPE_OLMO: - regex_exprs = { - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_STABLELM2: - case LLAMA_VOCAB_PRE_TYPE_QWEN2: - regex_exprs = { - // original regex from tokenizer.json - // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" - "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - }; - break; - case LLAMA_VOCAB_PRE_TYPE_PORO: - regex_exprs = { - " ?[^(\\s|.,!?…。,、।۔،)]+", - }; - break; - default: - // default regex for BPE tokenization pre-processing - regex_exprs = { - "[\\p{P}\\$\\+<=>\\^~\\|]+", - "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", - "\\p{N}+", - "[0-9][0-9][0-9]", - }; - break; - } - } - - void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const { - output.push_back(token_id); - } - - bool append_bos(std::vector<llama_vocab::id> & output) const { - if (vocab.tokenizer_add_bos) { - GGML_ASSERT(vocab.special_bos_id != -1); - output.push_back(vocab.special_bos_id); - return true; - } - return false; - } - - bool append_eos(std::vector<llama_vocab::id> & output) const { - if (vocab.tokenizer_add_eos) { - GGML_ASSERT(vocab.special_eos_id != -1); - output.push_back(vocab.special_eos_id); - return true; - } - return false; - } - - void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const { - if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { - LLAMA_LOG_WARN( - "%s: Added a BOS token to the prompt as specified by the model but the prompt " - "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " - "Are you sure this is what you want?\n", __FUNCTION__); - } - if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) { - LLAMA_LOG_WARN( - "%s: Added a EOS token to the prompt as specified by the model but the prompt " - "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. " - "Are you sure this is what you want?\n", __FUNCTION__); - } - } - - void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { - int final_prev_index = -1; - - const auto word_collection = unicode_regex_split(text, regex_exprs); - - symbols_final.clear(); - - for (auto & word : word_collection) { - work_queue = llm_bigram_bpe::queue(); - symbols.clear(); - - int index = 0; - size_t offset = 0; - - if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) { - symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()}); - offset = word.size(); - } - - while (offset < word.size()) { - llm_symbol sym; - size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset])); - sym.text = word.c_str() + offset; - sym.n = char_len; - offset += sym.n; - sym.prev = index - 1; - sym.next = offset == word.size() ? -1 : index + 1; - index++; - symbols.emplace_back(sym); - } - for (size_t i = 1; i < symbols.size(); ++i) { - add_new_bigram(i - 1, i); - } - - // build token(s) - while (!work_queue.empty()) { - auto bigram = work_queue.top(); - work_queue.pop(); - - auto & left_symbol = symbols[bigram.left]; - auto & right_symbol = symbols[bigram.right]; - - if (left_symbol.n == 0 || right_symbol.n == 0) { - continue; - } - std::string left_token = std::string(left_symbol.text, left_symbol.n); - std::string right_token = std::string(right_symbol.text, right_symbol.n); - if (left_token + right_token != bigram.text) { - continue; // Skip this bigram if it's outdated - } - - // merge the right sym into the left one - left_symbol.n += right_symbol.n; - right_symbol.n = 0; - - // remove the right sym from the chain - left_symbol.next = right_symbol.next; - if (right_symbol.next >= 0) { - symbols[right_symbol.next].prev = bigram.left; - } - - add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol - add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol - } - - // add the finished tokens to the final list keeping correct order for next and prev - for (auto & sym : symbols) { - if (sym.n > 0) { - sym.prev = final_prev_index; - sym.next = -1; - if (final_prev_index != -1) { - symbols_final[final_prev_index].next = symbols_final.size(); - } - symbols_final.emplace_back(sym); - final_prev_index = symbols_final.size() - 1; - } - } - } - - symbols = symbols_final; - - if (!symbols.empty()) { - for (int i = 0; i != -1; i = symbols[i].next) { - auto & symbol = symbols[i]; - if (symbol.n == 0) { - continue; - } - - const std::string str = std::string(symbol.text, symbol.n); - const auto token = vocab.token_to_id.find(str); - - if (token == vocab.token_to_id.end()) { - for (auto j = str.begin(); j != str.end(); ++j) { - std::string byte_str(1, *j); - auto token_multibyte = vocab.token_to_id.find(byte_str); - if (token_multibyte != vocab.token_to_id.end()) { - output.push_back(token_multibyte->second); - } - } - } else { - output.push_back((*token).second); - } - } - } - } - -private: - void add_new_bigram(int left, int right) { - if (left == -1 || right == -1) { - return; - } - - std::string left_token = std::string(symbols[left].text, symbols[left].n); - std::string right_token = std::string(symbols[right].text, symbols[right].n); - - int rank_found = -1; - - rank_found = vocab.find_bpe_rank(left_token, right_token); - - if (rank_found < 0) { - return; - } - - llm_bigram_bpe bigram; - - bigram.left = left; - bigram.right = right; - bigram.text = left_token + right_token; - bigram.size = left_token.size() + right_token.size(); - bigram.rank = rank_found; - - work_queue.push(bigram); - } - - const llama_vocab & vocab; - - std::vector<std::string> regex_exprs; - - std::vector<llm_symbol> symbols; - std::vector<llm_symbol> symbols_final; - - llm_bigram_bpe::queue work_queue; -}; - -struct llm_tokenizer_wpm { - llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} - - void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const { - const auto & token_map = vocab.token_to_id; - - // normalize and split by whitespace - std::vector<std::string> words = preprocess(text); - - // bos token prepended already - - // find the longest tokens that form the words - for (const std::string & word : words) { - // skip empty words - if (word.size() == 0) { - continue; - } - - // prepend phantom space - const std::string word1 = "\xe2\x96\x81" + word; - const int n = word1.size(); - - const size_t current_tokens = output.size(); - - // we're at the start of a new word - // move through character position in word - for (int i = 0; i < n; ++i) { - // loop through possible match length - bool match = false; - for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) { - auto it = token_map.find(word1.substr(i, j - i)); - if (it != token_map.end()) { - output.push_back(it->second); - match = true; - i = j - 1; - break; - } - } - - if (!match) { // discard all - output.resize(current_tokens); - break; // and discard next tokens - } - } - - // we didn't find any matches for this word - if (current_tokens == output.size()) { - output.push_back(vocab.special_unk_id); - } - } - } - - // TODO: reduce string copies by using cpts_offs array - std::vector<std::string> preprocess(const std::string & text) const { - const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); - std::vector<std::string> words(1, ""); - - for (const uint32_t cpt : cpts_nfd) { - const auto flags = unicode_cpt_flags(cpt); - - if (flags.is_whitespace) { - if (words.back().size()) { // finish previous word if any - words.emplace_back(); - } - continue; - } - - assert (!flags.is_separator); - if (cpt == 0 || cpt == 0xFFFD || flags.is_control) { - continue; - } - - const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt)); - if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) { - if (words.back().size()) { // finish previous word if any - words.emplace_back(); - } - words.back() = s; // single char word - words.emplace_back(); // start a new word - } else { - words.back() += s; // append char to word - } - } - - if (!words.back().size()) { - words.pop_back(); - } - - return words; - } - - static bool is_chinese_char(uint32_t cpt) { - return - (cpt >= 0x04E00 && cpt <= 0x09FFF) || - (cpt >= 0x03400 && cpt <= 0x04DBF) || - (cpt >= 0x20000 && cpt <= 0x2A6DF) || - (cpt >= 0x2A700 && cpt <= 0x2B73F) || - (cpt >= 0x2B740 && cpt <= 0x2B81F) || - (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920 - (cpt >= 0x0F900 && cpt <= 0x0FAFF) || - (cpt >= 0x2F800 && cpt <= 0x2FA1F); - //(cpt >= 0x3000 && cpt <= 0x303F) || - //(cpt >= 0xFF00 && cpt <= 0xFFEF); - } - - const llama_vocab & vocab; -}; - -typedef enum FRAGMENT_BUFFER_VARIANT_TYPE { - FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, - FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT -} FRAGMENT_BUFFER_VARIANT_TYPE; - -struct fragment_buffer_variant { - fragment_buffer_variant(llama_vocab::id _token) - : - type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), - token(_token), - raw_text(_dummy), - offset(0), - length(0) {} - - fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) - : - type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), - token((llama_vocab::id) - 1), - raw_text(_raw_text), - offset(_offset), - length(_length){ - GGML_ASSERT(_offset >= 0); - GGML_ASSERT(_length >= 1); - GGML_ASSERT(offset + length <= raw_text.length()); - } - - const FRAGMENT_BUFFER_VARIANT_TYPE type; - const llama_vocab::id token; - const std::string _dummy; - const std::string & raw_text; - const uint64_t offset; - const uint64_t length; -}; - -// #define PRETOKENIZERDEBUG - -static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) { - // for each special token - for (const llama_vocab::id special_id : vocab.cache_special_tokens) { - const auto & data = vocab.id_to_token[special_id]; - const auto & special_token = data.text; - - // for each text fragment - std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin(); - while (it != buffer.end()) { - auto & fragment = (*it); - - // if a fragment is text ( not yet processed ) - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto & raw_text = fragment.raw_text; - - auto raw_text_base_offset = fragment.offset; - auto raw_text_base_length = fragment.length; - - // loop over the text - while (true) { - // find the first occurrence of a given special token in this fragment - // passing offset argument only limit the "search area" but match coordinates - // are still relative to the source full raw_text - auto match = raw_text.find(special_token, raw_text_base_offset); - - // no occurrences found, stop processing this fragment for a given special token - if (match == std::string::npos) break; - - // check if match is within bounds of offset <-> length - if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); -#endif - auto source = std::distance(buffer.begin(), it); - - // if match is further than base offset - // then we have some text to the left of it - if (match > raw_text_base_offset) { - // left - const int64_t left_reminder_offset = raw_text_base_offset + 0; - int64_t left_reminder_length = match - raw_text_base_offset; - - if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) { - while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) { - left_reminder_length--; - } - } - - if (left_reminder_length > 0) { - buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length); - it++; - } - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); -#endif - } - - // special token - buffer.emplace_after(it, special_id); - it++; - - // right - if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { - int64_t right_reminder_offset = match + special_token.length(); - int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); - - if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) { - while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) { - right_reminder_offset++; - right_reminder_length--; - } - } - - if (right_reminder_length > 0) { - buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length); - it++; - } - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); -#endif - - if (source == 0) { - buffer.erase_after(buffer.before_begin()); - } else { - buffer.erase_after(std::next(buffer.begin(), (source-1))); - } - - // repeat for the right side - raw_text_base_offset = right_reminder_offset; - raw_text_base_length = right_reminder_length; - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); -#endif - } else { - if (source == 0) { - buffer.erase_after(buffer.before_begin()); - } else { - buffer.erase_after(std::next(buffer.begin(), (source-1))); - } - break; - } - } - } - it++; - } - } -} - -static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) { - std::vector<llama_vocab::id> output; - std::forward_list<fragment_buffer_variant> fragment_buffer; - - if (!raw_text.empty()) { - fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); - if (parse_special) tokenizer_st_partition(vocab, fragment_buffer); - } - - switch (vocab.type) { - case LLAMA_VOCAB_TYPE_SPM: - { - // OG tokenizer behavior: - // - // tokenizer.encode('', add_special_tokens=True) returns [1] - // tokenizer.encode('', add_special_tokens=False) returns [] - - bool is_prev_special = false; - - if (add_special && vocab.tokenizer_add_bos) { - GGML_ASSERT(vocab.special_bos_id != -1); - output.push_back(vocab.special_bos_id); - is_prev_special = true; - } - - for (const auto & fragment : fragment_buffer) { - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); - - if (vocab.tokenizer_add_space_prefix) { - if (!output.size() || is_prev_special) { // prefix with space if first token - raw_text = " " + raw_text; - } - } - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); -#endif - llm_tokenizer_spm tokenizer(vocab); - llama_escape_whitespace(raw_text); - tokenizer.tokenize(raw_text, output); - } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) - output.push_back(fragment.token); - is_prev_special = true; - } - } - - if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { - LLAMA_LOG_WARN( - "%s: Added a BOS token to the prompt as specified by the model but the prompt " - "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " - "Are you sure this is what you want?\n", __FUNCTION__); - } - - if (add_special && vocab.tokenizer_add_eos) { - GGML_ASSERT(vocab.special_eos_id != -1); - output.push_back(vocab.special_eos_id); - } - } break; - case LLAMA_VOCAB_TYPE_BPE: - { - llm_tokenizer_bpe tokenizer(vocab); - - if (add_special) { - tokenizer.append_bos(output); - } - - for (const auto & fragment : fragment_buffer) { - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); -#endif - tokenizer.tokenize(raw_text, output); - } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) - tokenizer.append(fragment.token, output); - } - } - - if (add_special) { - tokenizer.append_eos(output); - tokenizer.check_double_bos_eos(output); - } - } break; - case LLAMA_VOCAB_TYPE_WPM: - { - if (add_special) { - GGML_ASSERT(vocab.special_cls_id != -1); - output.push_back(vocab.special_cls_id); - } - - llm_tokenizer_wpm tokenizer(vocab); - - for (const auto & fragment : fragment_buffer) { - if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); - -#ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); -#endif - tokenizer.tokenize(raw_text, output); - } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) - output.push_back(fragment.token); - } - } - - if (add_special) { - GGML_ASSERT(vocab.special_sep_id != -1); - output.push_back(vocab.special_sep_id); - } - } break; - case LLAMA_VOCAB_TYPE_NONE: - GGML_ASSERT(false); - } - - return output; -} - -// -// grammar - internal -// - - -// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as -// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`. -std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8( - const std::string & src, - llama_partial_utf8 partial_start) { - static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; - const char * pos = src.c_str(); - std::vector<uint32_t> code_points; - // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0. - code_points.reserve(src.size() + 1); - uint32_t value = partial_start.value; - int n_remain = partial_start.n_remain; - - // continue previous decode, if applicable - while (*pos != 0 && n_remain > 0) { - uint8_t next_byte = static_cast<uint8_t>(*pos); - if ((next_byte >> 6) != 2) { - // invalid sequence, abort - code_points.push_back(0); - return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 }); - } - value = (value << 6) + (next_byte & 0x3F); - ++pos; - --n_remain; - } - - if (partial_start.n_remain > 0 && n_remain == 0) { - code_points.push_back(value); - } - - // decode any subsequent utf-8 sequences, which may end in an incomplete one - while (*pos != 0) { - uint8_t first_byte = static_cast<uint8_t>(*pos); - uint8_t highbits = first_byte >> 4; - n_remain = lookup[highbits] - 1; - - if (n_remain < 0) { - // invalid sequence, abort - code_points.clear(); - code_points.push_back(0); - return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain }); - } - - uint8_t mask = (1 << (7 - n_remain)) - 1; - value = first_byte & mask; - ++pos; - while (*pos != 0 && n_remain > 0) { - value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F); - ++pos; - --n_remain; - } - if (n_remain == 0) { - code_points.push_back(value); - } - } - code_points.push_back(0); - - return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain }); -} - -// returns true iff pos points to the end of one of the definitions of a rule -static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { - switch (pos->type) { - case LLAMA_GRETYPE_END: return true; // NOLINT - case LLAMA_GRETYPE_ALT: return true; // NOLINT - default: return false; - } -} - -// returns true iff chr satisfies the char range at pos (regular or inverse range) -// asserts that pos is pointing to a char range element -static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char( - const llama_grammar_element * pos, - const uint32_t chr) { - - bool found = false; - bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; - - GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT - - do { - if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { - // inclusive range, e.g. [a-z] - found = found || (pos->value <= chr && chr <= pos[1].value); - pos += 2; - } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { - // Any character matches "." - found = true; - pos += 1; - } else { - // exact char match, e.g. [a] or "a" - found = found || pos->value == chr; - pos += 1; - } - } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); - - return std::make_pair(found == is_positive_char, pos); -} - -// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char -// range at pos (regular or inverse range) -// asserts that pos is pointing to a char range element -static bool llama_grammar_match_partial_char( - const llama_grammar_element * pos, - const llama_partial_utf8 partial_utf8) { - - bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY; - GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); - - uint32_t partial_value = partial_utf8.value; - int n_remain = partial_utf8.n_remain; - - // invalid sequence or 7-bit char split across 2 bytes (overlong) - if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { - return false; - } - - // range of possible code points this partial UTF-8 sequence could complete to - uint32_t low = partial_value << (n_remain * 6); - uint32_t high = low | ((1 << (n_remain * 6)) - 1); - - if (low == 0) { - if (n_remain == 2) { - low = 1 << 11; - } else if (n_remain == 3) { - low = 1 << 16; - } - } - - do { - if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { - // inclusive range, e.g. [a-z] - if (pos->value <= high && low <= pos[1].value) { - return is_positive_char; - } - pos += 2; - } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) { - // Any character matches "." - return true; - } else { - // exact char match, e.g. [a] or "a" - if (low <= pos->value && pos->value <= high) { - return is_positive_char; - } - pos += 1; - } - } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); - - return !is_positive_char; -} - - -// transforms a grammar pushdown stack into N possible stacks, all ending -// at a character range (terminal element) -static void llama_grammar_advance_stack( - const std::vector<std::vector<llama_grammar_element>> & rules, - const std::vector<const llama_grammar_element *> & stack, - std::vector<std::vector<const llama_grammar_element *>> & new_stacks) { - - if (stack.empty()) { - if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { - new_stacks.emplace_back(stack); - } - return; - } - - const llama_grammar_element * pos = stack.back(); - - switch (pos->type) { - case LLAMA_GRETYPE_RULE_REF: { - const size_t rule_id = static_cast<size_t>(pos->value); - const llama_grammar_element * subpos = rules[rule_id].data(); - do { - // init new stack without the top (pos) - std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1); - if (!llama_grammar_is_end_of_sequence(pos + 1)) { - // if this