summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
authorShouzheng Liu <lshzh.hi@gmail.com>2023-08-16 16:07:04 -0400
committerGitHub <noreply@github.com>2023-08-16 23:07:04 +0300
commitbf83bff6742c0f1795b4c18695a13a34ac7adf62 (patch)
tree1f1d4e77bf04c459686961540d3e359e8aceb519 /llama.cpp
parentb5ffb2849d23afe73647f68eec7b68187af09be6 (diff)
metal : matrix-matrix multiplication kernel (#2615)
* metal: matrix-matrix multiplication kernel This commit removes MPS and uses custom matrix-matrix multiplication kernels for all quantization types. This commit also adds grouped-query attention to support llama2 70B. * metal: fix performance degradation from gqa Integers are slow on the GPU, and 64-bit divides are extremely slow. In the context of GQA, we introduce a 64-bit divide that cannot be optimized out by the compiler, which results in a decrease of ~8% in inference performance. This commit fixes that issue by calculating a part of the offset with a 32-bit divide. Naturally, this limits the size of a single matrix to ~4GB. However, this limitation should suffice for the near future. * metal: fix bugs for GQA and perplexity test. I mixed up ne02 and nb02 in previous commit.
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp18
1 files changed, 1 insertions, 17 deletions
diff --git a/llama.cpp b/llama.cpp
index c8ab313d..a161f156 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -1845,7 +1845,7 @@ static bool llama_eval_internal(
#endif
#ifdef GGML_USE_METAL
- if (lctx.ctx_metal && N == 1) {
+ if (lctx.ctx_metal) {
// TODO: disabled until #2413 is resolved
//if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
// ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
@@ -1857,22 +1857,6 @@ static bool llama_eval_internal(
ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
}
} else {
- // IMPORTANT:
- // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
- // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
- // coprocessor.
- //
- // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
- // But for now, we have focused only on Matrix x Vector Metal multiplication.
- //
- // TODO: avoid these syncs via shared memory (ref #1696)
- //
- if (lctx.ctx_metal) {
- // We need to sync the GPU KV cache with the CPU KV cache
- ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
- ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
- }
-
ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
}
#else