diff options
author | slaren <slarengh@gmail.com> | 2024-03-13 18:54:21 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-03-13 18:54:21 +0100 |
commit | f30ea47a87ed4446ad55adb265755dc9102956a2 (patch) | |
tree | fc885962ca3d537cfdfbd6b4a2820b7c864b1ee0 /llama.cpp | |
parent | d8fd0ccf6ac8b07791ffd1575eed436930854ae3 (diff) |
llama : add pipeline parallelism support (#6017)
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs
ggml-ci
* server : add -ub, --ubatch-size parameter
* fix server embedding test
* llama : fix Mamba inference for pipeline parallelism
Tested to work correctly with both `main` and `parallel` examples.
* llama : limit max batch size to n_batch
* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)
changing this value may improve performance for some systems, but increases memory usage
* fix hip build
* fix sycl build (disable cpy_tensor_async)
* fix hip build
* llama : limit n_batch and n_ubatch to n_ctx during context creation
* llama : fix norm backend
* batched-bench : sync after decode
* swiftui : sync after decode
* ggml : allow ggml_get_rows to use multiple threads if they are available
* check n_ubatch >= n_tokens with non-casual attention
* llama : do not limit n_batch to n_ctx with non-casual attn
* server : construct batch with size of llama_n_batch
* ggml_backend_cpu_graph_compute : fix return value when alloc fails
* llama : better n_batch and n_ubatch comment
* fix merge
* small fix
* reduce default n_batch to 2048
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'llama.cpp')
-rw-r--r-- | llama.cpp | 1131 |
1 files changed, 608 insertions, 523 deletions
@@ -979,21 +979,6 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { } // -// ggml helpers -// - -static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { - struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); - - if (plan.work_size > 0) { - buf.resize(plan.work_size); - plan.work_data = buf.data(); - } - - ggml_graph_compute(graph, &plan); -} - -// // llama helpers // @@ -1728,6 +1713,7 @@ struct llama_hparams { struct llama_cparams { uint32_t n_ctx; // context size used during inference uint32_t n_batch; + uint32_t n_ubatch; uint32_t n_threads; // number of threads to use for generation uint32_t n_threads_batch; // number of threads to use for batch processing @@ -2024,8 +2010,7 @@ struct llama_context { ggml_vk_free_cpu_assist(); #endif - ggml_backend_buffer_free(buf_input); - ggml_free(ctx_input); + ggml_backend_buffer_free(buf_output); } llama_cparams cparams; @@ -2051,12 +2036,20 @@ struct llama_context { int64_t t_p_eval_us = 0; int64_t t_eval_us = 0; + int64_t t_compute_start_us = 0; + int64_t n_queued_tokens = 0; + int32_t n_sample = 0; // number of tokens sampled int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) int32_t n_eval = 0; // number of eval calls - // logits output (2-dimensional array: [n_tokens][n_vocab]) - std::vector<float> logits; + // host buffer for the model output (logits and embeddings) + ggml_backend_buffer_t buf_output = nullptr; + + // decode output (2-dimensional array: [n_tokens][n_vocab]) + size_t logits_size = 0; + float * logits = nullptr; + #ifndef NDEBUG // guard against access to unset logits std::vector<bool> logits_valid; @@ -2065,7 +2058,8 @@ struct llama_context { // embeddings output (2-dimensional array: [n_tokens][n_embd]) // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE - std::vector<float> embd; + size_t embd_size = 0; + float * embd = nullptr; // sequence embeddings output (map of [n_embd] vectors) // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE @@ -2079,8 +2073,6 @@ struct llama_context { void * abort_callback_data = nullptr; // input tensors - ggml_backend_buffer_t buf_input = nullptr; - ggml_context * ctx_input = nullptr; struct ggml_tensor * inp_tokens; // I32 [n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] @@ -2090,7 +2082,7 @@ struct llama_context { struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] struct ggml_tensor * inp_s_copy; // I32 [kv_size] - struct ggml_tensor * inp_s_mask; // F32 [kv_size] + struct ggml_tensor * inp_s_mask; // F32 [1, kv_size] struct ggml_tensor * inp_s_seq; // I32 [kv_size, n_batch] #ifdef GGML_USE_MPI @@ -4005,6 +3997,7 @@ static bool llm_load_tensors( // there is very little benefit to offloading the input layer, so always keep it on the CPU model.buft_input = llama_default_buffer_type_cpu(true); + //model.buft_input = llama_default_buffer_type_offload(main_gpu); model.buft_layer.resize(n_layer); @@ -5094,29 +5087,32 @@ enum llm_norm_type { static struct ggml_tensor * llm_build_inp_embd( struct ggml_context * ctx, + struct llama_context & lctx, const llama_hparams & hparams, const llama_batch & batch, struct ggml_tensor * tok_embd, - struct ggml_tensor * inp_tokens, - struct ggml_tensor * inp_embd, const llm_build_cb & cb) { const int64_t n_embd = hparams.n_embd; struct ggml_tensor * inpL; if (batch.token) { - struct ggml_tensor * inp_tokens_v = ggml_view_1d(ctx, inp_tokens, batch.n_tokens, 0); - cb(inp_tokens, "inp_tokens", -1); + lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens); + cb(lctx.inp_tokens, "inp_tokens", -1); + ggml_set_input(lctx.inp_tokens); - inpL = ggml_get_rows(ctx, tok_embd, inp_tokens_v); + inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif - - inpL = ggml_view_2d(ctx, inp_embd, n_embd, batch.n_tokens, inp_embd->nb[1], 0); + lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); + inpL = lctx.inp_embd; + ggml_set_input(lctx.inp_embd); } + cb(inpL, "inp_embd", -1); + return inpL; } @@ -5420,7 +5416,7 @@ static struct ggml_tensor * llm_build_kv( struct llm_build_context { const llama_model & model; - const llama_context & lctx; + llama_context & lctx; const llama_hparams & hparams; const llama_cparams & cparams; const llama_batch & batch; @@ -5513,6 +5509,18 @@ struct llm_build_context { }; ctx0 = ggml_init(params); + + lctx.inp_tokens = nullptr; + lctx.inp_embd = nullptr; + lctx.inp_pos = nullptr; + lctx.inp_KQ_mask = nullptr; + lctx.inp_KQ_pos = nullptr; + lctx.inp_K_shift = nullptr; + lctx.inp_mean = nullptr; + lctx.inp_cls = nullptr; + lctx.inp_s_copy = nullptr; + lctx.inp_s_mask = nullptr; + lctx.inp_s_seq = nullptr; } void free() { @@ -5527,6 +5535,10 @@ struct llm_build_context { GGML_ASSERT(kv_self.size == n_ctx); + lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + cb(lctx.inp_K_shift, "K_shift", -1); + ggml_set_input(lctx.inp_K_shift); + for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = // we rotate only the first n_rot dimensions @@ -5550,12 +5562,14 @@ struct llm_build_context { GGML_ASSERT(kv_self.recurrent); + struct ggml_tensor * state_copy = build_inp_s_copy(); + for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size); struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size); - conv_states = ggml_get_rows(ctx0, conv_states, lctx.inp_s_copy); - ssm_states = ggml_get_rows(ctx0, ssm_states, lctx.inp_s_copy); + conv_states = ggml_get_rows(ctx0, conv_states, state_copy); + ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy); // TODO: name the intermediate tensors with cb() @@ -5615,6 +5629,66 @@ struct llm_build_context { return gf; } + struct ggml_tensor * build_inp_pos() { + lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + cb(lctx.inp_pos, "inp_pos", -1); + ggml_set_input(lctx.inp_pos); + return lctx.inp_pos; + } + + struct ggml_tensor * build_inp_KQ_mask(bool causal = true) { + if (causal) { + lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens); + } else { + lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); + } + cb(lctx.inp_KQ_mask, "KQ_mask", -1); + ggml_set_input(lctx.inp_KQ_mask); + return lctx.inp_KQ_mask; + } + + struct ggml_tensor * build_inp_KQ_pos() { + lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv); + cb(lctx.inp_KQ_pos, "KQ_pos", -1); + ggml_set_input(lctx.inp_KQ_pos); + return lctx.inp_KQ_pos; + } + + struct ggml_tensor * build_inp_mean() { + lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); + cb(lctx.inp_mean, "inp_mean", -1); + ggml_set_input(lctx.inp_mean); + return lctx.inp_mean; + } + + struct ggml_tensor * build_inp_cls() { + lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + cb(lctx.inp_cls, "inp_cls", -1); + ggml_set_input(lctx.inp_cls); + return lctx.inp_cls; + } + + struct ggml_tensor * build_inp_s_copy() { + lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size); + cb(lctx.inp_s_copy, "inp_s_copy", -1); + ggml_set_input(lctx.inp_s_copy); + return lctx.inp_s_copy; + } + + struct ggml_tensor * build_inp_s_mask() { + lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv); + cb(lctx.inp_s_mask, "inp_s_mask", -1); + ggml_set_input(lctx.inp_s_mask); + return lctx.inp_s_mask; + } + + struct ggml_tensor * build_inp_s_seq() { + lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens); + cb(lctx.inp_s_seq, "inp_s_seq", -1); + ggml_set_input(lctx.inp_s_seq); + return lctx.inp_s_seq; + } + struct ggml_cgraph * build_llama() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); @@ -5625,16 +5699,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -5686,7 +5757,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -5804,20 +5874,16 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); - cb(KQ_pos, "KQ_pos", -1); + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -5865,7 +5931,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -5921,16 +5986,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; @@ -5984,7 +6046,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = cur; @@ -6035,21 +6096,17 @@ struct llm_build_context { GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; - struct ggml_tensor * pos; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); + struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); inpL = ggml_add(ctx0, inpL, pos); @@ -6083,7 +6140,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } // add the input @@ -6135,16 +6191,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * residual = inpL; @@ -6284,7 +6337,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur); @@ -6338,16 +6390,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); - cb(KQ_pos, "KQ_pos", -1); + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6377,7 +6426,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -6433,15 +6481,12 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - // get input vectors with right size - const size_t stride1 = n_tokens * ggml_type_size(lctx.inp_tokens->type); - - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - struct ggml_tensor * inp_mean = ggml_view_2d(ctx0, lctx.inp_mean, n_tokens, n_tokens, stride1, 0); - struct ggml_tensor * inp_cls = ggml_view_1d(ctx0, lctx.inp_cls, n_tokens, 0); + struct ggml_tensor * inp_pos = build_inp_pos(); + struct ggml_tensor * inp_mean = build_inp_mean(); + struct ggml_tensor * inp_cls = build_inp_cls(); // construct input embeddings (token, type, position) - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // token types are hardcoded to zero ("Sentence A") struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); @@ -6456,8 +6501,7 @@ struct llm_build_context { cb(inpL, "inp_norm", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_cont(ctx0, ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_tokens, n_tokens, n_tokens*ggml_type_size(lctx.inp_KQ_mask->type), 0)); - cb(KQ_mask, "KQ_mask", -1); // [n_tokens, n_tokens] + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false); // iterate layers for (int il = 0; il < n_layer; ++il) { @@ -6619,16 +6663,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); - cb(KQ_pos, "KQ_pos", -1); + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, @@ -6664,7 +6705,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } // Add the input @@ -6716,16 +6756,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache - struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0); - cb(KQ_pos, "KQ_pos", -1); + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; @@ -6766,7 +6803,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } // Add the input @@ -6821,16 +6857,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6883,7 +6916,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -6939,16 +6971,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -6993,7 +7022,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -7048,16 +7076,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7109,7 +7134,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -7164,16 +7188,13 @@ struct llm_build_context { struct ggml_tensor * ffn_output; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { attn_norm_output = llm_build_norm(ctx0, inpL, hparams, @@ -7231,7 +7252,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); - cb(cur, "kqv_out", il); } // FF @@ -7281,16 +7301,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { @@ -7329,7 +7346,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * sa_out = cur; @@ -7383,16 +7399,13 @@ struct llm_build_context { struct ggml_tensor * pos; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); @@ -7428,7 +7441,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } // add the input @@ -7481,16 +7493,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { cur = llm_build_norm(ctx0, inpL, hparams, @@ -7532,7 +7541,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } // add the input @@ -7584,16 +7592,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7645,7 +7650,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -7698,16 +7702,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7759,7 +7760,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); @@ -7821,20 +7821,17 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // scale the input embeddings inpL = ggml_scale(ctx0, inpL, scale_embd); cb(inpL, "inp_scaled", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -7886,7 +7883,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - cb(cur, "kqv_out", il); } // scale_res - scale the hidden states for residual connection @@ -7953,22 +7949,18 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); cb(inpL, "inp_scaled", -1); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { - // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, @@ -8005,7 +7997,6 @@ struct llm_build_context { cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); - cb(cur, "kqv_out", il); } struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); @@ -8060,16 +8051,13 @@ struct llm_build_context { struct ggml_tensor * cur; struct ggml_tensor * inpL; - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions - struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); - cb(inp_pos, "inp_pos", -1); + struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); - cb(KQ_mask, "KQ_mask", -1); + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -8178,11 +8166,10 @@ struct llm_build_context { struct ggml_tensor * inpL; // {n_embd, n_tokens} - inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); - cb(inpL, "inp_embd", -1); + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - struct ggml_tensor * state_mask = ggml_view_2d(ctx0, lctx.inp_s_mask, 1, n_kv, lctx.inp_s_mask->nb[0], 0); - struct ggml_tensor * state_seq = ggml_view_2d(ctx0, lctx.inp_s_seq, n_kv, n_tokens, n_kv*ggml_element_size(lctx.inp_s_seq), 0); + struct ggml_tensor * state_mask = build_inp_s_mask(); + struct ggml_tensor * state_seq = build_inp_s_seq(); for (int il = 0; il < n_layer; ++il) { // (ab)using the KV cache to store the states @@ -8234,7 +8221,7 @@ struct llm_build_context { ggml_build_forward_expand(gf, ggml_cpy(ctx0, ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)), - ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_self.head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv)))); + ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv)))); // extract x from x_conv x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0); @@ -8268,7 +8255,7 @@ struct llm_build_context { ggml_build_forward_expand(gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)), - ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_self.head*d_state*d_inner*ggml_element_size(ssm_states)))); + ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states)))); struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0); @@ -8372,7 +8359,18 @@ static struct ggml_cgraph * llama_build_graph( if (!lctx.cparams.offload_kqv) { if (strcmp(name, "kqv_merged_cont") == 0) { // all nodes between the KV store and the attention output are run on the CPU - ggml_backend_sched_set_node_backend(lctx.sched, cur, lctx.backend_cpu); + ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu); + } + } + + // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends + // to fix this, we assign the norm layer manually to the backend of its layer + if (il != -1 && strcmp(name, "norm") == 0) { + for (auto * backend : lctx.backends) { + if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) { + ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend); + break; + } } } }; @@ -8528,7 +8526,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); } - if (batch.pos) { + if (batch.pos && lctx.inp_pos) { const int64_t n_tokens = batch.n_tokens; ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); @@ -8539,61 +8537,63 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { "non-causal attention with generative models is not supported" ); - // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. - if (cparams.causal_attn) { - const int64_t n_kv = kv_self.n; - const int64_t n_tokens = batch.n_tokens; + if (lctx.inp_KQ_mask) { + // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. + if (cparams.causal_attn) { + const int64_t n_kv = kv_self.n; + const int64_t n_tokens = batch.n_tokens; - assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); - float * data = (float *) lctx.inp_KQ_mask->data; + float * data = (float *) lctx.inp_KQ_mask->data; - // For causal attention, use only the previous KV cells - // of the correct sequence for each token of the batch. - // It's assumed that if a token in the batch has multiple sequences, they are equivalent. - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - const llama_pos pos = batch.pos[j]; - const llama_seq_id seq_id = batch.seq_id[j][0]; + // For causal attention, use only the previous KV cells + // of the correct sequence for each token of the batch. + // It's assumed that if a token in the batch has multiple sequences, they are equivalent. + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j][0]; - for (int i = 0; i < n_kv; ++i) { - float f; - if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { - f = -INFINITY; - } else { - f = 0.0f; + for (int i = 0; i < n_kv; ++i) { + float f; + if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { + f = -INFINITY; + } else { + f = 0.0f; + } + data[h*(n_kv*n_tokens) + j*n_kv + i] = f; } - data[h*(n_kv*n_tokens) + j*n_kv + i] = f; } } - } - } else { - // when using kv cache, the mask needs to match the kv cache size - const int64_t n_tokens = batch.n_tokens; - const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens; + } else { + // when using kv cache, the mask needs to match the kv cache size + const int64_t n_tokens = batch.n_tokens; + const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens; - assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); - float * data = (float *) lctx.inp_KQ_mask->data; + float * data = (float *) lctx.inp_KQ_mask->data; - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - const llama_seq_id seq_id = batch.seq_id[j][0]; + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_seq_id seq_id = batch.seq_id[j][0]; - for (int i = 0; i < n_tokens; ++i) { - float f = -INFINITY; - for (int s = 0; s < batch.n_seq_id[i]; ++s) { - if (batch.seq_id[i][s] == seq_id) { - f = 0.0f; - break; + for (int i = 0; i < n_tokens; ++i) { + float f = -INFINITY; + for (int s = 0; s < batch.n_seq_id[i]; ++s) { + if (batch.seq_id[i][s] == seq_id) { + f = 0.0f; + break; + } } - } - data[h*(n_tokens*n_tokens) + j*n_stride + i] = f; - } + data[h*(n_tokens*n_tokens) + j*n_stride + i] = f; + } - for (int i = n_tokens; i < n_stride; ++i) { - data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY; + for (int i = n_tokens; i < n_stride; ++i) { + data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY; + } } } } @@ -8602,7 +8602,8 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { if (hparams.need_kq_pos) { const int64_t n_kv = kv_self.n; - assert(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer)); + GGML_ASSERT(lctx.inp_KQ_pos); + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer)); float * data = (float *) lctx.inp_KQ_pos->data; @@ -8614,6 +8615,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { const int64_t n_tokens = batch.n_tokens; + GGML_ASSERT(lctx.inp_mean); GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer)); float * data = (float *) lctx.inp_mean->data; @@ -8645,6 +8647,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) { const int64_t n_tokens = batch.n_tokens; + GGML_ASSERT(lctx.inp_cls); GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); uint32_t * data = (uint32_t *) lctx.inp_cls->data; @@ -8665,7 +8668,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { if (kv_self.recurrent) { const int64_t n_kv = kv_self.n; - { + if (lctx.inp_s_mask) { GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer)); float * data = (float *) lctx.inp_s_mask->data; @@ -8687,7 +8690,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { // update the correct state(s)/sequence(s) for each token of the batch. // Like with the KQ_mask, if a token in the batch has multiple sequences, // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv). - { + if (lctx.inp_s_seq) { const int64_t n_tokens = batch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer)); @@ -8730,7 +8733,7 @@ static void llama_graph_compute( ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data); } - ggml_backend_sched_graph_compute(lctx.sched, gf); + ggml_backend_sched_graph_compute_async(lctx.sched, gf); // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); @@ -8750,10 +8753,11 @@ static void llama_graph_compute( // static int llama_decode_internal( llama_context & lctx, - llama_batch batch) { - const uint32_t n_tokens = batch.n_tokens; + llama_batch batch_all) { // TODO: rename back to batch + + const uint32_t n_tokens_all = batch_all.n_tokens; - if (n_tokens == 0) { + if (n_tokens_all == 0) { LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__); return -1; } @@ -8762,14 +8766,16 @@ static int llama_decode_internal( const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; - const auto n_batch = cparams.n_batch; + GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT - GGML_ASSERT(n_tokens <= n_batch); - GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT + GGML_ASSERT(n_tokens_all <= cparams.n_batch); - int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; + GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); - const int64_t t_start_us = ggml_time_us(); + if (lctx.t_compute_start_us == 0) { + lctx.t_compute_start_us = ggml_time_us(); + } + lctx.n_queued_tokens += n_tokens_all; #ifdef GGML_USE_MPI // TODO: needs fix after #3228 @@ -8777,272 +8783,274 @@ static int llama_decode_internal( //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); #endif - GGML_ASSERT(n_threads > 0); - auto & kv_self = lctx.kv_self; const int64_t n_embd = hparams.n_embd; const int64_t n_vocab = hparams.n_vocab; - // helpers for smoother batch API transition - // after deprecating the llama_eval calls, these will be removed - std::vector<llama_pos> pos; - std::vector<int32_t> n_seq_id; - std::vector<llama_seq_id *> seq_id_arr; - std::vector<std::vector<llama_seq_id>> seq_id; + auto * logits_out = lctx.logits; - if (batch.pos == nullptr) { - pos.resize(n_tokens); - for (uint32_t i = 0; i < n_tokens; i++) { - pos[i] = batch.all_pos_0 + i*batch.all_pos_1; - } +#ifndef NDEBUG + auto & logits_valid = lctx.logits_valid; + logits_valid.clear(); + logits_valid.resize(n_tokens_all); - batch.pos = pos.data(); - } + memset(logits_out, 0, lctx.logits_size*sizeof(float)); +#endif - if (batch.seq_id == nullptr) { - n_seq_id.resize(n_tokens); - seq_id.resize(n_tokens); - seq_id_arr.resize(n_tokens); - for (uint32_t i = 0; i < n_tokens; i++) { - n_seq_id[i] = 1; - seq_id[i].resize(1); - seq_id[i][0] = batch.all_seq_id; - seq_id_arr[i] = seq_id[i].data(); - } + const auto n_ubatch = cparams.n_ubatch; - batch.n_seq_id = n_seq_id.data(); - batch.seq_id = seq_id_arr.data(); - } + std::vector<llama_pos> pos; + std::vector<int32_t> n_seq_id; + std::vector<llama_seq_id *> seq_id_arr; + std::vector<std::vector<llama_seq_id>> seq_id; - // non-causal masks do not use the KV cache - if (hparams.causal_attn) { - llama_kv_cache_update(&lctx); + for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) { + const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token); + llama_batch u_batch = { + /* .n_tokens = */ (int32_t) n_tokens, + /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr, + /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr, + /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr, + /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr, + /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr, + /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr, + /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1, + /* .all_pos_1 = */ batch_all.all_pos_1, + /* .all_seq_id = */ batch_all.all_seq_id, + }; - // if we have enough unused cells before the current head -> - // better to start searching from the beginning of the cache, hoping to fill it - if (kv_self.head > kv_self.used + 2*n_tokens) { - kv_self.head = 0; - } + int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; + GGML_ASSERT(n_threads > 0); - if (!llama_kv_cache_find_slot(kv_self, batch)) { - return 1; - } + // helpers for smoother batch API transition + // after deprecating the llama_eval calls, these will be removed + if (u_batch.pos == nullptr) { + pos.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1; + } - if (!kv_self.recurrent) { - // a heuristic, to avoid attending the full cache if it is not yet utilized - // after enough generations, the benefit from this heuristic disappears - // if we start defragmenting the cache, the benefit from this will be more important - kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32))); - //kv_self.n = llama_kv_cache_cell_max(kv_self); + u_batch.pos = pos.data(); } - } - - //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); - ggml_backend_sched_reset(lctx.sched); - ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); + if (u_batch.seq_id == nullptr) { + n_seq_id.resize(n_tokens); + seq_id.resize(n_tokens); + seq_id_arr.