summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-02-26 18:28:38 +0200
committerGitHub <noreply@github.com>2024-02-26 18:28:38 +0200
commita33e6a0d2a66104ea9a906bdbf8a94d050189d91 (patch)
tree30478b4a0b1792d1af66c5d64e2c3c4fa1af74ab /llama.cpp
parent47bb7b48c7cec9d8f57d56812ce811ec130b89a3 (diff)
Adding IQ2_S and IQ2_M to complete coverage of the 2-3 bit quantization range (#5721)
* Adding IQ2_S and IQ2_M as a single cumulative commit * Update examples/quantize/quantize.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp69
1 files changed, 52 insertions, 17 deletions
diff --git a/llama.cpp b/llama.cpp
index f549e7d0..80dc4d16 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -2579,6 +2579,7 @@ struct llama_model_loader {
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
+ case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
@@ -2933,7 +2934,9 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
- case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small";
+ case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
@@ -10761,31 +10764,47 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
new_type = GGML_TYPE_Q8_0;
}
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
new_type = GGML_TYPE_Q5_K;
}
else if (new_type != GGML_TYPE_Q8_0) {
new_type = GGML_TYPE_Q6_K;
}
} else if (name == "token_embd.weight") {
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
new_type = GGML_TYPE_Q2_K;
}
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
+ new_type = GGML_TYPE_IQ3_S;
+ }
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
- new_type = GGML_TYPE_Q4_K;
+ new_type = GGML_TYPE_IQ3_S;
}
- } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
+ } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
if (name.find("attn_v.weight") != std::string::npos) {
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
- else new_type = GGML_TYPE_Q2_K;
+ else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
++qs.i_attention_wv;
}
+ else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
+ new_type = GGML_TYPE_Q4_K;
+ }
else if (name.find("ffn_down") != std::string::npos) {
- if (qs.i_ffn_down < qs.n_ffn_down/8) new_type = GGML_TYPE_Q2_K;
+ if (qs.i_ffn_down < qs.n_ffn_down/8) {
+ new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
+ }
++qs.i_ffn_down;
}
else if (name.find("attn_output.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS;
+ if (qs.model.hparams.n_expert == 8) {
+ new_type = GGML_TYPE_Q5_K;
+ } else {
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
+ }
}
} else if (name.find("attn_v.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
@@ -10795,7 +10814,13 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
- new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_Q3_K : GGML_TYPE_IQ3_XXS;
+ new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
+ new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q4_K;
@@ -10833,13 +10858,19 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
// TODO: explore better strategies
new_type = GGML_TYPE_Q8_0;
}
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
new_type = GGML_TYPE_IQ3_XXS;
}
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+ new_type = GGML_TYPE_IQ2_S;
+ }
} else if (name.find("attn_q.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
new_type = GGML_TYPE_IQ3_XXS;
}
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+ new_type = GGML_TYPE_IQ2_S;
+ }
} else if (name.find("ffn_down") != std::string::npos) {
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
int i_layer = info.first, n_layer = info.second;
@@ -10888,7 +10919,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
} else if (name.find("attn_output.weight") != std::string::npos) {
if (arch != LLM_ARCH_FALCON) {
if (qs.model.hparams.n_expert == 8) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
@@ -10896,7 +10927,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
}
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_Q3_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
@@ -10915,7 +10946,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
else if (name.find("ffn_gate") != std::string::npos) {
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
new_type = GGML_TYPE_IQ3_XXS;
}
++qs.i_ffn_gate;
@@ -10923,7 +10954,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
else if (name.find("ffn_up") != std::string::npos) {
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
new_type = GGML_TYPE_IQ3_XXS;
}
++qs.i_ffn_up;
@@ -10943,7 +10974,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
bool convert_incompatible_tensor = false;
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K ||
- new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS ||
+ new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || new_type == GGML_TYPE_IQ3_S) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
@@ -10958,6 +10989,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
switch (new_type) {
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
@@ -10991,7 +11023,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
- case LLAMA_FTYPE_MOSTLY_Q3_K_XS: quantized_type = GGML_TYPE_IQ3_S; break;
+ case LLAMA_FTYPE_MOSTLY_IQ3_XS: quantized_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
@@ -11002,6 +11034,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: quantized_type = GGML_TYPE_IQ2_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_S: quantized_type = GGML_TYPE_IQ2_XS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_M: quantized_type = GGML_TYPE_IQ2_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S; break;
case LLAMA_FTYPE_MOSTLY_IQ4_NL: quantized_type = GGML_TYPE_IQ4_NL; break;
@@ -11180,6 +11214,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
}
if ((new_type == GGML_TYPE_IQ2_XXS ||
new_type == GGML_TYPE_IQ2_XS ||
+ new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ1_S ||
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
LLAMA_LOG_ERROR("\n\n============================================================\n");