rule ref is followed by another element, add that to stack - new_stack.push_back(pos + 1); - } - if (!llama_grammar_is_end_of_sequence(subpos)) { - // if alternate is nonempty, add to stack - new_stack.push_back(subpos); - } - llama_grammar_advance_stack(rules, new_stack, new_stacks); - while (!llama_grammar_is_end_of_sequence(subpos)) { - // scan to end of alternate def - subpos++; - } - if (subpos->type == LLAMA_GRETYPE_ALT) { - // there's another alternate def of this rule to process - subpos++; - } else { - break; - } - } while (true); - break; - } - case LLAMA_GRETYPE_CHAR: - case LLAMA_GRETYPE_CHAR_NOT: - case LLAMA_GRETYPE_CHAR_ANY: - if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { - // only add the stack if it's not a duplicate of one we already have - new_stacks.emplace_back(stack); - } - break; - default: - // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range - // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on - // those - GGML_ASSERT(false); - } -} - -// takes a set of possible pushdown stacks on a grammar, which are required to -// be positioned at a character range (see `llama_grammar_advance_stack`), and -// produces the N possible stacks if the given char is accepted at those -// positions -void llama_grammar_accept( - const std::vector<std::vector<llama_grammar_element>> & rules, - const std::vector<std::vector<const llama_grammar_element *>> & stacks, - const uint32_t chr, - std::vector<std::vector<const llama_grammar_element *>> & new_stacks) { - - new_stacks.clear(); - - for (const auto & stack : stacks) { - if (stack.empty()) { - continue; - } - - auto match = llama_grammar_match_char(stack.back(), chr); - if (match.first) { - const llama_grammar_element * pos = match.second; - - // update top of stack to next element, if any - std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1); - if (!llama_grammar_is_end_of_sequence(pos)) { - new_stack.push_back(pos); - } - llama_grammar_advance_stack(rules, new_stack, new_stacks); - } - } -} - -static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates( - const std::vector<std::vector<llama_grammar_element>> & rules, - const std::vector<std::vector<const llama_grammar_element *>> & stacks, - const std::vector<llama_grammar_candidate> & candidates); - -static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack( - const std::vector<std::vector<llama_grammar_element>> & rules, - const std::vector<const llama_grammar_element *> & stack, - const std::vector<llama_grammar_candidate> & candidates) { - - std::vector<llama_grammar_candidate> rejects; - rejects.reserve(candidates.size()); - - if (stack.empty()) { - for (const auto & tok : candidates) { - if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { - rejects.push_back(tok); - } - } - return rejects; - } - - const llama_grammar_element * stack_pos = stack.back(); - - std::vector<llama_grammar_candidate> next_candidates; - next_candidates.reserve(candidates.size()); - - for (const auto & tok : candidates) { - if (*tok.code_points == 0) { - // reached end of full codepoints in token, reject iff it ended in a partial sequence - // that cannot satisfy this position in grammar - if (tok.partial_utf8.n_remain != 0 && - !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { - rejects.push_back(tok); - } - } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) { - next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); - } else { - rejects.push_back(tok); - } - } - - const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; - - // update top of stack to next element, if any - std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1); - if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { - stack_after.push_back(stack_pos_after); - } - std::vector<std::vector<const llama_grammar_element *>> next_stacks; - llama_grammar_advance_stack(rules, stack_after, next_stacks); - - auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); - for (const auto & tok : next_rejects) { - rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); - } - - return rejects; -} - -static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates( - const std::vector<std::vector<llama_grammar_element>> & rules, - const std::vector<std::vector<const llama_grammar_element *>> & stacks, - const std::vector<llama_grammar_candidate> & candidates) { - GGML_ASSERT(!stacks.empty()); // REVIEW - - if (candidates.empty()) { - return std::vector<llama_grammar_candidate>(); - } - - auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); - - for (size_t i = 1, size = stacks.size(); i < size; ++i) { - rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); - } - return rejects; -} - -static bool llama_grammar_detect_left_recursion( - const std::vector<std::vector<llama_grammar_element>> & rules, - size_t rule_index, - std::vector<bool> * rules_visited, - std::vector<bool> * rules_in_progress, - std::vector<bool> * rules_may_be_empty) { - if ((*rules_in_progress)[rule_index]) { - return true; - } - - (*rules_in_progress)[rule_index] = true; - - const std::vector<llama_grammar_element> & rule = rules[rule_index]; - - // First check if the rule might produce the empty string. This could be done combined with the second - // step but it's more readable as two steps. - bool at_rule_start = true; - for (size_t i = 0; i < rule.size(); i++) { - if (llama_grammar_is_end_of_sequence(&rule[i])) { - if (at_rule_start) { - (*rules_may_be_empty)[rule_index] = true; - break; - } - at_rule_start = true; - } else { - at_rule_start = false; - } - } - - // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may - // be empty) - bool recurse_into_nonterminal = true; - for (size_t i = 0; i < rule.size(); i++) { - if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) { - if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) { - return true; - } - if (!((*rules_may_be_empty)[(size_t)rule[i].value])) { - recurse_into_nonterminal = false; - } - } else if (llama_grammar_is_end_of_sequence(&rule[i])) { - recurse_into_nonterminal = true; - } else { - recurse_into_nonterminal = false; - } - } - - (*rules_in_progress)[rule_index] = false; - (*rules_visited)[rule_index] = true; - return false; -} - -// -// grammar - external -// - -struct llama_grammar * llama_grammar_init( - const llama_grammar_element ** rules, - size_t n_rules, - size_t start_rule_index) { - const llama_grammar_element * pos; - - // copy rule definitions into vectors - std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules); - for (size_t i = 0; i < n_rules; i++) { - for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { - vec_rules[i].push_back(*pos); - } - vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); - } - - // Check for left recursion - std::vector<bool> rules_visited(n_rules); - std::vector<bool> rules_in_progress(n_rules); - std::vector<bool> rules_may_be_empty(n_rules); - for (size_t i = 0; i < n_rules; i++) { - if (rules_visited[i]) { - continue; - } - if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) { - throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i)); - } - } - - // loop over alternates of start rule to build initial stacks - std::vector<std::vector<const llama_grammar_element *>> stacks; - pos = vec_rules[start_rule_index].data(); - do { - std::vector<const llama_grammar_element *> stack; - if (!llama_grammar_is_end_of_sequence(pos)) { - // if alternate is nonempty, add to stack - stack.push_back(pos); - } - llama_grammar_advance_stack(vec_rules, stack, stacks); - while (!llama_grammar_is_end_of_sequence(pos)) { - // scan to end of alternate def - pos++; - } - if (pos->type == LLAMA_GRETYPE_ALT) { - // there's another alternate def of this rule to process - pos++; - } else { - break; - } - } while (true); - - // Important: vec_rules has to be moved here, not copied, because stacks contains - // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar - // then the pointers would be invalidated when the local vec_rules goes out of scope. - return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} }; -} - -void llama_grammar_free(struct llama_grammar * grammar) { - delete grammar; -} - -struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) { - llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 }; - - // redirect elements in stacks to point to new rules - for (size_t is = 0; is < result->stacks.size(); is++) { - for (size_t ie = 0; ie < result->stacks[is].size(); ie++) { - for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) { - for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) { - if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) { - result->stacks[is][ie] = &result->rules[ir0][ir1]; - } - } - } - } - } - - return result; -} - -// -// sampling -// - -void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { - if (seed == LLAMA_DEFAULT_SEED) { - seed = time(NULL); - } - ctx->rng.seed(seed); -} - -void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { - GGML_ASSERT(candidates->size > 0); - - const int64_t t_start_sample_us = ggml_time_us(); - - // Sort the logits in descending order - if (!candidates->sorted) { - std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }); - candidates->sorted = true; - } - - float max_l = candidates->data[0].logit; - float cum_sum = 0.0f; - for (size_t i = 0; i < candidates->size; ++i) { - float p = expf(candidates->data[i].logit - max_l); - candidates->data[i].p = p; - cum_sum += p; - } - for (size_t i = 0; i < candidates->size; ++i) { - candidates->data[i].p /= cum_sum; - } - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) { - // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast - // if (k >= (int32_t)candidates->size) { - // return; - // } - - const int64_t t_start_sample_us = ggml_time_us(); - - if (k <= 0) { - k = candidates->size; - } - - k = std::max(k, (int) min_keep); - k = std::min(k, (int) candidates->size); - - // Sort scores in descending order - if (!candidates->sorted) { - auto comp = [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }; - if (k <= 128) { - std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); - } else { - constexpr int nbuckets = 128; - constexpr float bucket_low = -10.0f; - constexpr float bucket_high = 10.0f; - constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); - constexpr float bucker_inter = -bucket_low * bucket_scale; - - std::vector<int> bucket_idx(candidates->size); - std::vector<int> histo(nbuckets, 0); - - for (int i = 0; i < (int)candidates->size; ++i) { - const float val = candidates->data[i].logit; - int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); - ib = std::max(0, std::min(nbuckets-1, ib)); - bucket_idx[i] = ib; - ++histo[ib]; - } - int nhave = 0; - int ib = nbuckets - 1; - for ( ; ib >= 0; --ib) { - nhave += histo[ib]; - if (nhave >= k) break; - } - std::vector<llama_token_data> tmp_tokens(nhave); - auto ptr = tmp_tokens.data(); - std::vector<llama_token_data*> bucket_ptrs; - bucket_ptrs.reserve(nbuckets - ib); - for (int j = nbuckets - 1; j >= ib; --j) { - bucket_ptrs.push_back(ptr); - ptr += histo[j]; - } - for (int i = 0; i < (int)candidates->size; ++i) { - int j = bucket_idx[i]; - if (j >= ib) { - *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; - } - } - - ptr = tmp_tokens.data(); - int ndone = 0; - for (int j = nbuckets-1; j > ib; --j) { - std::sort(ptr, ptr + histo[j], comp); - ptr += histo[j]; - ndone += histo[j]; - } - std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); - - std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); - - } - candidates->sorted = true; - } - candidates->size = k; - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { - if (p >= 1.0f) { - return; - } - - llama_sample_softmax(ctx, candidates); - - const int64_t t_start_sample_us = ggml_time_us(); - - // Compute the cumulative probabilities - float cum_sum = 0.0f; - size_t last_idx = candidates->size; - - for (size_t i = 0; i < candidates->size; ++i) { - cum_sum += candidates->data[i].p; - - // Check if the running sum is at least p or if we have kept at least min_keep tokens - // we set the last index to i+1 to indicate that the current iterate should be included in the set - if (cum_sum >= p && i + 1 >= min_keep) { - last_idx = i + 1; - break; - } - } - - // Resize the output vector to keep only the top-p tokens - candidates->size = last_idx; - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { - if (p <= 0.0f || !candidates->size) { - return; - } - - const int64_t t_start_sample_us = ggml_time_us(); - - bool min_p_applied = false; - - // if the candidates aren't sorted, try the unsorted implementation first - if (!candidates->sorted) { - std::vector<llama_token_data> filtered_tokens; - - float max_logit = -FLT_MAX; - for (size_t i = 0; i < candidates->size; ++i) { - max_logit = std::max(max_logit, candidates->data[i].logit); - } - const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max - - for (size_t i = 0; i < candidates->size; ++i) { - if (candidates->data[i].logit >= min_logit) { - filtered_tokens.push_back(candidates->data[i]); - } - } - - // if we have enough values the operation was a success - if (filtered_tokens.size() >= min_keep) { - memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); - candidates->size = filtered_tokens.size(); - min_p_applied = true; - } - } - - // if the candidates are sorted or the unsorted implementation failed, use this implementation - if (!min_p_applied) { - // Sort the logits in descending order - if (!candidates->sorted) { - std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { - return a.logit > b.logit; - }); - candidates->sorted = true; - } - - const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max - size_t i = 1; // first token always matches - - for (; i < candidates->size; ++i) { - if (candidates->data[i].logit < min_logit && i >= min_keep) { - break; // prob too small - } - } - - // Resize the output vector to keep only the matching tokens - candidates->size = i; - } - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { - if (z >= 1.0f || candidates->size <= 2) { - return; - } - - llama_sample_softmax(nullptr, candidates); - const int64_t t_start_sample_us = ggml_time_us(); - - // Compute the first and second derivatives - std::vector<float> first_derivatives(candidates->size - 1); - std::vector<float> second_derivatives(candidates->size - 2); - - for (size_t i = 0; i < first_derivatives.size(); ++i) { - first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; - } - for (size_t i = 0; i < second_derivatives.size(); ++i) { - second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; - } - - // Calculate absolute value of second derivatives - for (size_t i = 0; i < second_derivatives.size(); ++i) { - second_derivatives[i] = std::abs(second_derivatives[i]); - } - - // Normalize the second derivatives - { - const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); - - if (second_derivatives_sum > 1e-6f) { - for (float & value : second_derivatives) { - value /= second_derivatives_sum; - } - } else { - for (float & value : second_derivatives) { - value = 1.0f / second_derivatives.size(); - } - } - } - - float cum_sum = 0.0f; - size_t last_idx = candidates->size; - for (size_t i = 0; i < second_derivatives.size(); ++i) { - cum_sum += second_derivatives[i]; - - // Check if the running sum is greater than z or if we have kept at least min_keep tokens - if (cum_sum > z && i >= min_keep) { - last_idx = i; - break; - } - } - - // Resize the output vector to keep only the tokens above the tail location - candidates->size = last_idx; - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { - // Reference implementation: - // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr - if (p >= 1.0f) { - return; - } - - // Compute the softmax of logits and calculate entropy - llama_sample_softmax(nullptr, candidates); - - const int64_t t_start_sample_us = ggml_time_us(); - - float entropy = 0.0f; - for (size_t i = 0; i < candidates->size; ++i) { - entropy += -candidates->data[i].p * logf(candidates->data[i].p); - } - - // Compute the absolute difference between negative log probability and entropy for each candidate - std::vector<float> shifted_scores; - for (size_t i = 0; i < candidates->size; ++i) { - float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); - shifted_scores.push_back(shifted_score); - } - - // Sort tokens based on the shifted_scores and their corresponding indices - std::vector<size_t> indices(candidates->size); - std::iota(indices.begin(), indices.end(), 0); - - std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { - return shifted_scores[a] < shifted_scores[b]; - }); - - // Compute the cumulative probabilities - float cum_sum = 0.0f; - size_t last_idx = indices.size(); - - for (size_t i = 0; i < indices.size(); ++i) { - size_t idx = indices[i]; - cum_sum += candidates->data[idx].p; - - // Check if the running sum is greater than typical or if we have kept at least min_keep tokens - if (cum_sum > p && i >= min_keep - 1) { - last_idx = i + 1; - break; - } - } - - // Resize the output vector to keep only the locally typical tokens - std::vector<llama_token_data> new_candidates; - for (size_t i = 0; i < last_idx; ++i) { - size_t idx = indices[i]; - new_candidates.push_back(candidates->data[idx]); - } - - // Replace the data in candidates with the new_candidates data - std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); - candidates->size = new_candidates.size(); - candidates->sorted = false; - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) { - const int64_t t_start_sample_us = ggml_time_us(); - - // no need to do anything if there is only one (or zero) candidates - if(candidates_p->size <= 1) { - return; - } - - // Calculate maximum possible entropy - float max_entropy = -logf(1.0f / candidates_p->size); - - llama_sample_softmax(nullptr, candidates_p); - - // Calculate entropy of the softmax probabilities - float entropy = 0.0f; - for (size_t i = 0; i < candidates_p->size; ++i) { - float prob = candidates_p->data[i].p; - if (prob > 0.0f) { // Ensure no log(0) - entropy -= prob * logf(prob); - } - } - - // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above) - float normalized_entropy = entropy / max_entropy; - - // Map the normalized entropy to the desired temperature range using the power function - float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); - -#ifdef DEBUG - LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); - LLAMA_LOG_INFO("Entropy: %f\n", entropy); - LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); - LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); - LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); - LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); -#endif - - // Apply the dynamically calculated temperature scaling - for (size_t i = 0; i < candidates_p->size; ++i) { - candidates_p->data[i].logit /= dyn_temp; - } - - // Re-compute softmax probabilities after scaling logits with dynamic temperature - double max_l_double = candidates_p->data[0].logit; - double cum_sum_double = 0.0; - for (size_t i = 0; i < candidates_p->size; ++i) { - double p = exp(candidates_p->data[i].logit - max_l_double); - candidates_p->data[i].p = p; // Store the scaled probability - cum_sum_double += p; - } - for (size_t i = 0; i < candidates_p->size; ++i) { - candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities - } - -#ifdef DEBUG - // Print the updated top 25 probabilities after temperature scaling - LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); - for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) { - LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f); - } -#endif - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { - const int64_t t_start_sample_us = ggml_time_us(); - - for (size_t i = 0; i < candidates_p->size; ++i) { - candidates_p->data[i].logit /= temp; - } - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_repetition_penalties( - struct llama_context * ctx, - llama_token_data_array * candidates, - const llama_token * last_tokens, - size_t penalty_last_n, - float penalty_repeat, - float penalty_freq, - float penalty_present) { - if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { - return; - } - - const int64_t t_start_sample_us = ggml_time_us(); - - // Create a frequency map to count occurrences of each token in last_tokens - std::unordered_map<llama_token, int> token_count; - for (size_t i = 0; i < penalty_last_n; ++i) { - token_count[last_tokens[i]]++; - } - - // Apply frequency and presence penalties to the candidates - for (size_t i = 0; i < candidates->size; ++i) { - const auto token_iter = token_count.find(candidates->data[i].id); - if (token_iter == token_count.end()) { - continue; - } - - const