summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
authorjameswu2014 <545426914@qq.com>2023-09-15 00:32:10 +0800
committerGitHub <noreply@github.com>2023-09-14 12:32:10 -0400
commit4c8643dd6ea1a163bc5979cb69c1e7ab0975bc93 (patch)
treee47201719b2b8da2dc507ecee4d02e6c29b55e2e /llama.cpp
parent35f73049af6c676a106a5a990a819ae0bc3fcd7d (diff)
feature : support Baichuan serial models (#3009)
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp462
1 files changed, 461 insertions, 1 deletions
diff --git a/llama.cpp b/llama.cpp
index cbaf8eda..146605d4 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -155,6 +155,7 @@ static std::string format(const char * fmt, ...) {
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_FALCON,
+ LLM_ARCH_BAICHUAN,
LLM_ARCH_GPT2,
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
@@ -169,6 +170,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
{ LLM_ARCH_GPTJ, "gptj" },
{ LLM_ARCH_GPTNEOX, "gptneox" },
{ LLM_ARCH_MPT, "mpt" },
+ { LLM_ARCH_BAICHUAN,"baichuan" },
};
enum llm_kv {
@@ -310,6 +312,25 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
},
},
{
+ LLM_ARCH_BAICHUAN,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
LLM_ARCH_FALCON,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
@@ -1683,6 +1704,15 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_BAICHUAN:
+ {
+ GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
default: (void)0;
};
@@ -1923,7 +1953,6 @@ static void llm_load_tensors(
const int64_t n_vocab = hparams.n_vocab;
const auto tn = LLM_TN(model.arch);
-
switch (model.arch) {
case LLM_ARCH_LLAMA:
{
@@ -1993,6 +2022,72 @@ static void llm_load_tensors(
}
}
} break;
+ case LLM_ARCH_BAICHUAN:
+ {
+ model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
+ {
+ ggml_backend backend_norm;
+ ggml_backend backend_output;
+
+ if (n_gpu_layers > int(n_layer)) {
+ // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
+ // on Windows however this is detrimental unless everything is on the GPU
+#ifndef _WIN32
+ backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+#else
+ backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+#endif // _WIN32
+
+ backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
+ } else {
+ backend_norm = GGML_BACKEND_CPU;
+ backend_output = GGML_BACKEND_CPU;
+ }
+
+ model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
+ model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
+
+ if (backend_norm == GGML_BACKEND_GPU) {
+ vram_weights += ggml_nbytes(model.output_norm);
+ }
+ if (backend_output == GGML_BACKEND_GPU_SPLIT) {
+ vram_weights += ggml_nbytes(model.output);
+ }
+ }
+
+ const uint32_t n_ff = hparams.n_ff;
+
+ const int i_gpu_start = n_layer - n_gpu_layers;
+
+ model.layers.resize(n_layer);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
+ const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
+
+ layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
+ layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
+ layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
+ layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
+
+ layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
+
+ layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
+ layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
+ layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
+
+ if (backend == GGML_BACKEND_GPU) {
+ vram_weights +=
+ ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
+ ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
+ ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
+ }
+ }
+ } break;
case LLM_ARCH_FALCON:
{
// TODO: CPU-only for now
@@ -2542,6 +2637,367 @@ static struct ggml_cgraph * llm_build_llama(
return gf;
}
+
+static struct ggml_cgraph * llm_build_baichaun(
+ llama_context & lctx,
+ const llama_token * tokens,
+ const float * embd,
+ int n_tokens,
+ int n_past) {
+
+ GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
+
+ const int N = n_tokens;
+
+ const auto & model = lctx.model;
+ const auto & hparams = model.hparams;
+
+ const auto & kv_self = lctx.kv_self;
+
+ GGML_ASSERT(!!kv_self.ctx);
+
+ const int64_t n_embd = hparams.n_embd;
+ const int64_t n_layer = hparams.n_layer;
+ const int64_t n_ctx = hparams.n_ctx;
+ const int64_t n_head = hparams.n_head;
