diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2023-06-05 22:56:18 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-06-05 22:56:18 +0300 |
commit | 99009e72f8072fa552eb02efee436be596c71cdd (patch) | |
tree | d9a7e29f42c45eaaae69c423735a1ce69db0dab7 /llama.cpp | |
parent | 5220a991a5e92bddad9542267ab445a2c033681c (diff) |
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml
I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.
* Adding Q3_K and Q8_K (de)-quantization
* Q3_K now working on CUDA and AVX2/scalar
CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).
* Some improvement for Q3_K on CUDA
It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.
* Some more CUDA optimizations for Q3_K
Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.
* Adding Q4_K - scalar, AVX2, CUDA
Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).
* Adding Q6_K - scalar, AVX2, CUDA
Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).
* Adding Q5_K - scalar, AVX2, CUDA
Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.
* Per convention, all QX_K quantizations use Q5_K for output.weight
* Adding quantization mixes
* Quantization mixes: didn't quite get what I wanted in the last commit
* Q4_K dot product for ARM_NEON
* Q6_K dot product for ARM_NEON
* Q5_K dot product for ARM_NEON
* Adding Q3_K dot for ARM_NEON
It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.
* A very slightly faster ARM_NEON Q3_K dot
* Adding Q2_K - just CUDA for now
Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.
* Adding scalar and AVX2 Q2_K dot
* Adding ARM_NEON Q2_K dot
About the same performance as Q4_K.
* A slightly faster ARM_NEON Q2_K dot
Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.
* Fixed bug in Q2_K CUDA dot product kernel
Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.
In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).
* Don't print zeros/NaNs when no count histogram has been collected
* A 10% faster CUDA vector dot kernel for Q3_K
Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.
* A slightly daster Q4_K AVX2 dot product
For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.
* A slightly faster ARM_NEON A4_K dot product
* Minor
* Fix quantization error test
We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.
* Fix docker build
I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.
* Added forgotten ggml.o dependence on k_quants.h to the Makefile
* Had unintentionally committed the Makefile with -Ofast enabled
* ggml : rename k_quants -> ggml-quants-k, use lowercase in code
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 85 |
1 files changed, 78 insertions, 7 deletions
@@ -515,6 +515,11 @@ struct llama_file_loader { case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: break; default: { throw format("unrecognized tensor type %u\n", shard.type); @@ -590,6 +595,11 @@ struct llama_file_saver { case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: break; default: LLAMA_ASSERT(false); } @@ -906,6 +916,16 @@ static const char *llama_ftype_name(enum llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; + // K-quants + case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K"; + case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large"; + case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K"; default: return "unknown, may not work"; } } @@ -2113,8 +2133,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break; + // K-quants + case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; + case LLAMA_FTYPE_MOSTLY_Q3_K_S: + case LLAMA_FTYPE_MOSTLY_Q3_K_M: + case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; + case LLAMA_FTYPE_MOSTLY_Q4_K_S: + case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break; + case LLAMA_FTYPE_MOSTLY_Q5_K_S: + case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; + case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; default: throw format("invalid output file type %d\n", ftype); - }; + } if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); @@ -2124,6 +2154,20 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s /*vocab_only*/ false)); llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype); + int n_attention_wv = 0; + int n_feed_forward_w2 = 0; + for (auto& tensor : model_loader->tensors_map.tensors) { + if (tensor.name.find("attention.wv.weight") != std::string::npos) { + ++n_attention_wv; + } + else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { + ++n_feed_forward_w2; + } + } + + int i_attention_wv = 0; + int i_feed_forward_w2 = 0; + size_t total_size_org = 0; size_t total_size_new = 0; std::vector<int64_t> hist_all(1 << 4, 0); @@ -2166,6 +2210,27 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); } else { new_type = quantized_type; + if (tensor.name == "output.weight") new_type = GGML_TYPE_Q6_K; + else if (tensor.name.find("attention.wv.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && + (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 || + (i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; + ++i_attention_wv; + } + else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && + (i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 || + (i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; + ++i_feed_forward_w2; + } + else if (tensor.name.find("attention.wo.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + } float * f32_data; size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); llama_buffer f32_conv_buf; @@ -2233,12 +2298,16 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); + int64_t tot_count = 0; for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; + tot_count += hist_cur[i]; } - for (size_t i = 0; i < hist_cur.size(); i++) { - printf("%5.3f ", hist_cur[i] / float(nelements)); + if (tot_count > 0) { + for (size_t i = 0; i < hist_cur.size(); i++) { + printf("%5.3f ", hist_cur[i] / float(nelements)); + } } printf("\n"); } @@ -2256,11 +2325,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s sum_all += hist_all[i]; } - printf("%s: hist: ", __func__); - for (size_t i = 0; i < hist_all.size(); i++) { - printf("%5.3f ", hist_all[i] / float(sum_all)); + if (sum_all > 0) { + printf("%s: hist: ", __func__); + for (size_t i = 0; i < hist_all.size(); i++) { + printf("%5.3f ", hist_all[i] / float(sum_all)); + } + printf("\n"); } - printf("\n"); } } |