int count = token_iter->second; - - // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. - // This is common fix for this problem, which is to multiply by the penalty instead of dividing. - if (candidates->data[i].logit <= 0) { - candidates->data[i].logit *= penalty_repeat; - } else { - candidates->data[i].logit /= penalty_repeat; - } - - candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; - } - - candidates->sorted = false; - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } -} - -void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) { - GGML_ASSERT(ctx); - int64_t t_start_sample_us = ggml_time_us(); - - bool allow_eog = false; - for (const auto & stack : grammar->stacks) { - if (stack.empty()) { - allow_eog = true; - break; - } - } - - std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded; - candidates_decoded.reserve(candidates->size); - - std::vector<llama_grammar_candidate> candidates_grammar; - candidates_grammar.reserve(candidates->size); - - for (size_t i = 0; i < candidates->size; ++i) { - const llama_token id = candidates->data[i].id; - const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id); - - if (llama_token_is_eog(&ctx->model, id)) { - if (!allow_eog) { - candidates->data[i].logit = -INFINITY; - } - } else if (piece.empty() || piece[0] == 0) { - candidates->data[i].logit = -INFINITY; - } else { - candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8)); - candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); - } - } - - const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); - for (const auto & reject : rejects) { - candidates->data[reject.index].logit = -INFINITY; - } - - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; -} - -static void llama_log_softmax(float * array, size_t size) { - float max_l = *std::max_element(array, array + size); - float sum = 0.f; - for (size_t i = 0; i < size; ++i) { - float p = expf(array[i] - max_l); - sum += p; - array[i] = p; - } - - for (size_t i = 0; i < size; ++i) { - array[i] = logf(array[i] / sum); - } -} - -void llama_sample_apply_guidance( - struct llama_context * ctx, - float * logits, - float * logits_guidance, - float scale) { - GGML_ASSERT(ctx); - - const auto t_start_sample_us = ggml_time_us(); - const auto n_vocab = llama_n_vocab(llama_get_model(ctx)); - - llama_log_softmax(logits, n_vocab); - llama_log_softmax(logits_guidance, n_vocab); - - for (int i = 0; i < n_vocab; ++i) { - auto & l = logits[i]; - const auto & g = logits_guidance[i]; - - l = scale * (l - g) + g; - } - - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; -} - -llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { - GGML_ASSERT(ctx); - - auto N = float(llama_n_vocab(llama_get_model(ctx))); - int64_t t_start_sample_us; - t_start_sample_us = ggml_time_us(); - - llama_sample_softmax(nullptr, candidates); - - // Estimate s_hat using the most probable m tokens - float s_hat = 0.0; - float sum_ti_bi = 0.0; - float sum_ti_sq = 0.0; - for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { - float t_i = logf(float(i + 2) / float(i + 1)); - float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); - sum_ti_bi += t_i * b_i; - sum_ti_sq += t_i * t_i; - } - s_hat = sum_ti_bi / sum_ti_sq; - - // Compute k from the estimated s_hat and target surprise value - float epsilon_hat = s_hat - 1; - float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); - - // Sample the next word X using top-k sampling - llama_sample_top_k(nullptr, candidates, int(k), 1); - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - llama_token X = llama_sample_token(ctx, candidates); - t_start_sample_us = ggml_time_us(); - - // Compute error as the difference between observed surprise and target surprise value - size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { - return candidate.id == X; - })); - float observed_surprise = -log2f(candidates->data[X_idx].p); - float e = observed_surprise - tau; - - // Update mu using the learning rate and error - *mu = *mu - eta * e; - - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - return X; -} - -llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { - int64_t t_start_sample_us; - t_start_sample_us = ggml_time_us(); - - llama_sample_softmax(ctx, candidates); - - // Truncate the words with surprise values greater than mu - candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { - return -log2f(candidate.p) > *mu; - })); - - if (candidates->size == 0) { - candidates->size = 1; - } - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } - - // Normalize the probabilities of the remaining words - llama_sample_softmax(ctx, candidates); - - // Sample the next word X from the remaining words - llama_token X = llama_sample_token(ctx, candidates); - t_start_sample_us = ggml_time_us(); - - // Compute error as the difference between observed surprise and target surprise value - size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { - return candidate.id == X; - })); - float observed_surprise = -log2f(candidates->data[X_idx].p); - float e = observed_surprise - tau; - - // Update mu using the learning rate and error - *mu = *mu - eta * e; - - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - } - return X; -} - -llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { - const int64_t t_start_sample_us = ggml_time_us(); - - // Find max element - auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { - return a.logit < b.logit; - }); - - llama_token result = max_iter->id; - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - ctx->n_sample++; - } - return result; -} - -llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) { - GGML_ASSERT(ctx); - - const int64_t t_start_sample_us = ggml_time_us(); - llama_sample_softmax(nullptr, candidates); - - std::vector<float> probs; - probs.reserve(candidates->size); - for (size_t i = 0; i < candidates->size; ++i) { - probs.push_back(candidates->data[i].p); - } - - std::discrete_distribution<> dist(probs.begin(), probs.end()); - int idx = dist(rng); - - llama_token result = candidates->data[idx].id; - - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; - ctx->n_sample++; - return result; -} - -llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { - return llama_sample_token_with_rng(ctx, candidates, ctx->rng); -} - -void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) { - const int64_t t_start_sample_us = ggml_time_us(); - - if (llama_token_is_eog(&ctx->model, token)) { - for (const auto & stack : grammar->stacks) { - if (stack.empty()) { - return; - } - } - GGML_ASSERT(false); - } - - const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token); - - // Note terminating 0 in decoded string - const auto decoded = decode_utf8(piece, grammar->partial_utf8); - const auto & code_points = decoded.first; - std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks; - for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { - llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks); - grammar->stacks = tmp_new_stacks; - } - grammar->partial_utf8 = decoded.second; - GGML_ASSERT(!grammar->stacks.empty()); - - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; -} - -// -// quantization -// - -struct quantize_state_internal { - const llama_model & model; - const llama_model_quantize_params * params; - - int n_attention_wv = 0; - int n_ffn_down = 0; - int n_ffn_gate = 0; - int n_ffn_up = 0; - int i_attention_wv = 0; - int i_ffn_down = 0; - int i_ffn_gate = 0; - int i_ffn_up = 0; - - int n_k_quantized = 0; - int n_fallback = 0; - - bool has_imatrix = false; - - // used to figure out if a model shares tok_embd with the output weight - bool has_output = false; - - quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params) - : model(model) - , params(params) - {} -}; - -static void llama_tensor_dequantize_internal( - struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers, - const size_t nelements, const int nthread -) { - if (output.size() < nelements) { - output.resize(nelements); - } - float * f32_output = (float *) output.data(); - - ggml_type_traits_t qtype; - if (ggml_is_quantized(tensor->type)) { - qtype = ggml_internal_get_type_traits(tensor->type); - if (qtype.to_float == NULL) { - throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type))); - } - } else if (tensor->type != GGML_TYPE_F16 && - tensor->type != GGML_TYPE_BF16) { - throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type))); - } - - if (nthread < 2) { - if (tensor->type == GGML_TYPE_F16) { - ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements); - } else if (tensor->type == GGML_TYPE_BF16) { - ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements); - } else if (ggml_is_quantized(tensor->type)) { - qtype.to_float(tensor->data, f32_output, nelements); - } else { - GGML_ASSERT(false); // unreachable - } - return; - } - - size_t block_size; - if (tensor->type == GGML_TYPE_F16 || - tensor->type == GGML_TYPE_BF16) { - block_size = 1; - } else { - block_size = (size_t)ggml_blck_size(tensor->type); - } - - size_t block_size_bytes = ggml_type_size(tensor->type); - - GGML_ASSERT(nelements % block_size == 0); - size_t nblocks = nelements / block_size; - size_t blocks_per_thread = nblocks / nthread; - size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count - - size_t in_buff_offs = 0; - size_t out_buff_offs = 0; - - for (int tnum = 0; tnum < nthread; tnum++) { - size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread - size_t thr_elems = thr_blocks * block_size; // number of elements for this thread - size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread - - auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { - if (typ == GGML_TYPE_F16) { - ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); - } else if (typ == GGML_TYPE_BF16) { - ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels); - } else { - qtype.to_float(inbuf, outbuf, nels); - } - }; - workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); - in_buff_offs += thr_block_bytes; - out_buff_offs += thr_elems; - } - for (auto & w : workers) { w.join(); } - workers.clear(); -} - -static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { - const std::string name = ggml_get_name(tensor); - - // TODO: avoid hardcoded tensor names - use the TN_* constants - const llm_arch arch = qs.model.arch; - const auto tn = LLM_TN(arch); - - auto use_more_bits = [](int i_layer, int num_layers) -> bool { - return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; - }; - const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); - auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { - if (n_expert > 1) { - // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly - // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work - // for getting the current layer as I initially thought, and we need to resort to parsing the - // tensor name. - if (sscanf(name, "blk.%d.", &i_layer) != 1) { - throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); - } - if (i_layer < 0 || i_layer >= n_layer) { - throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer)); - } - } - return std::make_pair(i_layer, n_layer); - }; - - // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings - // with the quantization of the output tensor - if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) { - if (qs.params->output_tensor_type < GGML_TYPE_COUNT) { - new_type = qs.params->output_tensor_type; - } else { - int nx = tensor->ne[0]; - if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { - new_type = GGML_TYPE_Q8_0; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || - ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || - ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { - new_type = GGML_TYPE_Q5_K; - } - else if (new_type != GGML_TYPE_Q8_0) { - new_type = GGML_TYPE_Q6_K; - } - } - } else if (name == "token_embd.weight") { - if (qs.params->token_embedding_type < GGML_TYPE_COUNT) { - new_type = qs.params->token_embedding_type; - } else { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || - ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { - new_type = GGML_TYPE_Q2_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { - new_type = GGML_TYPE_IQ3_S; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = GGML_TYPE_IQ3_S; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_BN || ftype == LLAMA_FTYPE_MOSTLY_IQ2_BN) { - new_type = GGML_TYPE_IQ4_NL; - } - } - } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || - ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { - if (name.find("attn_v.weight") != std::string::npos) { - if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; - else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; - ++qs.i_attention_wv; - } - else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { - new_type = GGML_TYPE_Q4_K; - } - else if (name.find("ffn_down") != std::string::npos) { - if (qs.i_ffn_down < qs.n_ffn_down/8) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; - } - ++qs.i_ffn_down; - } - else if (name.find("attn_output.weight") != std::string::npos) { - if (qs.model.hparams.n_expert == 8) { - new_type = GGML_TYPE_Q5_K; - } else { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; - } - } - } else if (name.find("attn_v.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { - new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) { - new_type = GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; - } - else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) { - new_type = GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { - new_type = GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { - new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; - else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { - new_type = GGML_TYPE_Q5_K; - } - else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && - use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; - if (qs.model.type == MODEL_70B) { - // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is - // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with - // nearly negligible increase in model size by quantizing this tensor with more bits: - if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; - } - if (qs.model.hparams.n_expert == 8) { - // for the 8-expert model, bumping this to Q8_0 trades just ~128MB - // TODO: explore better strategies - new_type = GGML_TYPE_Q8_0; - } - ++qs.i_attention_wv; - } else if (name.find("attn_k.weight") != std::string::npos) { - if (qs.model.hparams.n_expert == 8) { - // for the 8-expert model, bumping this to Q8_0 trades just ~128MB - // TODO: explore better strategies - new_type = GGML_TYPE_Q8_0; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { - new_type = GGML_TYPE_IQ3_XXS; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = GGML_TYPE_IQ2_S; - } - } else if (name.find("attn_q.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { - new_type = GGML_TYPE_IQ3_XXS; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { - new_type = GGML_TYPE_IQ2_S; - } - } else if (name.find("ffn_down") != std::string::npos) { - auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); - int i_layer = info.first, n_layer = info.second; - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { - if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) { - new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { - new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K - : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K - : GGML_TYPE_Q3_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 || - (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) { - new_type = GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { - new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { - if (arch == LLM_ARCH_FALCON) { - new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K : - use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; - } else { - if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; - } - } - else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { - new_type = GGML_TYPE_Q5_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { - new_type = GGML_TYPE_Q5_K; - } - else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0) - && qs.has_imatrix && i_layer < n_layer/8) { - // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0. - // We only do it when an imatrix is provided because a) we want to make sure that one can always get the - // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix. - new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1; - } - ++qs.i_ffn_down; - } else if (name.find("attn_output.weight") != std::string::npos) { - if (arch != LLM_ARCH_FALCON) { - if (qs.model.hparams.n_expert == 8) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || - ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || - ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || - ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { - new_type = GGML_TYPE_Q5_K; - } - } else { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K; - } - } else { - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; - } - } - else if (name.find("attn_qkv.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { - new_type = GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; - } - else if (name.find("ffn_gate") != std::string::npos) { - auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str()); - int i_layer = info.first, n_layer = info.second; - if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { - new_type = GGML_TYPE_IQ3_XXS; - } - ++qs.i_ffn_gate; - } - else if (name.find("ffn_up") != std::string::npos) { - auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str()); - int i_layer = info.first, n_layer = info.second; - if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { - new_type = GGML_TYPE_IQ3_XXS; - } - ++qs.i_ffn_up; - } - - // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; - //} - // IK: let's remove this, else Q2_K is almost the same as Q3_K_S - //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) { - // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; - //} - // This can be used to reduce the size of the Q5_K_S model. - // The associated PPL increase is fully in line with the size reduction - //else { - // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; - //} - bool convert_incompatible_tensor = false; - if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || - new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS || - new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S || - new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S || - new_type == GGML_TYPE_IQ1_M) { - int nx = tensor->ne[0]; - int ny = tensor->ne[1]; - if (nx % QK_K != 0) { - LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type)); - convert_incompatible_tensor = true; - } else { - ++qs.n_k_quantized; - } - } - if (new_type == GGML_TYPE_IQ1_BN || new_type == GGML_TYPE_IQ2_BN) { - int nx = tensor->ne[0]; - if (nx % QK_IQ1BN != 0) { - convert_incompatible_tensor = true; - } - } - if (convert_incompatible_tensor) { - switch (new_type) { - case GGML_TYPE_IQ2_XXS: - case GGML_TYPE_IQ2_XS: - case GGML_TYPE_IQ2_S: - case GGML_TYPE_IQ3_XXS: - case GGML_TYPE_IQ3_S: - case GGML_TYPE_IQ1_S: - case GGML_TYPE_IQ1_M: - case GGML_TYPE_Q2_K: - case GGML_TYPE_Q3_K: - case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; - case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; - case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; - case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; - default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); - } - LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); - ++qs.n_fallback; - } - - return new_type; -} - -static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) { - if (nthread < 2) { - // single-thread - size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); - if (!ggml_validate_row_data(new_type, new_data, new_size)) { - throw std::runtime_error("quantized data validation failed"); - } - return new_size; - } - - std::mutex mutex; - int64_t counter = 0; - size_t new_size = 0; - bool valid = true; - auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size, - nrows, n_per_row, imatrix]() { - const int64_t nrows_per_chunk = chunk_size / n_per_row; - size_t local_size = 0; - while (true) { - std::unique_lock<std::mutex> lock(mutex); - int64_t first_row = counter; counter += nrows_per_chunk; - if (first_row >= nrows) { - if (local_size > 0) { - new_size += local_size; - } - break; - } - lock.unlock(); - const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk); - size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); - local_size += this_size; - - // validate the quantized data - const size_t row_size = ggml_row_size(new_type, n_per_row); - void * this_data = (char *) new_data + first_row * row_size; - if (!ggml_validate_row_data(new_type, this_data, this_size)) { - std::unique_lock<std::mutex> lock(mutex); - valid = false; - break; - } - } - }; - for (int it = 0; it < nthread - 1; ++it) { - workers.emplace_back(compute); - } - compute(); - for (auto & w : workers) { w.join(); } - workers.clear(); - if (!valid) { - throw std::runtime_error("quantized data validation failed"); - } - return new_size; -} - -static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { - ggml_type default_type; - llama_ftype ftype = params->ftype; - - switch (params->ftype) { - case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break; - case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break; - case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break; - case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break; - case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break; - case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break; - case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break; - case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break; - - // K-quants - case LLAMA_FTYPE_MOSTLY_Q2_K_S: - case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break; - case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break; - case LLAMA_FTYPE_MOSTLY_Q3_K_S: - case LLAMA_FTYPE_MOSTLY_Q3_K_M: - case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break; - case LLAMA_FTYPE_MOSTLY_Q4_K_S: - case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break; - case LLAMA_FTYPE_MOSTLY_Q5_K_S: - case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break; - case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break; - case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break; - case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break; - case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; - case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break; - case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; - case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break; - case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break; - case LLAMA_FTYPE_MOSTLY_IQ1_BN: default_type = GGML_TYPE_IQ1_BN; break; - case LLAMA_FTYPE_MOSTLY_IQ2_BN: default_type = GGML_TYPE_IQ2_BN; break; - case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break; - case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break; - case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break; - case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break; - - default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); - } - - int nthread = params->nthread; - - if (nthread <= 0) { - nthread = std::thread::hardware_concurrency(); - } - - // mmap consistently increases speed Linux, and also increases speed on Windows with - // hot cache. It may cause a slowdown on macOS, possibly related to free memory. -#if defined(__linux__) || defined(_WIN32) - constexpr bool use_mmap = true; -#else - constexpr bool use_mmap = false; -#endif - - llama_model_kv_override * kv_overrides = nullptr; - if (params->kv_overrides) { - auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides; - kv_overrides = v->data(); - } - llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides); - ml.init_mappings(false); // no prefetching - - llama_model model; - llm_load_arch(ml, model); - llm_load_hparams(ml, model); - - struct quantize_state_internal qs(model, params); - - if (params->only_copy) { - ftype = model.ftype; - } - const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr; - if (params->imatrix) { - imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix); - if (imatrix_data) { - LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size())); - qs.has_imatrix = true; - // check imatrix for nans or infs - for (const auto & kv : *imatrix_data) { - for (float f : kv.second) { - if (!std::isfinite(f)) { - throw std::runtime_error(format("imatrix contains non-finite value %f\n", f)); - } - } - } - } - } - - const size_t align = GGUF_DEFAULT_ALIGNMENT; - struct gguf_context * ctx_out = gguf_init_empty(); - - // copy the KV pairs from the input file - gguf_set_kv (ctx_out, ml.meta); - gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); - gguf_set_val_u32(ctx_out, "general.file_type", ftype); - // Remove split metadata - gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str()); - gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str()); - gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str()); - - if (params->kv_overrides) { - const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides; - for (auto & o : overrides) { - if (o.key[0] == 0) break; - if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) { - gguf_set_val_f32(ctx_out, o.key, o.val_f64); - } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) { - gguf_set_val_i32(ctx_out, o.key, o.val_i64); - } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) { - gguf_set_val_bool(ctx_out, o.key, o.val_bool); - } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) { - gguf_set_val_str(ctx_out, o.key, o.val_str); - } else { - LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key); - } - } - } - - for (int i = 0; i < ml.n_tensors; ++i) { - const struct ggml_tensor * meta = ml.get_tensor_meta(i); - - const std::string name = ggml_get_name(meta); - - // TODO: avoid hardcoded tensor names - use the TN_* constants - if (name.find("attn_v.weight") != std::string::npos || - name.find("attn_qkv.weight") != std::string::npos) { - ++qs.n_attention_wv; - } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { - qs.has_output = true; - } - } - - qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; - - // sanity checks - // - // - qs.n_attention_wv == 0 for Mamba models - // - qs.n_attention_wv == model.hparams.n_layer for Transformer models - // - GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected"); - - size_t total_size_org = 0; - size_t total_size_new = 0; - - std::vector<std::thread> workers; - workers.reserve(nthread); - - int idx = 0; - - std::vector<no_init<uint8_t>> read_data; - std::vector<no_init<uint8_t>> work; - std::vector<no_init<float>> f32_conv_buf; - - uint16_t n_split = 1; - // Assume split index is continuous - if (params->keep_split) { - for (int i = 0; i < ml.n_tensors; ++i) { - n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split); - } - } - std::vector<gguf_context*> ctx_outs(n_split, NULL); - ctx_outs[0] = ctx_out; - - // populate the original tensors so we get an initial meta data - for (int i = 0; i < ml.n_tensors; ++i) { - auto weight = ml.get_weight(i); - uint16_t i_split = params->keep_split ? weight->idx : 0; - struct ggml_tensor * tensor = weight->tensor; - if (ctx_outs[i_split] == NULL) { - ctx_outs[i_split] = gguf_init_empty(); - } - gguf_add_tensor(ctx_outs[i_split], tensor); - } - - // Set split info if needed - if (n_split > 1) { - for (size_t i = 0; i < ctx_outs.size(); ++i) { - gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i); - gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split); - gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors); - } - } - - int cur_split = -1; - std::ofstream fout; - auto close_ofstream = [&]() { - // Write metadata and close file handler - if (fout.is_open()) { - fout.seekp(0); - std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split])); - gguf_get_meta_data(ctx_outs[cur_split], data.data()); - fout.write((const char *) data.data(), data.size()); - fout.close(); - } - }; - auto new_ofstream = [&](int index) { - cur_split = index; - GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context"); - std::string fname = fname_out; - if (params->keep_split) { - char split_path[PATH_MAX] = {0}; - llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split); - fname = std::string(split_path); - } - - fout = std::ofstream(fname, std::ios::binary); - fout.exceptions(std::ofstream::failbit); // fail fast on write errors - const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]); - // placeholder for the meta data - ::zeros(fout, meta_size); - }; - - const auto tn = LLM_TN(model.arch); - new_ofstream(0); - for (int i = 0; i < ml.n_tensors; ++i) { - auto weight = ml.get_weight(i); - struct ggml_tensor * tensor = weight->tensor; - if (weight->idx != cur_split && params->keep_split) { - close_ofstream(); - new_ofstream(weight->idx); - } - - const std::string name = ggml_get_name(tensor); - - if (!ml.use_mmap) { - if (read_data.size() < ggml_nbytes(tensor)) { - read_data.resize(ggml_nbytes(tensor)); - } - tensor->data = read_data.data(); - } - ml.load_data_for(tensor); - - LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", - ++idx, ml.n_tensors, - ggml_get_name(tensor), - llama_format_tensor_shape(tensor).c_str(), - ggml_type_name(tensor->type)); - - // This used to be a regex, but <regex> has an extreme cost to compile times. - bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? - - // quantize only 2D and 3D tensors (experts) - quantize &= (ggml_n_dims(tensor) >= 2); - - // do not quantize norm tensors - quantize &= name.find("_norm.weight") == std::string::npos; - - quantize &= params->quantize_output_tensor || name != "output.weight"; - quantize &= !params->only_copy; - - // do not quantize expert gating tensors - // NOTE: can't use LLM_TN here because the layer number is not known - quantize &= name.find("ffn_gate_inp.weight") == std::string::npos; - - // do not quantize positional embeddings and token types (BERT) - quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); - quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); - - // do not quantize Mamba's small yet 2D weights - // NOTE: can't use LLM_TN here because the layer number is not known - quantize &= name.find("ssm_conv1d.weight") == std::string::npos; - quantize &= name.find("ssm_x.weight") == std::string::npos; - quantize &= name.find("ssm_dt.weight") == std::string::npos; - - enum ggml_type new_type; - void * new_data; - size_t new_size; - - if (quantize) { - new_type = default_type; - - // get more optimal quantization type based on the tensor shape, layer, etc. - if (!params->pure && ggml_is_quantized(default_type)) { - new_type = llama_tensor_get_type(qs, new_type, tensor, ftype); - } - if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) { - new_type = params->token_embedding_type; - } - if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) { - new_type = params->output_tensor_type; - } - - // If we've decided to quantize to the same type the tensor is already - // in then there's nothing to do. - quantize = tensor->type != new_type; - } - - if (!quantize) { - new_type = tensor->type; - new_data = tensor->data; - new_size = ggml_nbytes(tensor); - LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0); - } else { - const int64_t nelements = ggml_nelements(tensor); - - const float * imatrix = nullptr; - if (imatrix_data) { - auto it = imatrix_data->find(tensor->name); - if (it == imatrix_data->end()) { - LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); - } else { - if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { - imatrix = it->second.data(); - } else { - LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, - int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name); - - // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix - // this is a significant error and it may be good idea to abort the process if this happens, - // since many people will miss the error and not realize that most of the model is being quantized without an imatrix - // tok_embd should be ignored in this case, since it always causes this warning - if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { - throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s", - int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name)); - } - } - } - } - if ((new_type == GGML_TYPE_IQ2_XXS || - new_type == GGML_TYPE_IQ2_XS || - new_type == GGML_TYPE_IQ2_S || - new_type == GGML_TYPE_IQ1_S || - (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) || - (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { - LLAMA_LOG_ERROR("\n\n============================================================\n"); - LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); - LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n"); - LLAMA_LOG_ERROR("============================================================\n\n"); - throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); - } - - float * f32_data; - - if (tensor->type == GGML_TYPE_F32) { - f32_data = (float *) tensor->data; - } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { - throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); - } else { - llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread); - f32_data = (float *) f32_conv_buf.data(); - } - - LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type)); - fflush(stdout); - - if (work.size() < (size_t)nelements * 4) { - work.resize(nelements * 4); // upper bound on size - } - new_data = work.data(); - - const int64_t n_per_row = tensor->ne[0]; - const int64_t nrows = tensor->ne[1]; - - static const int64_t min_chunk_size = 32 * 512; - const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row); - - const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1]; - const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size; - const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1; - - // quantize each expert separately since they have different importance matrices - new_size = 0; - for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) { - const float * f32_data_03 = f32_data + i03 * nelements_matrix; - void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows; - const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr; - - new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use); - } - LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); - } - total_size_org += ggml_nbytes(tensor); - total_size_new += new_size; - - // update the gguf meta data as we go - gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type); - gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size); - - // write tensor data + padding - fout.write((const char *) new_data, new_size); - zeros(fout, GGML_PAD(new_size, align) - new_size); - } - close_ofstream(); - for (auto & c:ctx_outs) { - gguf_free(c); - } - - LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); - LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); - - if (qs.n_fallback > 0) { - LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n", - __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback); - } -} - -static int llama_apply_lora_from_file_internal( - const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads -) { - LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); - - const int64_t t_start_lora_us = ggml_time_us(); - - llama_file fin(path_lora, "rb"); - - // verify magic and version - { - uint32_t magic = fin.read_u32(); - if (magic != LLAMA_FILE_MAGIC_GGLA) { - LLAMA_LOG_ERROR("%s: bad file magic\n", __func__); - return 1; - } - - uint32_t format_version = fin.read_u32(); - if (format_version != 1) { - LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ ); - return 1; - } - } - - int32_t lora_r = fin.read_u32(); - int32_t lora_alpha = fin.read_u32(); - float scaling = scale * (float)lora_alpha / (float)lora_r; - - LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); - - // load base model - std::unique_ptr<llama_model_loader> ml; - if (path_base_model) { - LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); - ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr)); - ml->init_mappings(/*prefetch*/ false); // no prefetching - } - - struct tensor_meta { - std::string name; - ggml_type type; - int32_t ne[2]; - size_t offset; - }; - std::map<std::string, tensor_meta> tensor_meta_map; - - // load all tensor meta - while (true) { - if (fin.tell() == fin.size) { - // eof - break; - } - - int32_t n_dims; - int32_t name_len; - int32_t ftype; - - fin.read_raw(&n_dims, sizeof(n_dims)); - fin.read_raw(&name_len, sizeof(name_len)); - fin.read_raw(&ftype, sizeof(ftype)); - - if (n_dims != 1 && n_dims != 2) { - LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims); - return 1; - } - - int32_t ne[2] = { 1, 1 }; - for (int i = 0; i < n_dims; ++i) { - fin.read_raw(&ne[i], sizeof(ne[i])); - } - - std::string name; - { - GGML_ASSERT(name_len < GGML_MAX_NAME); - char buf[GGML_MAX_NAME]; - fin.read_raw(buf, name_len); - name = std::string(buf, name_len); - } - - // check for lora suffix - std::string lora_suffix; - if (name.length() > 6) { - lora_suffix = name.substr(name.length() - 6); - } - if (lora_suffix != ".loraA" && lora_suffix != ".loraB") { - LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); - return 1; - } - - // tensor type - ggml_type wtype; - switch (ftype) { - case 0: wtype = GGML_TYPE_F32; break; - case 1: wtype = GGML_TYPE_F16; break; - default: - { - LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n", - __func__, ftype); - return 1; - } - } - - // data offset - size_t offset = fin.tell(); - offset = (offset + 31) & -32; - - // skip tensor data - fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET); - - tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset }); - } - - bool warned = false; - int n_tensors = 0; - - // apply - ggml_backend_t backend_cpu = ggml_backend_cpu_init(); - if (backend_cpu == nullptr) { - LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__); - return 1; - } - ggml_backend_cpu_set_n_threads(backend_cpu, n_threads); - - std::vector<no_init<uint8_t>> read_buf; - for (const auto & it : model.tensors_by_name) { - const std::string & base_name = it.first; - ggml_tensor * model_t = it.second; - - if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() || - tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) { - continue; - } - - tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA"); - tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB"); - - ggml_init_params lora_init_params = { - /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), - /* .mem_buffer */ nullptr, - /* .no_alloc */ true, - }; - ggml_context * lora_ctx = ggml_init(lora_init_params); - if (lora_ctx == nullptr) { - LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__); - ggml_backend_free(backend_cpu); - return 1; - } - - // create tensors - ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]); - ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]); - ggml_set_name(loraA, metaA.name.c_str()); - ggml_set_name(loraB, metaB.name.c_str()); - - ggml_tensor * base_t; - if (ml) { - if (!ml->get_tensor_meta(base_name.c_str())) { - LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); - return 1; - } - base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str())); - } else { - base_t = ggml_dup_tensor(lora_ctx, model_t); - } - ggml_set_name(base_t, base_name.c_str()); - - // allocate in backend buffer - ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type()); - if (lora_buf == nullptr) { - LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__); - return 1; - } - - // load tensor data - auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) { - read_buf.resize(ggml_nbytes(tensor)); - fin.seek(tensor_meta.offset, SEEK_SET); - fin.read_raw(read_buf.data(), ggml_nbytes(tensor)); - ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size()); - }; - load_tensor(metaA, loraA); - load_tensor(metaB, loraB); - - // load base model tensor data - if (ml) { - ml->load_data_for(base_t); - } else { - ggml_backend_tensor_copy(model_t, base_t); - } - - if (ggml_is_quantized(base_t->type) && !warned) { - LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, " - "use a f16 or f32 base model with --lora-base\n", __func__); - warned = true; - } - - if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { - LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" - " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); - ggml_free(lora_ctx); - ggml_backend_buffer_free(lora_buf); - ggml_backend_free(backend_cpu); - return 1; - } - - auto build_lora_graph = [&]() { - // w = w + BA*s - ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); - ggml_set_name(BA, "BA"); - - if (scaling != 1.0f) { - BA = ggml_scale(lora_ctx, BA, scaling); - ggml_set_name(BA, "BA_scaled"); - } - - ggml_tensor * r; - r = ggml_add_inplace(lora_ctx, base_t, BA); - ggml_set_name(r, "r_add"); - - if (base_t->type != model_t->type) { - // convert the result to the model type - r = ggml_cast(lora_ctx, r, model_t->type); - ggml_set_name(r, "r_cast"); - } - - return r; - }; - - ggml_cgraph * gf = ggml_new_graph(lora_ctx); - ggml_tensor * r = build_lora_graph(); - ggml_build_forward_expand(gf, r); - - ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type()); - if (graph_buf == nullptr) { - LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__); - ggml_free(lora_ctx); - ggml_backend_buffer_free(lora_buf); - ggml_backend_free(backend_cpu); - return 1; - } - - ggml_backend_graph_compute(backend_cpu, gf); - - ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r)); - -#if 0 - // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU - //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE); - - // sched compute - ggml_build_forward_expand(gf, build_graph()); - ggml_backend_sched_init_measure(sched, gf); - - // create the graph again, since the previous one was destroyed by the measure - ggml_graph_clear(gf); - ggml_build_forward_expand(gf, build_graph()); - ggml_backend_sched_graph_compute(sched, gf); - ggml_backend_sched_free(sched); -#endif - - ggml_backend_buffer_free(lora_buf); - ggml_backend_buffer_free(graph_buf); - ggml_free(lora_ctx); - - n_tensors++; - if (n_tensors % 4 == 0) { - LLAMA_LOG_INFO("."); - } - } - - ggml_backend_free(backend_cpu); - - const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; - LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0); - - return 0; -} - -// -// interface implementation -// -struct llama_model_params llama_model_default_params() { - struct llama_model_params result = { - /*.n_gpu_layers =*/ 0, - /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER, - /*.main_gpu =*/ 0, - /*.tensor_split =*/ nullptr, - /*.rpc_servers =*/ nullptr, - /*.progress_callback =*/ nullptr, - /*.progress_callback_user_data =*/ nullptr, - /*.kv_overrides =*/ nullptr, - /*.vocab_only =*/ false, - /*.use_mmap =*/ true, - /*.use_mlock =*/ false, - /*.check_tensors =*/ false, - }; - -#ifdef GGML_USE_METAL - // note: we usually have plenty of VRAM, so by default offload all layers to the GPU - result.n_gpu_layers = 999; -#endif - - return result; -} - -struct llama_context_params llama_context_default_params() { - struct llama_context_params result = { - /*.seed =*/ LLAMA_DEFAULT_SEED, - /*.n_ctx =*/ 512, - /*.n_batch =*/ 2048, - /*.n_ubatch =*/ 512, - /*.n_seq_max =*/ 1, - /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default - /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, - /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, - /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED, - /*.rope_freq_base =*/ 0.0f, - /*.rope_freq_scale =*/ 0.0f, - /*.yarn_ext_factor =*/ -1.0f, - /*.yarn_attn_factor =*/ 1.0f, - /*.yarn_beta_fast =*/ 32.0f, - /*.yarn_beta_slow =*/ 1.0f, - /*.yarn_orig_ctx =*/ 0, - /*.defrag_thold =*/ -1.0f, - /*.cb_eval =*/ nullptr, - /*.cb_eval_user_data =*/ nullptr, - /*.type_k =*/ GGML_TYPE_F16, - /*.type_v =*/ GGML_TYPE_F16, - /*.logits_all =*/ false, - /*.embeddings =*/ false, - /*.offload_kqv =*/ true, - /*.flash_attn =*/ false, - /*.abort_callback =*/ nullptr, - /*.abort_callback_data =*/ nullptr, - }; - - return result; -} - -struct llama_model_quantize_params llama_model_quantize_default_params() { - struct llama_model_quantize_params result = { - /*.nthread =*/ 0, - /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, - /*.output_tensor_type =*/ GGML_TYPE_COUNT, - /*.token_embedding_type =*/ GGML_TYPE_COUNT, - /*.allow_requantize =*/ false, - /*.quantize_output_tensor =*/ true, - /*.only_copy =*/ false, - /*.pure =*/ false, - /*.keep_split =*/ false, - /*.imatrix =*/ nullptr, - /*.kv_overrides =*/ nullptr, - }; - - return result; -} - -size_t llama_max_devices(void) { -#if defined(GGML_USE_RPC) - return GGML_RPC_MAX_SERVERS; -#elif defined(GGML_USE_METAL) - return 1; -#elif defined(GGML_USE_CUDA) - return GGML_CUDA_MAX_DEVICES; -#elif defined(GGML_USE_SYCL) - return GGML_SYCL_MAX_DEVICES; -#elif defined(GGML_USE_VULKAN) - return GGML_VK_MAX_DEVICES; -#else - return 1; -#endif -} - -bool llama_supports_mmap(void) { - return llama_mmap::SUPPORTED; -} - -bool llama_supports_mlock(void) { - return llama_mlock::SUPPORTED; -} - -bool llama_supports_gpu_offload(void) { -#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ - defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC) - // Defined when llama.cpp is compiled with support for offloading model layers to GPU. - return true; -#else - return false; -#endif -} - -void llama_backend_init(void) { - ggml_time_init(); - - // needed to initialize f16 tables - { - struct ggml_init_params params = { 0, NULL, false }; - struct ggml_context * ctx = ggml_init(params); - ggml_free(ctx); - } -} - -void llama_numa_init(enum ggml_numa_strategy numa) { - if (numa != GGML_NUMA_STRATEGY_DISABLED) { - ggml_numa_init(numa); - } -} - -void llama_backend_free(void) { - ggml_quantize_free(); -} - -int64_t llama_time_us(void) { - return ggml_time_us(); -} - -struct llama_model * llama_load_model_from_file( - const char * path_model, - struct llama_model_params params) { - ggml_time_init(); - - llama_model * model = new llama_model; - - unsigned cur_percentage = 0; - if (params.progress_callback == NULL) { - params.progress_callback_user_data = &cur_percentage; - params.progress_callback = [](float progress, void * ctx) { - unsigned * cur_percentage_p = (unsigned *) ctx; - unsigned percentage = (unsigned) (100 * progress); - while (percentage > *cur_percentage_p) { - *cur_percentage_p = percentage; - LLAMA_LOG_INFO("."); - if (percentage >= 100) { - LLAMA_LOG_INFO("\n"); - } - } - return true; - }; - } - if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') { - // split the servers set them into model->rpc_servers - std::string servers(params.rpc_servers); - size_t pos = 0; - while ((pos = servers.find(",")) != std::string::npos) { - std::string server = servers.substr(0, pos); - model->rpc_servers.push_back(server); - servers.erase(0, pos + 1); - } - model->rpc_servers.push_back(servers); - } - int status = llama_model_load(path_model, *model, params); - GGML_ASSERT(status <= 0); - if (status < 0) { - if (status == -1) { - LLAMA_LOG_ERROR("%s: failed to load model\n", __func__); - } else if (status == -2) { - LLAMA_LOG_INFO("%s: cancelled model load\n", __func__); - } - delete model; - return nullptr; - } - - return model; -} - -void llama_free_model(struct llama_model * model) { - delete model; -} - -struct llama_context * llama_new_context_with_model( - struct llama_model * model, - struct llama_context_params params) { - - if (!model) { - LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__); - return nullptr; - } - - if (params.n_batch == 0 && params.n_ubatch == 0) { - LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__); - return nullptr; - } - - if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) { - LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__); - return nullptr; - } - - if (params.flash_attn && model->arch == LLM_ARCH_GROK) { - LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__); - params.flash_attn = false; - } - - if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) { - LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__); - params.flash_attn = false; - } - - if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) { - LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__); - return nullptr; - } - - llama_context * ctx = new llama_context(*model); - - const auto & hparams = model->hparams; - auto & cparams = ctx->cparams; - - cparams.n_seq_max = std::max(1u, params.n_seq_max); - cparams.n_threads = params.n_threads; - cparams.n_threads_batch = params.n_threads_batch; - cparams.yarn_ext_factor = params.yarn_ext_factor; - cparams.yarn_attn_factor = params.yarn_attn_factor; - cparams.yarn_beta_fast = params.yarn_beta_fast; - cparams.yarn_beta_slow = params.yarn_beta_slow; - cparams.defrag_thold = params.defrag_thold; - cparams.embeddings = params.embeddings; - cparams.offload_kqv = params.offload_kqv; - cparams.flash_attn = params.flash_attn; - cparams.pooling_type = params.pooling_type; - - cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; - cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; - cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; - - // this is necessary due to kv_self.n being padded later during inference - cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams)); - - // with causal attention, the batch size is limited by the context size - cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; - - // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask - // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext) - // ref: https://github.com/ggerganov/llama.cpp/pull/5021 - if (cparams.n_batch < GGML_KQ_MASK_PAD) { - LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD); - cparams.n_batch = GGML_KQ_MASK_PAD; - } - - cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); - - cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : - hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn : - hparams.n_ctx_train; - - cparams.cb_eval = params.cb_eval; - cparams.cb_eval_user_data = params.cb_eval_user_data; - - auto rope_scaling_type = params.rope_scaling_type; - if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) { - rope_scaling_type = hparams.rope_scaling_type_train; - } - - if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) { - cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none - } - - if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set' - cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; - } - - cparams.yarn_attn_factor *= hparams.rope_attn_factor; - cparams.causal_attn = hparams.causal_attn; - - if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { - if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { - cparams.pooling_type = LLAMA_POOLING_TYPE_NONE; - } else { - cparams.pooling_type = hparams.pooling_type; - } - } - - if (params.seed == LLAMA_DEFAULT_SEED) { - params.seed = time(NULL); - } - - LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); - LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); - LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); - LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn); - LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); - LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); - - ctx->abort_callback = params.abort_callback; - ctx->abort_callback_data = params.abort_callback_data; - - ctx->rng = std::mt19937(params.seed); - ctx->logits_all = params.logits_all; - - uint32_t kv_size = cparams.n_ctx; - ggml_type type_k = params.type_k; - ggml_type type_v = params.type_v; - - // Mamba only needs a constant number of KV cache cells per sequence - if (model->arch == LLM_ARCH_MAMBA) { - // Mamba needs at least as many KV cells as there are sequences kept at any time - kv_size = std::max((uint32_t) 1, params.n_seq_max); - // it's probably best to keep as much precision as possible for the states - type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states - type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states - } - - GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); - GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); - - if (!hparams.vocab_only) { - // initialize backends -#if defined(GGML_USE_METAL) - if (model->n_gpu_layers > 0) { - ctx->backend_metal = ggml_backend_metal_init(); - if (ctx->backend_metal == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(ctx->backend_metal); - } -#elif defined(GGML_USE_CUDA) - if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { - // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used - ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } else { - // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU - for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) { - ggml_backend_t backend = ggml_backend_cuda_init(device); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } - } -#elif defined(GGML_USE_VULKAN) - if (model->split_mode == LLAMA_SPLIT_MODE_ROW) { - LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__); - llama_free(ctx); - return nullptr; - } - if (model->split_mode == LLAMA_SPLIT_MODE_NONE) { - ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } else { - for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) { - ggml_backend_t backend = ggml_backend_vk_init(device); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } - } -#elif defined(GGML_USE_SYCL) - // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used - if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { - ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } else { - // LLAMA_SPLIT_LAYER requires a backend for each GPU - for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) { - ggml_backend_t backend = ggml_backend_sycl_init(i); - if (backend == nullptr) { - int id_list[GGML_SYCL_MAX_DEVICES]; - ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES); - LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } - } -#elif defined(GGML_USE_KOMPUTE) - if (model->n_gpu_layers > 0) { - auto * backend = ggml_backend_kompute_init(model->main_gpu); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } -#endif - -#ifdef GGML_USE_BLAS - ctx->backend_blas = ggml_backend_blas_init(); - if (ctx->backend_blas == nullptr) { - LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__); - } else { - ctx->backends.push_back(ctx->backend_blas); - } -#endif - -#if defined(GGML_USE_RPC) - if (model->n_gpu_layers > 0) { - for (const auto & endpoint : model->rpc_servers) { - ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str()); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str()); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } - } -#endif - ctx->backend_cpu = ggml_backend_cpu_init(); - if (ctx->backend_cpu == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(ctx->backend_cpu); - - if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) { - LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); - llama_free(ctx); - return nullptr; - } - - { - size_t memory_size_k = 0; - size_t memory_size_v = 0; - - for (auto & k : ctx->kv_self.k_l) { - memory_size_k += ggml_nbytes(k); - } - - for (auto & v : ctx->kv_self.v_l) { - memory_size_v += ggml_nbytes(v); - } - - LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, - (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), - ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), - ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); - } - - // graph outputs buffer - { - // resized during inference when a batch uses more outputs - if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) { - LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__); - llama_free(ctx); - return nullptr; - } - - LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, - ggml_backend_buffer_name(ctx->buf_output), - ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0); - } - - // scheduler and compute buffers - { - // buffer types used for the compute buffer of each backend - std::vector<ggml_backend_buffer_type_t> backend_buft; - for (auto * backend : ctx->backends) { - if (ggml_backend_is_cpu(backend)) { - // use host buffers for the CPU backend compute buffer - backend_buft.push_back(llama_default_buffer_type_cpu(true)); - } else { - backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); - } - } - - // buffer used to store the computation graph and the tensor meta data - ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); - - // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary - bool pipeline_parallel = - llama_get_device_count(*model) > 1 && - model->n_gpu_layers > (int)model->hparams.n_layer && - model->split_mode == LLAMA_SPLIT_MODE_LAYER && - params.offload_kqv; -#ifndef GGML_USE_CUDA - // pipeline parallelism requires support for async compute and events - // currently this is only implemented in the CUDA backend - pipeline_parallel = false; -#endif - ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel); - - if (pipeline_parallel) { - LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched)); - } - - // build worst-case graph - int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch); - int n_past = cparams.n_ctx - n_tokens; - llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph - ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); - - // initialize scheduler with the worst-case graph - if (!ggml_backend_sched_reserve(ctx->sched, gf)) { - LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); - llama_free(ctx); - return nullptr; - } - - for (size_t i = 0; i < ctx->backends.size(); i++) { - ggml_backend_t backend = ctx->backends[i]; - ggml_backend_buffer_type_t buft = backend_buft[i]; - size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend); - if (size > 1) { - LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, - ggml_backend_buft_name(buft), - size / 1024.0 / 1024.0); - } - } - - // note: the number of splits during measure is higher than during inference due to the kv shift - int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); - LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes); - LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits); - } - } - - return ctx; -} - -void llama_free(struct llama_context * ctx) { - delete ctx; -} - -const llama_model * llama_get_model(const struct llama_context * ctx) { - return &ctx->model; -} - -uint32_t llama_n_ctx(const struct llama_context * ctx) { - return ctx->cparams.n_ctx; -} - -uint32_t llama_n_batch(const struct llama_context * ctx) { - return ctx->cparams.n_batch; -} - -uint32_t llama_n_ubatch(const struct llama_context * ctx) { - return ctx->cparams.n_ubatch; -} - -uint32_t llama_n_seq_max(const struct llama_context * ctx) { - return ctx->kv_self.size; -} - -enum llama_vocab_type llama_vocab_type(const struct llama_model * model) { - return model->vocab.type; -} - -enum llama_rope_type llama_rope_type(const struct llama_model * model) { - switch (model->arch) { - // these models do not use RoPE - case LLM_ARCH_GPT2: - case LLM_ARCH_GPTJ: - case LLM_ARCH_MPT: - case LLM_ARCH_REFACT: - case LLM_ARCH_BLOOM: - case LLM_ARCH_MAMBA: - case LLM_ARCH_JINA_BERT_V2: - return LLAMA_ROPE_TYPE_NONE; - - // use what we call a normal RoPE, operating on pairs of consecutive head values - case LLM_ARCH_LLAMA: - case LLM_ARCH_BAICHUAN: - case LLM_ARCH_STARCODER: - case LLM_ARCH_PLAMO: - case LLM_ARCH_CODESHELL: - case LLM_ARCH_ORION: - case LLM_ARCH_INTERNLM2: - case LLM_ARCH_MINICPM: - case LLM_ARCH_XVERSE: - case LLM_ARCH_COMMAND_R: - case LLM_ARCH_OLMO: - case LLM_ARCH_ARCTIC: - case LLM_ARCH_DEEPSEEK2: - return LLAMA_ROPE_TYPE_NORM; - - // the pairs of head values are offset by n_rot/2 - case LLM_ARCH_FALCON: - case LLM_ARCH_GROK: - case LLM_ARCH_DBRX: - case LLM_ARCH_BERT: - case LLM_ARCH_NOMIC_BERT: - case LLM_ARCH_STABLELM: - case LLM_ARCH_BITNET: - case LLM_ARCH_QWEN: - case LLM_ARCH_QWEN2: - case LLM_ARCH_QWEN2MOE: - case LLM_ARCH_PHI2: - case LLM_ARCH_PHI3: - case LLM_ARCH_GEMMA: - case LLM_ARCH_STARCODER2: - case LLM_ARCH_GPTNEOX: - return LLAMA_ROPE_TYPE_NEOX; - - // all model arches should be listed explicitly here - case LLM_ARCH_UNKNOWN: - GGML_ASSERT(false && "unknown architecture"); - break; - } - - return LLAMA_ROPE_TYPE_NONE; -} - -enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) { - return ctx->cparams.pooling_type; -} - -int32_t llama_n_vocab(const struct llama_model * model) { - return model->hparams.n_vocab; -} - -int32_t llama_n_ctx_train(const struct llama_model * model) { - return model->hparams.n_ctx_train; -} - -int32_t llama_n_embd(const struct llama_model * model) { - return model->hparams.n_embd; -} - -int32_t llama_n_layer(const struct llama_model * model) { - return model->hparams.n_layer; -} - -float llama_rope_freq_scale_train(const struct llama_model * model) { - return model->hparams.rope_freq_scale_train; -} - -int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) { - const auto & it = model->gguf_kv.find(key); - if (it == model->gguf_kv.end()) { - if (buf_size > 0) { - buf[0] = '\0'; - } - return -1; - } - return snprintf(buf, buf_size, "%s", it->second.c_str()); -} - -int32_t llama_model_meta_count(const struct llama_model * model) { - return (int)model->gguf_kv.size(); -} - -int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) { - if (i < 0 || i >= (int)model->gguf_kv.size()) { - if (buf_size > 0) { - buf[0] = '\0'; - } - return -1; - } - auto it = model->gguf_kv.begin(); - std::advance(it, i); - return snprintf(buf, buf_size, "%s", it->first.c_str()); -} - -int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) { - if (i < 0 || i >= (int)model->gguf_kv.size()) { - if (buf_size > 0) { - buf[0] = '\0'; - } - return -1; - } - auto it = model->gguf_kv.begin(); - std::advance(it, i); - return snprintf(buf, buf_size, "%s", it->second.c_str()); -} - -int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { - return snprintf(buf, buf_size, "%s %s %s", - llama_model_arch_name(model->arch), - llama_model_type_name(model->type), - llama_model_ftype_name(model->ftype).c_str()); -} - -uint64_t llama_model_size(const struct llama_model * model) { - uint64_t size = 0; - for (const auto & it : model->tensors_by_name) { - size += ggml_nbytes(it.second); - } - return size; -} - -uint64_t llama_model_n_params(const struct llama_model * model) { - uint64_t nparams = 0; - for (const auto & it : model->tensors_by_name) { - nparams += ggml_nelements(it.second); - } - return nparams; -} - -struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) { - auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(), - [name](const std::pair<std::string, struct ggml_tensor *> & it) { - return it.first == name; - }); - if (it == model->tensors_by_name.end()) { - return nullptr; - } - return it->second; -} - -uint32_t llama_model_quantize( - const char * fname_inp, - const char * fname_out, - const llama_model_quantize_params * params) { - try { - llama_model_quantize_internal(fname_inp, fname_out, params); - return 0; - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); - return 1; - } -} - -int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) { - try { - return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads); - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); - return 1; - } -} - -static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) { - GGML_ASSERT(cvec.tensors.empty()); - GGML_ASSERT(cvec.ctxs.empty()); - GGML_ASSERT(cvec.bufs.empty()); - - // count layer buffer types - std::map<ggml_backend_buffer_type_t, int> buft_layer_count; - for (int64_t i = 0; i < model.hparams.n_layer; i++) { - buft_layer_count[model.buft_layer[i].buft]++; - } - - // allocate contexts - std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; - for (auto & it : buft_layer_count) { - int n_layers = it.second; - struct ggml_init_params params = { - /*.mem_size =*/ n_layers * ggml_tensor_overhead(), - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - ggml_context * ctx = ggml_init(params); - if (!ctx) { - LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__); - return 1; - } - ctx_map[it.first] = ctx; - } - - // make tensors - cvec.tensors.reserve(model.hparams.n_layer); - cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0 - for (size_t il = 1; il < model.hparams.n_layer; il++) { - struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft); - ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd); - cvec.tensors.push_back(tensor); - } - - // allocate tensors / buffers and zero - cvec.ctxs.reserve(ctx_map.size()); - cvec.bufs.reserve(ctx_map.size()); - for (auto it : ctx_map) { - ggml_backend_buffer_type_t buft = it.first; - ggml_context * ctx = it.second; - ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); - if (!buf) { - LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__); - return false; - } - ggml_backend_buffer_clear(buf, 0); - cvec.ctxs.push_back(ctx); - cvec.bufs.push_back(buf); - } - - return true; -} - -int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) { - const llama_model & model = lctx->model; - llama_control_vector & cvec = lctx->cvec; - - if (data == nullptr) { - // disable the current control vector (but leave allocated for later) - cvec.layer_start = -1; - cvec.layer_end = -1; - return 0; - } - - if (n_embd != (int) model.hparams.n_embd) { - LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__); - return 1; - } - - if (cvec.tensors.empty()) { - if (!llama_control_vector_init(cvec, model)) { - return 1; - } - } - - cvec.layer_start = il_start; - cvec.layer_end = il_end; - - for (size_t il = 1; il < model.hparams.n_layer; il++) { - assert(cvec.tensors[il] != nullptr); - - const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present - if (off + n_embd <= len) { - ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il])); - } - } - - return 0; -} - -struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) { - struct llama_kv_cache_view result = { - /*.n_cells = */ 0, - /*.n_seq_max = */ n_seq_max, - /*.token_count = */ 0, - /*.used_cells = */ llama_get_kv_cache_used_cells(ctx), - /*.max_contiguous = */ 0, - /*.max_contiguous_idx = */ -1, - /*.cells = */ nullptr, - /*.cells_sequences = */ nullptr, - }; - return result; -} - -void llama_kv_cache_view_free(struct llama_kv_cache_view * view) { - if (view->cells != nullptr) { - free(view->cells); - view->cells = nullptr; - } - if (view->cells_sequences != nullptr) { - free(view->cells_sequences); - view->cells_sequences = nullptr; - } -} - -void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) { - if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) { - view->n_cells = int32_t(ctx->kv_self.size); - void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells); - GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells"); - view->cells = (struct llama_kv_cache_view_cell *)p; - p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells); - GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences"); - view->cells_sequences = (llama_seq_id *)p; - } - - const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells; - llama_kv_cache_view_cell * c_curr = view->cells; - llama_seq_id * cs_curr = view->cells_sequences; - int32_t used_cells = 0; - int32_t token_count = 0; - int32_t curr_contig_idx = -1; - uint32_t max_contig = 0; - int32_t max_contig_idx = -1; - - for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) { - const size_t curr_size = kv_cells[i].seq_id.size(); - token_count += curr_size; - c_curr->pos = kv_cells[i].pos + kv_cells[i].delta; - - if (curr_size > 0) { - if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) { - max_contig = i - curr_contig_idx; - max_contig_idx = curr_contig_idx; - } - curr_contig_idx = -1; - } else if (curr_contig_idx < 0) { - curr_contig_idx = i; - } - - int seq_idx = 0; - for (const llama_seq_id it : kv_cells[i].seq_id) { - if (seq_idx >= view->n_seq_max) { - break; - } - cs_curr[seq_idx] = it; - seq_idx++; - } - if (seq_idx != 0) { - used_cells++; - } - for (; seq_idx < view->n_seq_max; seq_idx++) { - cs_curr[seq_idx] = -1; - } - } - if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) { - max_contig_idx = curr_contig_idx; - max_contig = kv_cells.size() - curr_contig_idx; - } - view->max_contiguous = max_contig; - view->max_contiguous_idx = max_contig_idx; - view->token_count = token_count; - view->used_cells = used_cells; - if (uint32_t(used_cells) != ctx->kv_self.used) { - LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n", - __func__, ctx->kv_self.used, used_cells); - } -} - -int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) { - int result = 0; - - for (uint32_t i = 0; i < ctx->kv_self.size; i++) { - result += ctx->kv_self.cells[i].seq_id.size(); - } - - return result; -} - -int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) { - return ctx->kv_self.used; -} - -void llama_kv_cache_clear(struct llama_context * ctx) { - llama_kv_cache_clear(ctx->kv_self); -} - -bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { - return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1); -} - -void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { - if (seq_id_src == seq_id_dst) { - return; - } - llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1); -} - -void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) { - llama_kv_cache_seq_keep(ctx->kv_self, seq_id); -} - -void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { - if (delta == 0) { - return; - } - - llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta); -} - -void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { - if (d == 1) { - return; - } - - llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d); -} - -llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) { - return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id); -} - -void llama_kv_cache_defrag(struct llama_context * ctx) { - llama_kv_cache_defrag(ctx->kv_self); -} - -void llama_kv_cache_update(struct llama_context * ctx) { - llama_kv_cache_update_internal(*ctx); -} - -// deprecated -size_t llama_get_state_size(const struct llama_context * ctx) { - return llama_state_get_size(ctx); -} - -// deprecated -size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { - return llama_state_get_data(ctx, dst); -} - -// deprecated -size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { - return llama_state_set_data(ctx, src); -} - -// deprecated -bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { - return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); -} - -// deprecated -bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { - return llama_state_save_file(ctx, path_session, tokens, n_token_count); -} - -// Returns the *maximum* size of the state -size_t llama_state_get_size(const struct llama_context * ctx) { - const auto & cparams = ctx->cparams; - const auto & hparams = ctx->model.hparams; - - // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. - // for reference, std::mt19937(1337) serializes to 6701 bytes. - const size_t s_rng_size = sizeof(size_t); - const size_t s_rng = LLAMA_MAX_RNG_STATE; - const size_t s_n_outputs = sizeof(size_t); - // assume worst case for outputs although only currently set ones are serialized - const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t); - const size_t s_logits_size = sizeof(size_t); - const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0; - const size_t s_embedding_size = sizeof(size_t); - const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0; - const size_t s_kv_buf_size = sizeof(size_t); - const size_t s_kv_head = sizeof(uint32_t); - const size_t s_kv_size = sizeof(uint32_t); - const size_t s_kv_used = sizeof(uint32_t); - const size_t s_v_trans = sizeof(uint32_t); - const size_t s_kv = ctx->kv_self.total_size(); - const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id); - const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell; - - const size_t s_total = ( - + s_rng_size - + s_rng - + s_n_outputs - + s_output_pos - + s_logits_size - + s_logits - + s_embedding_size - + s_embedding - + s_kv_buf_size - + s_kv_head - + s_kv_size - + s_kv_used - + s_v_trans - + s_kv - + s_kv_cells - ); - - // on session change it is very likely that the state size has changed - so we need to update this function - static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?"); - - return s_total; -} - -// llama_context_data -struct llama_data_context { - virtual void write(const void * src, size_t size) = 0; - virtual size_t get_size_written() = 0; - virtual ~llama_data_context() = default; -}; - -struct llama_data_buffer_context : llama_data_context { - uint8_t * ptr; - size_t size_written = 0; - - llama_data_buffer_context(uint8_t * p) : ptr(p) {} - - void write(const void * src, size_t size) override { - memcpy(ptr, src, size); - ptr += size; - size_written += size; - } - - size_t get_size_written() override { - return size_written; - } -}; - -struct llama_data_file_context : llama_data_context { - llama_file * file; - size_t size_written = 0; - - llama_data_file_context(llama_file * f) : file(f) {} - - void write(const void * src, size_t size) override { - file->write_raw(src, size); - size_written += size; - } - - size_t get_size_written() override { - return size_written; - } -}; - -/** copy state data into either a buffer or file depending on the passed in context - * - * file context: - * llama_file file("/path", "wb"); - * llama_data_file_context data_ctx(&file); - * llama_state_get_data(ctx, &data_ctx); - * - * buffer context: - * std::vector<uint8_t> buf(max_size, 0); - * llama_data_buffer_context data_ctx(&buf.data()); - * llama_state_get_data(ctx, &data_ctx); - * -*/ -static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) { - llama_synchronize(ctx); - - // copy rng - { - std::ostringstream rng_ss; - rng_ss << ctx->rng; - - const std::string & rng_str = rng_ss.str(); - const size_t rng_size = rng_str.size(); - - GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE); - - data_ctx->write(&rng_size, sizeof(rng_size)); - data_ctx->write(rng_str.data(), rng_size); - } - - // copy outputs - { - // Can't use ctx->n_outputs because it's not for the - // entire last batch when n_ubatch is smaller than n_batch - size_t n_outputs = 0; - - // copy output ids - { - std::vector<int32_t> output_pos; - - const size_t n_batch = ctx->cparams.n_batch; - const auto & output_ids = ctx->output_ids; - - output_pos.resize(ctx->output_size); - - // build a more compact representation of the output ids - for (size_t i = 0; i < n_batch; ++i) { - // map an output id to a position in the batch - int32_t pos = output_ids[i]; - if (pos >= 0) { - if ((size_t) pos >= n_outputs) { - n_outputs = pos + 1; - } - GGML_ASSERT((size_t) pos < ctx->output_size); - output_pos[pos] = i; - } - } - - data_ctx->write(&n_outputs, sizeof(n_outputs)); - - if (n_outputs) { - data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t)); - } - } - - // copy logits - { - const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab); - - data_ctx->write(&logits_size, sizeof(logits_size)); - - if (logits_size) { - data_ctx->write(ctx->logits, logits_size * sizeof(float)); - } - } - - // copy embeddings - { - const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd); - - data_ctx->write(&embeddings_size, sizeof(embeddings_size)); - - if (embeddings_size) { - data_ctx->write(ctx->embd, embeddings_size * sizeof(float)); - } - } - } - - // copy kv cache - { - const auto & kv_self = ctx->kv_self; - const auto & hparams = ctx->model.hparams; - - const uint32_t n_layer = hparams.n_layer; - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); - - // NOTE: kv_size and kv_buf_size are mostly used for sanity checks - const uint32_t kv_head = llama_kv_cache_cell_max(kv_self); - const uint32_t kv_size = kv_self.size; - const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head; - const uint32_t kv_used = kv_self.used; - const uint32_t v_trans = kv_self.v_trans ? 1 : 0; - - data_ctx->write(&kv_buf_size, sizeof(kv_buf_size)); - data_ctx->write(&kv_head, sizeof(kv_head)); - data_ctx->write(&kv_size, sizeof(kv_size)); - data_ctx->write(&kv_used, sizeof(kv_used)); - data_ctx->write(&v_trans, sizeof(v_trans)); - - if (kv_buf_size) { - const size_t pre_kv_buf_size = data_ctx->get_size_written(); - - std::vector<uint8_t> tmp_buf; - for (int il = 0; il < (int) n_layer; ++il) { - const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); - - tmp_buf.resize(k_size); - ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size()); - data_ctx->write(tmp_buf.data(), tmp_buf.size()); - - if (kv_self.recurrent || !kv_self.v_trans) { - // v is contiguous for recurrent models - // TODO: use other tensors for state models than k and v - const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head); - - tmp_buf.resize(v_size); - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size()); - data_ctx->write(tmp_buf.data(), tmp_buf.size()); - continue; - } - - // v is not contiguous, copy row by row - const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); - const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size); - - tmp_buf.resize(v_row_size); - for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size()); - data_ctx->write(tmp_buf.data(), tmp_buf.size()); - } - } - GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size); - } - - for (uint32_t i = 0; i < kv_head; ++i) { - const auto & cell = kv_self.cells[i]; - - const llama_pos pos = cell.pos; - const size_t seq_id_size = cell.seq_id.size(); - - data_ctx->write(&pos, sizeof(pos)); - data_ctx->write(&seq_id_size, sizeof(seq_id_size)); - - for (auto seq_id : cell.seq_id) { - data_ctx->write(&seq_id, sizeof(seq_id)); - } - } - } -} - -size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) { - llama_data_buffer_context data_ctx(dst); - llama_state_get_data_internal(ctx, &data_ctx); - - return data_ctx.get_size_written(); -} - -// Sets the state reading from the specified source address -size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) { - llama_synchronize(ctx); - - const uint8_t * inp = src; - - // set rng - { - size_t rng_size; - memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); - - GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE); - - std::string rng_str((const char *)inp, rng_size); inp += rng_size; - - std::istringstream rng_ss(rng_str); - rng_ss >> ctx->rng; - - GGML_ASSERT(!rng_ss.fail()); - } - - // set output ids - { - size_t n_outputs; - std::vector<int32_t> output_pos; - - memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs); - - GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs)); - - if (n_outputs) { - output_pos.resize(n_outputs); - memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t)); - inp += n_outputs * sizeof(int32_t); - - for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) { - int32_t id = output_pos[i]; - GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch); - ctx->output_ids[id] = i; - } - - ctx->n_outputs = n_outputs; - } - } - - // set logits - { - size_t logits_size; - - memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); - - GGML_ASSERT(ctx->logits_size >= logits_size); - - if (logits_size) { - memcpy(ctx->logits, inp, logits_size * sizeof(float)); - inp += logits_size * sizeof(float); - } - } - - // set embeddings - { - size_t embeddings_size; - - memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size); - - GGML_ASSERT(ctx->embd_size >= embeddings_size); - - if (embeddings_size) { - memcpy(ctx->embd, inp, embeddings_size * sizeof(float)); - inp += embeddings_size * sizeof(float); - } - } - - // set kv cache - { - const auto & kv_self = ctx->kv_self; - const auto & hparams = ctx->model.hparams; - - const uint32_t n_layer = hparams.n_layer; - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); - - size_t kv_buf_size; - uint32_t kv_head; - uint32_t kv_size; - uint32_t kv_used; - uint32_t v_trans; - - memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size); - memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head); - memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); - memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used); - memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans); - - GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition - - if (kv_self.size != kv_size) { - // the KV cache needs to be big enough to load all the KV cells from the saved state - GGML_ASSERT(kv_self.size >= kv_head); - - LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n", - __func__, kv_head, kv_size, kv_self.size); - } - - llama_kv_cache_clear(ctx); - - if (kv_buf_size) { - const size_t pre_kv_buf_size = inp - src; - - GGML_ASSERT(kv_self.total_size() >= kv_buf_size); - - for (int il = 0; il < (int) n_layer; ++il) { - const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); - - ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size); - inp += k_size; - - if (kv_self.recurrent || !kv_self.v_trans) { - // v is contiguous for recurrent models - // TODO: use other tensors for state models than k and v - const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head); - - ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size); - inp += v_size; - continue; - } - - // v is not contiguous, copy row by row - const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); - const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size); - - for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { - ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size); - inp += v_row_size; - } - } - GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size); - } - - ctx->kv_self.head = kv_head; - ctx->kv_self.used = kv_used; - - for (uint32_t i = 0; i < kv_head; ++i) { - llama_pos pos; - size_t seq_id_size; - - memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos); - memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size); - - ctx->kv_self.cells[i].pos = pos; - - llama_seq_id seq_id; - - for (size_t j = 0; j < seq_id_size; ++j) { - memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id); - ctx->kv_self.cells[i].seq_id.insert(seq_id); - } - } - } - - const size_t nread = inp - src; - const size_t max_size = llama_state_get_size(ctx); - - GGML_ASSERT(nread <= max_size); - - return nread; -} - -static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { - llama_file file(path_session, "rb"); - - // sanity