+ const int64_t n_head_kv = hparams.n_head_kv;
+ const int64_t n_embd_head = hparams.n_embd_head();
+ const int64_t n_embd_gqa = hparams.n_embd_gqa();
+
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ const float freq_base = hparams.rope_freq_base;
+ const float freq_scale = hparams.rope_freq_scale;
+ const float norm_rms_eps = hparams.f_norm_rms_eps;
+
+ const int n_gpu_layers = model.n_gpu_layers;
+
+ auto & buf_compute = lctx.buf_compute;
+
+ struct ggml_init_params params = {
+ /*.mem_size =*/ buf_compute.size,
+ /*.mem_buffer =*/ buf_compute.data,
+ /*.no_alloc =*/ false,
+ };
+
+ params.no_alloc = true;
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ if (tokens) {
+ struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+
+ ggml_allocr_alloc(lctx.alloc, inp_tokens);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
+ }
+ ggml_set_name(inp_tokens, "inp_tokens");
+
+ inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
+ } else {
+#ifdef GGML_USE_MPI
+ GGML_ASSERT(false && "not implemented");
+#endif
+
+ inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
+
+ ggml_allocr_alloc(lctx.alloc, inpL);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
+ }
+ }
+
+ const int i_gpu_start = n_layer - n_gpu_layers;
+ (void) i_gpu_start;
+
+ // offload functions set the tensor output backend to GPU
+ // tensors are GPU-accelerated if any input or the output has been offloaded
+ //
+ // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
+ // in that case ggml_cuda_assign_buffers has no effect
+ offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
+ offload_func_t offload_func_kq = llama_nop;
+ offload_func_t offload_func_v = llama_nop;
+
+#ifdef GGML_USE_CUBLAS
+ if (n_gpu_layers > n_layer) {
+ offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
+ }
+ if (n_gpu_layers > n_layer + 1) {
+ offload_func_v = ggml_cuda_assign_buffers_no_alloc;
+ }
+ if (n_gpu_layers > n_layer + 2) {
+ offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
+ }
+#endif // GGML_USE_CUBLAS
+
+ struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+ ggml_allocr_alloc(lctx.alloc, KQ_scale);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
+ }
+ ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
+
+ for (int il = 0; il < n_layer; ++il) {
+ ggml_format_name(inpL, "layer_inp_%d", il);
+
+ offload_func_t offload_func = llama_nop;
+
+#ifdef GGML_USE_CUBLAS
+ if (il >= i_gpu_start) {
+ offload_func = ggml_cuda_assign_buffers_no_alloc;
+ }
+#endif // GGML_USE_CUBLAS
+
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ {
+ cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
+ offload_func(cur);
+ ggml_set_name(cur, "rms_norm_0");
+
+ // cur = cur*attn_norm(broadcasted)
+ cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
+ offload_func(cur);
+ ggml_set_name(cur, "attention_norm_0");
+ }
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ offload_func_kq(tmpk);
+ ggml_set_name(tmpk, "tmpk");
+
+ struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ offload_func_kq(tmpq);
+ ggml_set_name(tmpq, "tmpq");
+
+ struct ggml_tensor * Kcur;
+ struct ggml_tensor * Qcur;
+ switch (model.type) {
+ case MODEL_7B:
+ Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
+ Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
+ break;
+ case MODEL_13B:
+ Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N);
+ Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N);
+ break;
+ default:
+ GGML_ASSERT(false);
+ }
+
+ offload_func_kq(Kcur);
+ ggml_set_name(Kcur, "Kcur");
+
+ offload_func_kq(Qcur);
+ ggml_set_name(Qcur, "Qcur");
+
+ // store key and value to memory
+ {
+ // compute the transposed [N, n_embd] V matrix
+
+ struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ offload_func_v(tmpv);
+ ggml_set_name(tmpv, "tmpv");
+
+ struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
+ offload_func_v(Vcur);
+ ggml_set_name(Vcur, "Vcur");
+
+ struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
+ offload_func_kq(k);
+ ggml_set_name(k, "k");
+
+ struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
+ ( n_ctx)*ggml_element_size(kv_self.v),
+ (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
+ offload_func_v(v);
+ ggml_set_name(v, "v");
+
+ // important: storing RoPE-ed version of K in the KV cache!