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + n_seq_id[i] = 1; + seq_id[i].resize(1); + seq_id[i][0] = u_batch.all_seq_id; + seq_id_arr[i] = seq_id[i].data(); + } - ggml_cgraph * gf = llama_build_graph(lctx, batch, false); + u_batch.n_seq_id = n_seq_id.data(); + u_batch.seq_id = seq_id_arr.data(); + } - // the output is always the last tensor in the graph - struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; - struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2]; + // non-causal masks do not use the KV cache + if (hparams.causal_attn) { + llama_kv_cache_update(&lctx); - if (!hparams.causal_attn) { - res = nullptr; // do not extract logits for embedding models such as BERT + // if we have enough unused cells before the current head -> + // better to start searching from the beginning of the cache, hoping to fill it + if (kv_self.head > kv_self.used + 2*n_tokens) { + kv_self.head = 0; + } - // token or sequence embeddings - embd = gf->nodes[gf->n_nodes - 1]; + if (!llama_kv_cache_find_slot(kv_self, u_batch)) { + return 1; + } - GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0); - } else { - if (strcmp(res->name, "result_output") == 0) { - // the token embeddings could be the second to last tensor, or the third to last tensor - if (strcmp(embd->name, "result_norm") != 0) { - embd = gf->nodes[gf->n_nodes - 3]; - GGML_ASSERT(strcmp(embd->name, "result_norm") == 0); + if (!kv_self.recurrent) { + // a heuristic, to avoid attending the full cache if it is not yet utilized + // after enough generations, the benefit from this heuristic disappears + // if we start defragmenting the cache, the benefit from this will be more important + kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32))); + //kv_self.n = llama_kv_cache_cell_max(kv_self); } - } else { - GGML_ASSERT(false && "missing result_output tensor"); } - } - // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); + //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); - // for big prompts, if BLAS is enabled, it is better to use only one thread - // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance - // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well - // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering - // with the BLAS calls. need a better solution - // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is - // being processed then Accelerate/BLAS will not be involved, so capping would limit performance. - if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) { - n_threads = std::min(4, n_threads); - } + ggml_backend_sched_reset(lctx.sched); + ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); - llama_set_inputs(lctx, batch); + ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false); - llama_graph_compute(lctx, gf, n_threads); + // the output is always the last tensor in the graph + struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; + struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2]; - // update the kv ring buffer - { - kv_self.head += n_tokens; - - // Ensure kv cache head points to a valid index. - if (kv_self.head >= kv_self.size) { - kv_self.head = 0; - } - } + if (!hparams.causal_attn) { + res = nullptr; // do not extract logits for embedding models such as BERT - // decide if we need to defrag the kv cache - if (cparams.defrag_thold >= 0.0f) { - const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used + n_tokens)/float(kv_self.n) : 0.0f; + // token or sequence embeddings + embd = gf->nodes[gf->n_nodes - 1]; - // queue defragmentation for next llama_kv_cache_update - if (fragmentation > cparams.defrag_thold) { - //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation); + GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0); + } else { + if (strcmp(res->name, "result_output") == 0) { + // the token embeddings could be the second to last tensor, or the third to last tensor + if (strcmp(embd->name, "result_norm") != 0) { + embd = gf->nodes[gf->n_nodes - 3]; + GGML_ASSERT(strcmp(embd->name, "result_norm") == 0); + } + } else { + GGML_ASSERT(false && "missing result_output tensor"); + } + } + // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); - llama_kv_cache_defrag(kv_self); + // for big prompts, if BLAS is enabled, it is better to use only one thread + // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance + // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well + // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering + // with the BLAS calls. need a better solution + // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is + // being processed then Accelerate/BLAS will not be involved, so capping would limit performance. + if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) { + n_threads = std::min(4, n_threads); } - } -#ifdef GGML_PERF - // print timing information per ggml operation (for debugging purposes) - // requires GGML_PERF to be defined - ggml_graph_print(gf); -#endif + ggml_backend_sched_alloc_graph(lctx.sched, gf); - // plot the computation graph in dot format (for debugging purposes) - //if (n_past%100 == 0) { - // ggml_graph_dump_dot(gf, NULL, "llama.dot"); - //} + llama_set_inputs(lctx, u_batch); - // extract logits - // TODO: do not compute and extract logits if only embeddings are needed - // need to update the graphs to skip "result_output" - if (res) { - auto & logits_out = lctx.logits; + llama_graph_compute(lctx, gf, n_threads); -#ifndef NDEBUG - auto & logits_valid = lctx.logits_valid; - logits_valid.clear(); - logits_valid.resize(n_tokens); + // update the kv ring buffer + { + kv_self.head += n_tokens; - logits_out.clear(); -#endif + // Ensure kv cache head points to a valid index. + if (kv_self.head >= kv_self.size) { + kv_self.head = 0; + } + } - ggml_backend_t backend_res = ggml_backend_sched_get_node_backend(lctx.sched, res); - GGML_ASSERT(backend_res != nullptr); +#ifdef GGML_PERF + // print timing information per ggml operation (for debugging