checks - { - const uint32_t magic = file.read_u32(); - const uint32_t version = file.read_u32(); - - if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { - LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); - return false; - } - - llama_hparams session_hparams; - file.read_raw(&session_hparams, sizeof(llama_hparams)); - - if (session_hparams != ctx->model.hparams) { - LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__); - return false; - } - } - - // load the prompt - { - const uint32_t n_token_count = file.read_u32(); - - if (n_token_count > n_token_capacity) { - LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); - return false; - } - - file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); - *n_token_count_out = n_token_count; - } - - // restore the context state - { - const size_t n_state_size_cur = file.size - file.tell(); - const size_t n_state_size_max = llama_state_get_size(ctx); - - if (n_state_size_cur > n_state_size_max) { - LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); - return false; - } - - std::vector<uint8_t> state_data(n_state_size_max); - file.read_raw(state_data.data(), n_state_size_cur); - - llama_state_set_data(ctx, state_data.data()); - } - - return true; -} - -bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { - try { - return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("error loading session file: %s\n", err.what()); - return false; - } -} - -static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { - llama_file file(path_session, "wb"); - - file.write_u32(LLAMA_SESSION_MAGIC); - file.write_u32(LLAMA_SESSION_VERSION); - - file.write_raw(&ctx->model.hparams, sizeof(llama_hparams)); - - // save the prompt - file.write_u32((uint32_t) n_token_count); - file.write_raw(tokens, sizeof(llama_token) * n_token_count); - - // save the context state using stream saving - llama_data_file_context data_ctx(&file); - llama_state_get_data_internal(ctx, &data_ctx); - - return true; -} - -bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { - try { - return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count); - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("error saving session file: %s\n", err.what()); - return false; - } -} - -size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) { - // save the size of size_t as a uint32_t for safety check - const size_t size_t_size_size = sizeof(uint32_t); - - // other values - const size_t s_cell_count_size = sizeof(uint32_t); - const size_t s_layer_count_size = sizeof(uint32_t); - const size_t n_embd_v_gqa_size = sizeof(uint32_t); - - size_t s_cell_count = 0; - size_t s_cell_data_size = 0; - const auto & kv_self = ctx->kv_self; - const auto & hparams = ctx->model.hparams; - - const uint32_t n_layer = hparams.n_layer; - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); - - for (uint32_t i = 0; i < kv_self.size; ++i) { - const auto & cell = kv_self.cells[i]; - if (cell.seq_id.count(seq_id) > 0) { - ++s_cell_count; - s_cell_data_size += sizeof(llama_pos); - } - } - - for (int il = 0; il < (int)n_layer; ++il) { - // types of keys and values - s_cell_data_size += sizeof(int32_t) * 2; - // k_size_row and v_size_el values of layer - s_cell_data_size += sizeof(size_t) * 2; - - // keys - const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); - s_cell_data_size += k_size_row * s_cell_count; - - // values (transposed) - const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); - s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa; - } - - const size_t s_total = ( - size_t_size_size + - s_cell_count_size + - s_layer_count_size + - n_embd_v_gqa_size + - s_cell_data_size - ); - - return s_total; -} - -static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) { - llama_synchronize(ctx); - - const auto & kv_self = ctx->kv_self; - GGML_ASSERT(!kv_self.recurrent); // not implemented - - // Save the size of size_t as a uint32_t for safety check - const uint32_t size_t_size = sizeof(size_t); - data_ctx.write(&size_t_size, sizeof(size_t_size)); - - std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive - uint32_t cell_count = 0; - - // Count the number of cells with the specified seq_id - // Find all the ranges of cells with this seq id - { - uint32_t cell_range_begin = kv_self.size; - for (uint32_t i = 0; i < kv_self.size; ++i) { - const auto & cell = kv_self.cells[i]; - if (cell.has_seq_id(seq_id)) { - ++cell_count; - if (cell_range_begin == kv_self.size) { - cell_range_begin = i; - } - } - else { - if (cell_range_begin != kv_self.size) { - cell_ranges.emplace_back(cell_range_begin, i); - cell_range_begin = kv_self.size; - } - } - } - if (cell_range_begin != kv_self.size) { - cell_ranges.emplace_back(cell_range_begin, kv_self.size); - } - - // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count - uint32_t cell_count_check = 0; - for (const auto & range : cell_ranges) { - cell_count_check += range.second - range.first; - } - GGML_ASSERT(cell_count == cell_count_check); - } - - // Write the cell count - data_ctx.write(&cell_count, sizeof(cell_count)); - - const auto & hparams = ctx->model.hparams; - const uint32_t n_layer = hparams.n_layer; - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); - - // Write the layer count - data_ctx.write(&n_layer, sizeof(n_layer)); - - // Write n_embd_v_gqa - data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); - - // Iterate the ranges and write all the pos (this is the token position in the prompt) - for (const auto & range : cell_ranges) { - for (uint32_t i = range.first; i < range.second; ++i) { - const auto & cell = kv_self.cells[i]; - data_ctx.write(&cell.pos, sizeof(cell.pos)); - } - } - - // Iterate and write all the keys first, each row is a cell - // Get whole range at a time - std::vector<uint8_t> tmp_buf; - for (int il = 0; il < (int)n_layer; ++il) { - // Write key type - const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type; - data_ctx.write(&k_type_i, sizeof(k_type_i)); - - // Write row size of key - const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); - data_ctx.write(&k_size_row, sizeof(k_size_row)); - - // Read each range of cells of k_size length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - tmp_buf.resize(range_size * k_size_row); - ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row); - data_ctx.write(tmp_buf.data(), tmp_buf.size()); - } - } - - // TODO: simplify, reduce copy-paste - if (!kv_self.v_trans) { - for (int il = 0; il < (int)n_layer; ++il) { - // Write value type - const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; - data_ctx.write(&v_type_i, sizeof(v_type_i)); - - // Write row size of value - const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa); - data_ctx.write(&v_size_row, sizeof(v_size_row)); - - // Read each range of cells of v_size length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - tmp_buf.resize(range_size * v_size_row); - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row); - data_ctx.write(tmp_buf.data(), tmp_buf.size()); - } - } - } else { - // For the values, they are transposed, so we also need the element size and get the element ranges from each row - const uint32_t kv_size = kv_self.size; - for (int il = 0; il < (int)n_layer; ++il) { - // Write value type - const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; - data_ctx.write(&v_type_i, sizeof(v_type_i)); - - // Write element size - const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); - data_ctx.write(&v_size_el, sizeof(v_size_el)); - - // For each row, we get the element values of each cell - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - // Read each range of cells of v_size_el length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - const size_t src_offset = (range.first + j * kv_size) * v_size_el; - tmp_buf.resize(range_size * v_size_el); - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size()); - data_ctx.write(tmp_buf.data(), tmp_buf.size()); - } - } - } - } - - return data_ctx.get_size_written(); -} - -size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) { - llama_data_buffer_context data_ctx(dst); - return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); -} - -size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) { - llama_synchronize(ctx); - - auto & kv_self = ctx->kv_self; - GGML_ASSERT(!kv_self.recurrent); // not implemented - - // Wipe the slot - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - - const uint8_t * inp = src; - - // Read size of size_t - uint32_t size_t_size; - memcpy(&size_t_size, inp, sizeof(size_t_size)); - inp += sizeof(size_t_size); - if (size_t_size != sizeof(size_t)) { - LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__); - return 0; - } - - // Read the cell count - uint32_t cell_count; - memcpy(&cell_count, inp, sizeof(cell_count)); - inp += sizeof(cell_count); - - // Read the layer count - uint32_t n_layer_ref; - memcpy(&n_layer_ref, inp, sizeof(n_layer_ref)); - inp += sizeof(n_layer_ref); - - // Read n_embd_v_gqa - uint32_t n_embd_v_gqa_ref; - memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref)); - inp += sizeof(n_embd_v_gqa_ref); - - // Sanity check model compatibility - const auto & hparams = ctx->model.hparams; - const uint32_t n_layer = hparams.n_layer; - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); - if (n_layer != n_layer_ref) { - LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref); - return 0; - } - if (n_embd_v_gqa != n_embd_v_gqa_ref) { - LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref); - return 0; - } - - // Allocate the new cells for the slot - if (cell_count) { - llama_batch batch = llama_batch_init(cell_count, 0, 1); - batch.n_tokens = cell_count; - for (uint32_t i = 0; i < cell_count; ++i) { - llama_pos pos; - memcpy(&pos, inp, sizeof(pos)); - inp += sizeof(pos); - - batch.pos[i] = pos; - batch.n_seq_id[i] = 1; - batch.seq_id[i][0] = dest_seq_id; - } - if (!llama_kv_cache_find_slot(kv_self, batch)) { - llama_batch_free(batch); - LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); - return 0; - } - - // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values) - // Assume that this is one contiguous block of cells - GGML_ASSERT(kv_self.head + cell_count <= kv_self.size); - GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]); - GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]); - GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id)); - GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id)); - - // Cleanup - llama_batch_free(batch); - } - - const uint32_t kv_size = kv_self.size; - const uint32_t kv_head = kv_self.head; - - // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo - for (int il = 0; il < (int)n_layer; ++il) { - // Read type of key - int32_t k_type_i_ref; - memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref)); - inp += sizeof(k_type_i_ref); - const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type; - if (k_type_i != k_type_i_ref) { - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); - return 0; - } - - // Read row size of key - size_t k_size_row_ref; - memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref)); - inp += sizeof(k_size_row_ref); - const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); - if (k_size_row != k_size_row_ref) { - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il); - return 0; - } - - if (cell_count) { - // Read and set the keys for the whole cell range - ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row); - inp += cell_count * k_size_row; - } - } - - // TODO: simplify, reduce copy-paste - if (!kv_self.v_trans) { - for (int il = 0; il < (int)n_layer; ++il) { - // Read type of value - int32_t v_type_i_ref; - memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref)); - inp += sizeof(v_type_i_ref); - const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; - if (v_type_i != v_type_i_ref) { - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); - return 0; - } - - // Read row size of value - size_t v_size_row_ref; - memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref)); - inp += sizeof(v_size_row_ref); - const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa); - if (v_size_row != v_size_row_ref) { - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il); - return 0; - } - - if (cell_count) { - // Read and set the values for the whole cell range - ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row); - inp += cell_count * v_size_row; - } - } - } else { - // For each layer, read the values for each cell (transposed) - for (int il = 0; il < (int)n_layer; ++il) { - // Read type of value - int32_t v_type_i_ref; - memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref)); - inp += sizeof(v_type_i_ref); - const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; - if (v_type_i != v_type_i_ref) { - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); - return 0; - } - - // Read element size of value - size_t v_size_el_ref; - memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref)); - inp += sizeof(v_size_el_ref); - const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); - if (v_size_el != v_size_el_ref) { - llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); - LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il); - return 0; - } - - if (cell_count) { - // For each row in the transposed matrix, read the values for the whole cell range - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - const size_t dst_offset = (kv_head + j * kv_size) * v_size_el; - ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el); - inp += cell_count * v_size_el; - } - } - } - } - - const size_t nread = inp - src; - - return nread; -} - -static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { - llama_file file(filepath, "wb"); - - file.write_u32(LLAMA_STATE_SEQ_MAGIC); - file.write_u32(LLAMA_STATE_SEQ_VERSION); - - // save the prompt - file.write_u32((uint32_t)n_token_count); - file.write_raw(tokens, sizeof(llama_token) * n_token_count); - - // save the context state using stream saving - llama_data_file_context data_ctx(&file); - llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); - - const size_t res = file.tell(); - GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written()); - return res; -} - -static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { - llama_file file(filepath, "rb"); - - // version checks - { - const uint32_t magic = file.read_u32(); - const uint32_t version = file.read_u32(); - - if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) { - LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version); - return 0; - } - } - - // load the prompt - { - const uint32_t n_token_count = file.read_u32(); - - if (n_token_count > n_token_capacity) { - LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); - return 0; - } - - file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); - *n_token_count_out = n_token_count; - } - - // restore the context state - { - const size_t state_size = file.size - file.tell(); - std::vector<uint8_t> state_data(state_size); - file.read_raw(state_data.data(), state_size); - const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id); - if (!nread) { - LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__); - return 0; - } - GGML_ASSERT(nread <= state_size); - GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell()); - } - - return file.tell(); -} - -size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { - try { - return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count); - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what()); - return 0; - } -} - -size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { - try { - return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out); - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what()); - return 0; - } -} - -void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) { - ctx->cparams.n_threads = n_threads; - ctx->cparams.n_threads_batch = n_threads_batch; -} - -uint32_t llama_n_threads(struct llama_context * ctx) { - return ctx->cparams.n_threads; -} - -uint32_t llama_n_threads_batch(struct llama_context * ctx) { - return ctx->cparams.n_threads_batch; -} - -void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { - ctx->abort_callback = abort_callback; - ctx->abort_callback_data = abort_callback_data; -} - -void llama_set_embeddings(struct llama_context * ctx, bool embeddings) { - ctx->cparams.embeddings = embeddings; -} - -void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) { - ctx->cparams.causal_attn = causal_attn; -} - -struct llama_batch llama_batch_get_one( - llama_token * tokens, - int32_t n_tokens, - llama_pos pos_0, - llama_seq_id seq_id) { - return { - /*n_tokens =*/ n_tokens, - /*tokens =*/ tokens, - /*embd =*/ nullptr, - /*pos =*/ nullptr, - /*n_seq_id =*/ nullptr, - /*seq_id =*/ nullptr, - /*logits =*/ nullptr, - /*all_pos_0 =*/ pos_0, - /*all_pos_1 =*/ 1, - /*all_seq_id =*/ seq_id, - }; -} - -struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) { - llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, }; - - if (embd) { - batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd); - } else { - batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc); - } - - batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc); - batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc); - batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1)); - for (int i = 0; i < n_tokens_alloc; ++i) { - batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max); - } - batch.seq_id[n_tokens_alloc] = nullptr; - - batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc); - - return batch; -} - -void llama_batch_free(struct llama_batch batch) { - if (batch.token) free(batch.token); - if (batch.embd) free(batch.embd); - if (batch.pos) free(batch.pos); - if (batch.n_seq_id) free(batch.n_seq_id); - if (batch.seq_id) { - for (int i = 0; batch.seq_id[i] != nullptr; ++i) { - free(batch.seq_id[i]); - } - free(batch.seq_id); - } - if (batch.logits) free(batch.logits); -} - -int32_t llama_decode( - struct llama_context * ctx, - struct llama_batch batch) { - const int ret = llama_decode_internal(*ctx, batch); - if (ret < 0) { - LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); - } - - return ret; -} - -void llama_synchronize(struct llama_context * ctx) { - ggml_backend_sched_synchronize(ctx->sched); - - // FIXME: if multiple single tokens are evaluated without a synchronization, - // the stats will be added to the prompt evaluation stats - // this should only happen when using batch size 1 to evaluate a batch - - // add the evaluation to the stats - if (ctx->n_queued_tokens == 1) { - ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us; - ctx->n_eval++; - } else if (ctx->n_queued_tokens > 1) { - ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us; - ctx->n_p_eval += ctx->n_queued_tokens; - } - - // get a more accurate load time, upon first eval - if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) { - ctx->t_load_us = ggml_time_us() - ctx->t_start_us; - ctx->has_evaluated_once = true; - } - - ctx->n_queued_tokens = 0; - ctx->t_compute_start_us = 0; -} - -float * llama_get_logits(struct llama_context * ctx) { - llama_synchronize(ctx); - - return ctx->logits; -} - -float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { - int32_t j = -1; - llama_synchronize(ctx); - - try { - if (ctx->logits == nullptr) { - throw std::runtime_error("no logits"); - } - - if (i < 0) { - j = ctx->n_outputs + i; - if (j < 0) { - throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); - } - } else if ((size_t) i >= ctx->output_ids.size()) { - throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size())); - } else { - j = ctx->output_ids[i]; - } - - if (j < 0) { - throw std::runtime_error(format("batch.logits[%d] != true", i)); - } - if (j >= ctx->n_outputs) { - // This should not happen - throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs)); - } - - return ctx->logits + j*ctx->model.hparams.n_vocab; - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); -#ifndef NDEBUG - GGML_ASSERT(false); -#endif - return nullptr; - } -} - -float * llama_get_embeddings(struct llama_context * ctx) { - llama_synchronize(ctx); - - return ctx->embd; -} - -float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { - int32_t j = -1; - - llama_synchronize(ctx); - - try { - if (ctx->embd == nullptr) { - throw std::runtime_error("no embeddings"); - } - - if (i < 0) { - j = ctx->n_outputs + i; - if (j < 0) { - throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); - } - } else if ((size_t) i >= ctx->output_ids.size()) { - throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size())); - } else { - j = ctx->output_ids[i]; - } - - if (j < 0) { - throw std::runtime_error(format("batch.logits[%d] != true", i)); - } - if (j >= ctx->n_outputs) { - // This should not happen - throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs)); - } - - return ctx->embd + j*ctx->model.hparams.n_embd; - } catch (const std::exception & err) { - LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); -#ifndef NDEBUG - GGML_ASSERT(false); -#endif - return nullptr; - } -} - -float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) { - llama_synchronize(ctx); - - auto it = ctx->embd_seq.find(seq_id); - if (it == ctx->embd_seq.end()) { - return nullptr; - } - - return it->second.data(); -} - -const char * llama_token_get_text(const struct llama_model * model, llama_token token) { - GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); - return model->vocab.id_to_token[token].text.c_str(); -} - -float llama_token_get_score(const struct llama_model * model, llama_token token) { - GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); - return model->vocab.id_to_token[token].score; -} - -llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) { - GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); - return model->vocab.id_to_token[token].attr; -} - -bool llama_token_is_eog(const struct llama_model * model, llama_token token) { - return token != -1 && ( - token == llama_token_eos(model) || - token == llama_token_eot(model) - ); -} - -bool llama_token_is_control(const struct llama_model * model, llama_token token) { - return llama_is_control_token(model->vocab, token); -} - -llama_token llama_token_bos(const struct llama_model * model) { - return model->vocab.special_bos_id; -} - -llama_token llama_token_eos(const struct llama_model * model) { - return model->vocab.special_eos_id; -} - -llama_token llama_token_cls(const struct llama_model * model) { - return model->vocab.special_cls_id; -} - -llama_token llama_token_sep(const struct llama_model * model) { - return model->vocab.special_sep_id; -} - -llama_token llama_token_nl(const struct llama_model * model) { - return model->vocab.linefeed_id; -} - -int32_t llama_add_bos_token(const struct llama_model * model) { - return model->vocab.tokenizer_add_bos; -} - -int32_t llama_add_eos_token(const struct llama_model * model) { - return model->vocab.tokenizer_add_eos; -} - -llama_token llama_token_prefix(const struct llama_model * model) { - return model->vocab.special_prefix_id; -} - -llama_token llama_token_middle(const struct llama_model * model) { - return model->vocab.special_middle_id; -} - -llama_token llama_token_suffix(const struct llama_model * model) { - return model->vocab.special_suffix_id; -} - -llama_token llama_token_eot(const struct llama_model * model) { - return model->vocab.special_eot_id; -} - -int32_t llama_tokenize( - const struct llama_model * model, - const char * text, - int32_t text_len, - llama_token * tokens, - int32_t n_tokens_max, - bool add_special, - bool parse_special) { - auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special); - - if (n_tokens_max < (int) res.size()) { - // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); - return -((int) res.size()); - } - - for (size_t i = 0; i < res.size(); i++) { - tokens[i] = res[i]; - } - - return res.size(); -} - -static std::string llama_decode_text(const std::string & text) { - std::string decoded_text; - - const auto cpts = unicode_cpts_from_utf8(text); - for (const auto cpt : cpts) { - const auto utf8 = unicode_cpt_to_utf8(cpt); - try { - decoded_text += unicode_utf8_to_byte(utf8); - } catch (const std::out_of_range & e) { - decoded_text += "[UNK_BYTE_0x"; - for (const auto c : utf8) { - decoded_text += format("%02x", (uint8_t) c); - } - decoded_text += text + "]"; - } - } - - return decoded_text; -} - -// does not write null-terminator to buf -int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) { - // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843 - if (!special && llama_is_control_token(model->vocab, token)) { - return 0; - } - - // if we have a cache - use it - { - const auto & cache = model->vocab.cache_token_to_piece; - - if (!cache.empty()) { - const auto & res = cache.at(token); - if (length < (int) res.size()) { - return -(int) res.size(); - } - memcpy(buf, res.c_str(), res.size()); - return res.size(); - } - } - - if (0 <= token && token < llama_n_vocab(model)) { - switch (llama_vocab_get_type(model->vocab)) { - case LLAMA_VOCAB_TYPE_WPM: - case LLAMA_VOCAB_TYPE_SPM: { - // NOTE: we accept all unsupported token types, - // suppressing them like CONTROL tokens. - if (llama_is_normal_token(model->vocab, token)) { - std::string result = model->vocab.id_to_token[token].text; - llama_unescape_whitespace(result); - if (length < (int) result.length()) { - return -(int) result.length(); - } - memcpy(buf, result.c_str(), result.length()); - return result.length(); - } else if ( - (llama_is_user_defined_token(model->vocab, token)) || - (llama_is_control_token (model->vocab, token) && special)) { - std::string result = model->vocab.id_to_token[token].text; - if (length < (int) result.length()) { - return -(int) result.length(); - } - memcpy(buf, result.c_str(), result.length()); - return result.length(); - } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT - if (length < 3) { - return -3; - } - memcpy(buf, "\xe2\x96\x85", 3); - return 3; - } else if (llama_is_byte_token(model->vocab, token)) { - if (length < 1) { - return -1; - } - buf[0] = llama_token_to_byte(model->vocab, token); - return 1; - } - break; - } - case LLAMA_VOCAB_TYPE_BPE: { - // NOTE: we accept all unsupported token types, - // suppressing them like CONTROL tokens. - if (llama_is_normal_token(model->vocab, token)) { - std::string result = model->vocab.id_to_token[token].text; - result = llama_decode_text(result); - if (length < (int) result.length()) { - return -(int) result.length(); - } - memcpy(buf, result.c_str(), result.length()); - return result.length(); - } else if ( - (llama_is_user_defined_token(model->vocab, token)) || - (llama_is_control_token (model->vocab, token) && special)) { - std::string result = model->vocab.id_to_token[token].text; - if (length < (int) result.length()) { - return -(int) result.length(); - } - memcpy(buf, result.c_str(), result.length()); - return result.length(); - } - break; - } - default: - GGML_ASSERT(false); - } - } - return 0; -} - -// trim whitespace from the beginning and end of a string -static std::string trim(const std::string & str) { - size_t start = 0; - size_t end = str.size(); - while (start < end && isspace(str[start])) { - start += 1; - } - while (end > start && isspace(str[end - 1])) { - end -= 1; - } - return str.substr(start, end - start); -} - -// Simple version of "llama_apply_chat_template" that only works with strings -// This function uses heuristic checks to determine commonly used template. It is not a jinja parser. -static int32_t llama_chat_apply_template_internal( - const std::string & tmpl, - const std::vector<const llama_chat_message *> & chat, - std::string & dest, bool add_ass) { - // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527 - std::stringstream ss; - if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) { - // chatml template - for (auto message : chat) { - ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n"; - } - if (add_ass) { - ss << "<|im_start|>assistant\n"; - } - } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) { - // llama2 template and its variants - // [variant] support system message - bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos; - // [variant] space before + after response - bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos; - // [variant] add BOS inside history - bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos; - // [variant] trim spaces from the input message - bool strip_message = tmpl.find("content.strip()") != std::string::npos; - // construct the prompt - bool is_inside_turn = true; // skip BOS at the beginning - ss << "[INST] "; - for (auto message : chat) { - std::string content = strip_message ? trim(message->content) : message->content; - std::string role(message->role); - if (!is_inside_turn) { - is_inside_turn = true; - ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] "); - } - if (role == "system") { - if (support_system_message) { - ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n"; - } else { - // if the model does not support system message, we still include it in the first message, but without <<SYS>> - ss << content << "\n"; - } - } else if (role == "user") { - ss << content << " [/INST]"; - } else { - ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>"; - is_inside_turn = false; - } - } - // llama2 templates seem to not care about "add_generation_prompt" - } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) { - // Phi 3 - for (auto message : chat) { - std::string role(message->role); - ss << "<|" << role << "|>\n" << message->content << "<|end|>\n"; - } - if (add_ass) { - ss << "<|assistant|>\n"; - } - } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) { - // zephyr template - for (auto message : chat) { - ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n"; - } - if (add_ass) { - ss << "<|assistant|>\n"; - } - } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) { - // mlabonne/AlphaMonarch-7B template (the <s> is included inside history) - for (auto message : chat) { - std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message - ss << bos << message->role << "\n" << message->content << "</s>\n"; - } - if (add_ass) { - ss << "<s>assistant\n"; - } - } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) { - // google/gemma-7b-it - std::string system_prompt = ""; - for (auto message : chat) { - std::string role(message->role); - if (role == "system") { - // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken - system_prompt = trim(message->content); - continue; - } - // in gemma, "assistant" is "model" - role = role == "assistant" ? "model" : message->role; - ss << "<start_of_turn>" << role << "\n"; - if (!system_prompt.empty() && role != "model") { - ss << system_prompt << "\n\n"; - system_prompt = ""; - } - ss << trim(message->content) << "<end_of_turn>\n"; - } - if (add_ass) { - ss << "<start_of_turn>model\n"; - } - } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) { - // OrionStarAI/Orion-14B-Chat - std::string system_prompt = ""; - for (auto message : chat) { - std::string role(message->role); - if (role == "system") { - // there is no system message support, we will merge it with user prompt - system_prompt = message->content; - continue; - } else if (role == "user") { - ss << "Human: "; - if (!system_prompt.empty()) { - ss << system_prompt << "\n\n"; - system_prompt = ""; - } - ss << message->content << "\n\nAssistant: </s>"; - } else { - ss << message->content << "</s>"; - } - } - } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) { - // openchat/openchat-3.5-0106, - for (auto message : chat) { - std::string role(message->role); - if (role == "system") { - ss << message->content << "<|end_of_turn|>"; - } else { - role[0] = toupper(role[0]); - ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>"; - } - } - if (add_ass) { - ss << "GPT4 Correct Assistant:"; - } - } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) { - // eachadea/vicuna-13b-1.1 (and Orca variant) - for (auto message : chat) { - std::string role(message->role); - if (role == "system") { - // Orca-Vicuna variant uses a system prefix - if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) { - ss << "SYSTEM: " << message->content << "\n"; - } else { - ss << message->content << "\n\n"; - } - } else if (role == "user") { - ss << "USER: " << message->content << "\n"; - } else if (role == "assistant") { - ss << "ASSISTANT: " << message->content << "</s>\n"; - } - } - if (add_ass) { - ss << "ASSISTANT:"; - } - } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) { - // deepseek-ai/deepseek-coder-33b-instruct - for (auto message : chat) { - std::string role(message->role); - if (role == "system") { - ss << message->content; - } else if (role == "user") { - ss << "### Instruction:\n" << message->content << "\n"; - } else if (role == "assistant") { - ss << "### Response:\n" << message->content << "\n<|EOT|>\n"; - } - } - if (add_ass) { - ss << "### Response:\n"; - } - } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) { - // CohereForAI/c4ai-command-r-plus - for (auto message : chat) { - std::string role(message->role); - if (role == "system") { - ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>"; - } else if (role == "user") { - ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>"; - } else if (role == "assistant") { - ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>"; - } - } - if (add_ass) { - ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"; - } - } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) { - // Llama 3 - for (auto message : chat) { - std::string role(message->role); - ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>"; - } - if (add_ass) { - ss << "<|start_header_id|>assistant<|end_header_id|>\n\n"; - } - } else { - // template not supported - return -1; - } - dest = ss.str(); - return dest.size(); -} - -LLAMA_API int32_t llama_chat_apply_template( - const struct llama_model * model, - const char * tmpl, - const struct llama_chat_message * chat, - size_t n_msg, - bool add_ass, - char * buf, - int32_t length) { - std::string curr_tmpl(tmpl == nullptr ? "" : tmpl); - if (tmpl == nullptr) { - GGML_ASSERT(model != nullptr); - // load template from model - std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes - std::string template_key = "tokenizer.chat_template"; - int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); - if (res < 0) { - // worst case: there is no information about template, we will use chatml by default - curr_tmpl = "chatml"; // see llama_chat_apply_template_internal - } else { - curr_tmpl = std::string(model_template.data(), model_template.size()); - } - } - - // format the chat to string - std::vector<const llama_chat_message *> chat_vec; - chat_vec.resize(n_msg); - for (size_t i = 0; i < n_msg; i++) { - chat_vec[i] = &chat[i]; - } - - std::string formatted_chat; - int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass); - if (res < 0) { - return res; - } - if (buf && length > 0) { - strncpy(buf, formatted_chat.c_str(), length); - } - return res; -} - -LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) { - static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf"; - if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) { - return strlen(split_path); - } - return 0; -} - -int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) { - std::string str_split_path(split_path); - char postfix[32]; - snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count); - std::string str_postfix(postfix); - - // check if dest ends with postfix - int size_prefix = str_split_path.size() - str_postfix.size(); - if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) { - snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path); - return size_prefix; - } - - return 0; -} - -struct llama_timings llama_get_timings(struct llama_context * ctx) { - struct llama_timings result = { - /*.t_start_ms =*/ 1e-3 * ctx->t_start_us, - /*.t_end_ms =*/ 1.00 * ggml_time_ms(), - /*.t_load_ms =*/ 1e-3 * ctx->t_load_us, - /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us, - /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us, - /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us, - - /*.n_sample =*/ std::max(1, ctx->n_sample), - /*.n_p_eval =*/ std::max(0, ctx->n_p_eval), - /*.n_eval =*/ std::max(1, ctx->n_eval), - }; - - return result; -} - -void llama_print_timings(struct llama_context * ctx) { - const llama_timings timings = llama_get_timings(ctx); - - LLAMA_LOG_INFO("\n"); - LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms); - LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", - __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample); - LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", - __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval); - LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", - __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval); - LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval)); -} - -void llama_reset_timings(struct llama_context * ctx) { - ctx->t_start_us = ggml_time_us(); - ctx->t_sample_us = ctx->n_sample = 0; - ctx->t_eval_us = ctx->n_eval = 0; - ctx->t_p_eval_us = ctx->n_p_eval = 0; -} - -const char * llama_print_system_info(void) { - static std::string s; - - s = ""; - s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; - s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | "; - s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; - s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; - s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; - s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; - s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | "; - s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; - s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; - s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | "; - s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; - s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; - s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; - s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; - s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; - s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; - s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | "; - s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; - s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | "; -#ifdef GGML_USE_LLAMAFILE - s += "LLAMAFILE = 1 | "; -#else - s += "LLAMAFILE = 0 | "; -#endif - - return s.c_str(); -} - -void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) { - fprintf(stream, "\n"); - fprintf(stream, "###########\n"); - fprintf(stream, "# Timings #\n"); - fprintf(stream, "###########\n"); - fprintf(stream, "\n"); - - fprintf(stream, "mst_eval: %.2f # ms / token during generation\n", - 1.0e-3 * ctx->t_eval_us / ctx->n_eval); - fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n", - 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval); - fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n", - 1.0e-3 * ctx->t_sample_us / ctx->n_sample); - fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval); - fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval); - fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample); - fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us); - fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us); - fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us); - fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us); - fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n", - 1.0e6 * ctx->n_eval / ctx->t_eval_us); - fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n", - 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us); - fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n", - 1.0e6 * ctx->n_sample / ctx->t_sample_us); -} - -// For internal test use -const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map( - struct llama_context * ctx -) { - return ctx->model.tensors_by_name; -} - -void llama_log_set(ggml_log_callback log_callback, void * user_data) { - g_state.log_callback = log_callback ? log_callback : llama_log_callback_default; - g_state.log_callback_user_data = user_data; -#ifdef GGML_USE_METAL - ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); -#elif defined(GGML_USE_CUDA) - ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); -#endif -} - -static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) { - va_list args_copy; - va_copy(args_copy, args); - char buffer[128]; - int len = vsnprintf(buffer, 128, format, args); - if (len < 128) { - g_state.log_callback(level, buffer, g_state.log_callback_user_data); - } else { - char* buffer2 = new char[len+1]; - vsnprintf(buffer2, len+1, format, args_copy); - buffer2[len] = 0; - g_state.log_callback(level, buffer2, g_state.log_callback_user_data); - delete[] buffer2; - } - va_end(args_copy); -} - -static void llama_log_internal(ggml_log_level level, const char * format, ...) { - va_list args; - va_start(args, format); - llama_log_internal_v(level, format, args); - va_end(args); -} - -static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) { - (void) level; - (void) user_data; - fputs(text, stderr); - fflush(stderr); -} |