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
+ }
+
+ struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+ offload_func_kq(Q);
+ ggml_set_name(Q, "Q");
+
+ struct ggml_tensor * K =
+ ggml_view_3d(ctx0, kv_self.k,
+ n_embd_head, n_past + N, n_head_kv,
+ ggml_element_size(kv_self.k)*n_embd_gqa,
+ ggml_element_size(kv_self.k)*n_embd_head,
+ ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
+ offload_func_kq(K);
+ ggml_set_name(K, "K");
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+ offload_func_kq(KQ);
+ ggml_set_name(KQ, "KQ");
+
+ // KQ_scaled = KQ / sqrt(n_embd_head)
+ // KQ_scaled shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
+ offload_func_kq(KQ_scaled);
+ ggml_set_name(KQ_scaled, "KQ_scaled");
+
+ struct ggml_tensor * KQ_masked;
+ struct ggml_tensor * KQ_scaled_alibi;
+
+ switch (model.type) {
+ case MODEL_7B:
+ KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
+ break;
+ case MODEL_13B:
+ KQ_scaled_alibi =ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8);
+ ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
+ KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
+ break;
+ default:
+ GGML_ASSERT(false);
+ }
+ // KQ_masked = mask_past(KQ_scaled)
+ // struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
+ // struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
+ // offload_func_kq(KQ_masked);
+ // ggml_set_name(KQ_masked, "KQ_masked");
+
+ // KQ = soft_max(KQ_masked)
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
+ offload_func_v(KQ_soft_max);
+ ggml_set_name(KQ_soft_max, "KQ_soft_max");
+
+ // split cached V into n_head heads
+ struct ggml_tensor * V =
+ ggml_view_3d(ctx0, kv_self.v,
+ n_past + N, n_embd_head, n_head_kv,
+ ggml_element_size(kv_self.v)*n_ctx,
+ ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
+ ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
+ offload_func_v(V);
+ ggml_set_name(V, "V");
+
+#if 1
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+ offload_func_v(KQV);
+ ggml_set_name(KQV, "KQV");
+#else
+ // make V contiguous in memory to speed up the matmul, however we waste time on the copy
+ // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
+ // is there a better way?
+ struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
+#endif
+
+ // KQV_merged = KQV.permute(0, 2, 1, 3)
+ struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ offload_func_v(KQV_merged);
+ ggml_set_name(KQV_merged, "KQV_merged");
+
+ // cur = KQV_merged.contiguous().view(n_embd, N)
+ cur = ggml_cpy(ctx0,
+ KQV_merged,
+ ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+ offload_func_v(cur);
+ ggml_set_name(cur, "KQV_merged_contiguous");
+
+ // projection (no bias)
+ cur = ggml_mul_mat(ctx0,
+ model.layers[il].wo,
+ cur);
+ offload_func(cur);
+ ggml_set_name(cur, "result_wo");
+ }
+
+ struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
+ offload_func(inpFF);
+ ggml_set_name(inpFF, "inpFF");
+
+ // feed-forward network
+ {
+ // norm
+ {
+ cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
+ offload_func(cur);
+ ggml_set_name(cur, "rms_norm_1");
+
+ // cur = cur*ffn_norm(broadcasted)
+ cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
+ offload_func(cur);
+ ggml_set_name(cur, "ffn_norm");
+ }
+
+ struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
+ model.layers[il].w3,
+ cur);
+ offload_func(tmp);
+ ggml_set_name(tmp, "result_w3");
+
+ cur = ggml_mul_mat(ctx0,
+ model.layers[il].w1,
+ cur);
+ offload_func(cur);
+ ggml_set_name(cur, "result_w1");
+
+ // SILU activation
+ cur = ggml_silu(ctx0, cur);
+ offload_func(cur);
+ ggml_set_name(cur, "silu");
+
+ cur = ggml_mul(ctx0, cur, tmp);
+ offload_func(cur);
+ ggml_set_name(cur, "silu_x_result_w3");
+
+ cur = ggml_mul_mat(ctx0,
+ model.layers[il].w2,
+ cur);
+ offload_func(cur);
+ ggml_set_name(cur, "result_w2");
+ }
+
+ cur = ggml_add(ctx0, cur, inpFF);
+ offload_func(cur);
+ ggml_set_name(cur, "inpFF_+_result_w2");
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ // norm
+ {
+ cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
+ offload_func_nr(cur);
+ ggml_set_name(cur, "rms_norm_2");
+
+ // cur = cur*norm(broadcasted)
+ cur = ggml_mul(ctx0, cur, model.output_norm);
+ // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
+ ggml_set_name(cur, "result_norm");
+ }
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ ggml_set_name(cur, "result_output");
+
+ ggml_build_forward_expand(gf, cur);
+
+ ggml_free(ctx0);
+
+ return gf;
+}
+
static struct ggml_cgraph * llm_build_falcon(
llama_context & lctx,
const llama_token * tokens,
@@ -2864,6 +3320,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm_build_llama(lctx, tokens, embd, n_tokens, n_past);
} break;
+ case LLM_ARCH_BAICHUAN:
+ {
+ result = llm_build_baichaun(lctx, tokens, embd, n_tokens, n_past);
+ } break;
case LLM_ARCH_FALCON:
{
result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);