diff options
author | Meng Zhang <meng@tabbyml.com> | 2023-11-06 22:49:08 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-11-07 08:49:08 +0200 |
commit | 46876d2a2c92e60579dc732cdb8cbd243b06f317 (patch) | |
tree | 8387e95867f96505ccbc909133eaa189e479db32 /llama.cpp | |
parent | 381efbf480959bb6d1e247a8b0c2328f22e350f8 (diff) |
cuda : supports running on CPU for GGML_USE_CUBLAS=ON build (#3946)
* protyping the idea that supports running on CPU for a GGML_USE_CUBLAS=on build
* doc: add comments to ggml_cublas_loaded()
* fix defined(...)
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 179 |
1 files changed, 105 insertions, 74 deletions
@@ -596,19 +596,37 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * // llama helpers // +inline void * llama_host_malloc(size_t n) { #ifdef GGML_USE_CUBLAS -# define llama_host_malloc(n) ggml_cuda_host_malloc(n) -# define llama_host_free(data) ggml_cuda_host_free(data) + if (ggml_cublas_loaded()) { + return ggml_cuda_host_malloc(n); + } else { + return malloc(n); + } #elif GGML_USE_METAL -# define llama_host_malloc(n) ggml_metal_host_malloc(n) -# define llama_host_free(data) ggml_metal_host_free(data) + return ggml_metal_host_malloc(n); #elif GGML_USE_CPU_HBM -# define llama_host_malloc(n) hbw_malloc(n) -# define llama_host_free(data) if (data != NULL) hbw_free(data) + return hbw_malloc(n); #else -# define llama_host_malloc(n) malloc(n) -# define llama_host_free(data) free(data) + return malloc(n); #endif +} + +inline void llama_host_free(void * ptr) { +#ifdef GGML_USE_CUBLAS + if (ggml_cublas_loaded()) { + return ggml_cuda_host_free(ptr); + } else { + return free(ptr); + } +#elif GGML_USE_METAL + return ggml_metal_host_free(ptr); +#elif GGML_USE_CPU_HBM + return hbw_free(ptr); +#else + return free(ptr); +#endif +} #if defined(_WIN32) static std::string llama_format_win_err(DWORD err) { @@ -1200,9 +1218,11 @@ struct llama_kv_cache { } #ifdef GGML_USE_CUBLAS - ggml_cuda_free_data(k); - ggml_cuda_free_data(v); -#endif // GGML_USE_CUBLAS + if (ggml_cublas_loaded()) { + ggml_cuda_free_data(k); + ggml_cuda_free_data(v); + } +#endif } }; @@ -1302,11 +1322,15 @@ struct llama_model { } #ifdef GGML_USE_CUBLAS - for (size_t i = 0; i < tensors_by_name.size(); ++i) { - ggml_cuda_free_data(tensors_by_name[i].second); + if (ggml_cublas_loaded()) { + for (size_t i = 0; i < tensors_by_name.size(); ++i) { + ggml_cuda_free_data(tensors_by_name[i].second); + } + ggml_cuda_free_scratch(); } - ggml_cuda_free_scratch(); -#elif defined(GGML_USE_CLBLAST) +#endif + +#if defined(GGML_USE_CLBLAST) for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cl_free_data(tensors_by_name[i].second); } @@ -1418,23 +1442,26 @@ static bool llama_kv_cache_init( ggml_set_name(cache.v, "cache_v"); (void) n_gpu_layers; + #ifdef GGML_USE_CUBLAS - size_t vram_kv_cache = 0; + if (ggml_cublas_loaded()) { + size_t vram_kv_cache = 0; - if (n_gpu_layers > (int)n_layer + 1) { - ggml_cuda_assign_buffers_no_scratch(cache.v); - LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); - vram_kv_cache += ggml_nbytes(cache.v); - } - if (n_gpu_layers > (int)n_layer + 2) { - ggml_cuda_assign_buffers_no_scratch(cache.k); - LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); - vram_kv_cache += ggml_nbytes(cache.k); - } - if (vram_kv_cache > 0) { - LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); + if (n_gpu_layers > (int)n_layer + 1) { + ggml_cuda_assign_buffers_no_scratch(cache.v); + LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); + vram_kv_cache += ggml_nbytes(cache.v); + } + if (n_gpu_layers > (int)n_layer + 2) { + ggml_cuda_assign_buffers_no_scratch(cache.k); + LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); + vram_kv_cache += ggml_nbytes(cache.k); + } + if (vram_kv_cache > 0) { + LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); + } } -#endif // GGML_USE_CUBLAS +#endif return true; } @@ -2521,18 +2548,22 @@ static void llm_load_tensors( } (void) main_gpu; + + enum ggml_backend_type llama_backend_offload = GGML_BACKEND_CPU; + enum ggml_backend_type llama_backend_offload_split = GGML_BACKEND_CPU; + #ifdef GGML_USE_CUBLAS - LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__); - ggml_cuda_set_main_device(main_gpu); -#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU -#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT + if (ggml_cublas_loaded()) { + LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__); + ggml_cuda_set_main_device(main_gpu); + + llama_backend_offload = GGML_BACKEND_GPU; + llama_backend_offload_split = GGML_BACKEND_GPU_SPLIT; + } #elif defined(GGML_USE_CLBLAST) - LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__); -#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU -#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU -#else -#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU -#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU + LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__); + llama_backend_offload = GGML_BACKEND_GPU; + llama_backend_offload_split = GGML_BACKEND_GPU; #endif // prepare memory for the weights @@ -2559,12 +2590,12 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = LLAMA_BACKEND_OFFLOAD; + backend_norm = llama_backend_offload; #else - backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; #endif // _WIN32 - backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + backend_output = llama_backend_offload_split; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; @@ -2588,8 +2619,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT auto & layer = model.layers[i]; @@ -2625,12 +2656,12 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = LLAMA_BACKEND_OFFLOAD; + backend_norm = llama_backend_offload; #else - backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; #endif // _WIN32 - backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + backend_output = llama_backend_offload_split; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; @@ -2654,8 +2685,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT auto & layer = model.layers[i]; @@ -2695,12 +2726,12 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = LLAMA_BACKEND_OFFLOAD; + backend_norm = llama_backend_offload; #else - backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; #endif // _WIN32 - backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + backend_output = llama_backend_offload_split; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; @@ -2726,8 +2757,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT auto & layer = model.layers[i]; @@ -2772,12 +2803,12 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = LLAMA_BACKEND_OFFLOAD; + backend_norm = llama_backend_offload; #else - backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; #endif // _WIN32 - backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + backend_output = llama_backend_offload_split; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; @@ -2803,8 +2834,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT auto & layer = model.layers[i]; @@ -2849,12 +2880,12 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = LLAMA_BACKEND_OFFLOAD; + backend_norm = llama_backend_offload; #else - backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; #endif // _WIN32 - backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + backend_output = llama_backend_offload_split; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; @@ -2877,8 +2908,8 @@ static void llm_load_tensors( const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); @@ -2915,12 +2946,12 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = LLAMA_BACKEND_OFFLOAD; + backend_norm = llama_backend_offload; #else - backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; #endif // _WIN32 - backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + backend_output = llama_backend_offload_split; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; @@ -2946,8 +2977,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT auto & layer = model.layers[i]; @@ -2993,12 +3024,12 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = LLAMA_BACKEND_OFFLOAD; + backend_norm = llama_backend_offload; #else - backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : llama_backend_offload; #endif // _WIN32 - backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + backend_output = llama_backend_offload_split; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; @@ -3022,8 +3053,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT auto & layer = model.layers[i]; |