purposes) + // requires GGML_PERF to be defined + ggml_graph_print(gf); +#endif - if (batch.logits) { - logits_out.resize(n_vocab * n_tokens); - int32_t i_first = -1; - for (uint32_t i = 0; i < n_tokens; i++) { - if (batch.logits[i] && i_first == -1) { - i_first = (int32_t) i; - } - if (batch.logits[i] == 0 || i == n_tokens - 1) { - if (i_first != -1) { - int i_last = batch.logits[i] == 0 ? i : i + 1; - // extract logits for the range [i_first, i_last) - // group the requests to minimize the number of calls to the backend - ggml_backend_tensor_get_async(backend_res, res, - logits_out.data() + (n_vocab*i_first), - (n_vocab*i_first)*sizeof(float), - (i_last - i_first)*n_vocab*sizeof(float)); - i_first = -1; + // plot the computation graph in dot format (for debugging purposes) + //if (n_past%100 == 0) { + // ggml_graph_dump_dot(gf, NULL, "llama.dot"); + //} + + // extract logits + // TODO: do not compute and extract logits if only embeddings are needed + // update the graphs to skip "result_output" if logits are not needed + if (res) { + ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res); + GGML_ASSERT(backend_res != nullptr); + if (u_batch.logits) { + int32_t i_first = -1; + for (uint32_t i = 0; i < n_tokens; i++) { + if (u_batch.logits[i] && i_first == -1) { + i_first = (int32_t) i; + } + if (u_batch.logits[i] == 0 || i == n_tokens - 1) { + if (i_first != -1) { + int i_last = u_batch.logits[i] == 0 ? i : i + 1; + // extract logits for the range [i_first, i_last) + // group the requests to minimize the number of calls to the backend + ggml_backend_tensor_get_async(backend_res, res, + logits_out + n_vocab*(cur_token + i_first), + i_first*n_vocab*sizeof(float), + (i_last - i_first)*n_vocab*sizeof(float)); + i_first = -1; + } } - } #ifndef NDEBUG - logits_valid[i] = batch.logits[i] != 0; + logits_valid[cur_token + i] = u_batch.logits[i] != 0;; #endif - } - } else if (lctx.logits_all) { - logits_out.resize(n_vocab*n_tokens); - ggml_backend_tensor_get_async(backend_res, res, logits_out.data(), 0, n_vocab*n_tokens*sizeof(float)); + } + } else if (lctx.logits_all) { + ggml_backend_tensor_get_async(backend_res, res, logits_out + n_vocab*cur_token, 0, n_vocab*n_tokens*sizeof(float)); #ifndef NDEBUG - std::fill(logits_valid.begin(), logits_valid.end(), true); + std::fill(logits_valid.begin() + cur_token, logits_valid.begin() + cur_token + n_tokens, true); #endif - } else { - logits_out.resize(n_vocab); - ggml_backend_tensor_get_async(backend_res, res, logits_out.data(), (n_vocab*(n_tokens - 1))*sizeof(float), n_vocab*sizeof(float)); + } else { + if (cur_token + n_tokens >= n_tokens_all) { + ggml_backend_tensor_get_async(backend_res, res, logits_out, n_vocab*(n_tokens - 1)*sizeof(float), n_vocab*sizeof(float)); #ifndef NDEBUG - logits_valid[0] = true; + logits_valid[0] = true; #endif + } + } } - ggml_backend_synchronize(backend_res); - } - // extract embeddings - if (cparams.embeddings && embd) { - ggml_backend_t backend_embd = ggml_backend_sched_get_node_backend(lctx.sched, embd); - GGML_ASSERT(backend_embd != nullptr); - - switch (cparams.pooling_type) { - case LLAMA_POOLING_TYPE_NONE: - { - // extract token embeddings - auto & embd_out = lctx.embd; + // extract embeddings + if (cparams.embeddings && embd) { + ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd); + GGML_ASSERT(backend_embd != nullptr); - if (batch.logits) { - embd_out.resize(n_embd * n_tokens); - for (uint32_t i = 0; i < n_tokens; i++) { - if (batch.logits[i] == 0) { - continue; + switch (cparams.pooling_type) { + case LLAMA_POOLING_TYPE_NONE: + { + // extract token embeddings + auto & embd_out = lctx.embd; + + if (u_batch.logits) { + //embd_out.resize(n_embd * n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + if (u_batch.logits[i] == 0) { + continue; + } + ggml_backend_tensor_get_async(backend_embd, embd, embd_out + n_embd*(i + cur_token), (n_embd*i)*sizeof(float), n_embd*sizeof(float)); } - - ggml_backend_tensor_get_async(backend_embd, embd, embd_out.data() + (n_embd*i), (n_embd*i)*sizeof(float), n_embd*sizeof(float)); } - } - } break; - case LLAMA_POOLING_TYPE_CLS: - case LLAMA_POOLING_TYPE_MEAN: - { - GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0); + } break; + case LLAMA_POOLING_TYPE_CLS: + case LLAMA_POOLING_TYPE_MEAN: + { + GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0); - // extract sequence embeddings - auto & embd_seq_out = lctx.embd_seq; - embd_seq_out.clear(); + // extract sequence embeddings + auto & embd_seq_out = lctx.embd_seq; + embd_seq_out.clear(); - for (uint32_t i = 0; i < n_tokens; i++) { - const llama_seq_id seq_id = batch.seq_id[i][0]; - if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { - continue; + for (uint32_t i = 0; i < n_tokens; i++) { + const llama_seq_id seq_id = u_batch.seq_id[i][0]; + if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { + continue; + } + embd_seq_out[seq_id].resize(n_embd); + ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); } - embd_seq_out[seq_id].resize(n_embd); - ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); - } - } break; - case LLAMA_POOLING_TYPE_UNSPECIFIED: - { - GGML_ASSERT(false && "unknown pooling type"); - } break; + } break; + case LLAMA_POOLING_TYPE_UNSPECIFIED: + { + GGML_ASSERT(false && "unknown pooling type"); + } break; + } } - ggml_backend_synchronize(backend_embd); } - // measure the performance only for the single-token evals - if (n_tokens == 1) { - lctx.t_eval_us += ggml_time_us() - t_start_us; - lctx.n_eval++; - } - else if (n_tokens > 1) { - lctx.t_p_eval_us += ggml_time_us() - t_start_us; - lctx.n_p_eval += n_tokens; - } + // wait for the computation to finish (automatically done when obtaining the model output) + //llama_synchronize(&lctx); - // get a more accurate load time, upon first eval - // TODO: fix this - if (!lctx.has_evaluated_once) { - lctx.t_load_us = ggml_time_us() - lctx.t_start_us; - lctx.has_evaluated_once = true; + // decide if we need to defrag the kv cache + if (cparams.defrag_thold >= 0.0f) { + const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used + n_tokens_all)/float(kv_self.n) : 0.0f; + + // queue defragmentation for next llama_kv_cache_update + if (fragmentation > cparams.defrag_thold) { + //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation); + + llama_kv_cache_defrag(kv_self); + } } return 0; } + // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { auto & kv_self = lctx.kv_self; @@ -9242,6 +9250,8 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { #else // ggml_graph defrag + ggml_backend_sched_reset(lctx.sched); + ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids); llama_graph_compute(lctx, gf, lctx.cparams.n_threads); @@ -9253,14 +9263,22 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { } static void llama_kv_cache_update_internal(struct llama_context & lctx) { + bool need_reserve = false; + // apply K-shift if needed if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) { - llama_set_k_shift(lctx); - { + ggml_backend_sched_reset(lctx.sched); + ggml_cgraph * gf = llama_build_graph_k_shift(lctx); + ggml_backend_sched_alloc_graph(lctx.sched, gf); + + llama_set_k_shift(lctx); + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); + + need_reserve = true; } { @@ -9275,12 +9293,18 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) { } if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) { - llama_set_s_copy(lctx); - { + ggml_backend_sched_reset(lctx.sched); + ggml_cgraph * gf = llama_build_graph_s_copy(lctx); + ggml_backend_sched_alloc_graph(lctx.sched, gf); + + llama_set_s_copy(lctx); + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); + + need_reserve = true; } { @@ -9298,8 +9322,26 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) { if (lctx.kv_self.do_defrag) { llama_kv_cache_defrag_internal(lctx); + need_reserve = true; + lctx.kv_self.do_defrag = false; } + + // reserve a worst case graph again + if (need_reserve) { + // TODO: extract to a function + // build worst-case graph + int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch); + int n_past = lctx.cparams.n_ctx - n_tokens; + llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph + ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); + + // initialize scheduler with the worst-case graph + ggml_backend_sched_reset(lctx.sched); + if (!ggml_backend_sched_reserve(lctx.sched, gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); + } + } } // @@ -12537,7 +12579,8 @@ struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.seed =*/ LLAMA_DEFAULT_SEED, /*.n_ctx =*/ 512, - /*.n_batch =*/ 512, + /*.n_batch =*/ 2048, + /*.n_ubatch =*/ 512, /*.n_seq_max =*/ 1, /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, @@ -12691,6 +12734,17 @@ struct llama_context * llama_new_context_with_model( struct llama_context_params params) { if (!model) { + LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__); + return nullptr; + } + + if (params.n_batch == 0 && params.n_ubatch == 0) { + LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__); + return nullptr; + } + + if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) { + LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__); return nullptr; } @@ -12699,7 +12753,6 @@ struct llama_context * llama_new_context_with_model( const auto & hparams = model->hparams; auto & cparams = ctx->cparams; - cparams.n_batch = params.n_batch; // TODO: maybe add n_seq_max here too cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch; @@ -12716,6 +12769,11 @@ struct llama_context * llama_new_context_with_model( cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; + // with causal attention, the batch size is limited by the context size + cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; + cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); + + cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx : hparams.n_ctx_train; @@ -12751,6 +12809,8 @@ struct llama_context * llama_new_context_with_model( } LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); + LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); + LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); @@ -12895,54 +12955,31 @@ struct llama_context * llama_new_context_with_model( ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); } - // resized during inference, reserve maximum - ctx->logits.reserve(hparams.n_vocab*cparams.n_batch); + // graph outputs buffer + { + // resized during inference, reserve maximum + ctx->logits_size = hparams.n_vocab*cparams.n_batch; + ctx->embd_size = params.embeddings ? hparams.n_embd*cparams.n_batch : 0; - if (params.embeddings) { - ctx->embd.reserve(hparams.n_embd*cparams.n_batch); - } + const size_t buf_output_size = (ctx->logits_size + ctx->embd_size)*sizeof(float); - // graph inputs - { - ggml_init_params init_params = { - /* .mem_size */ ggml_tensor_overhead()*(8 + 3*(ctx->kv_self.recurrent)), - /* .mem_buffer */ nullptr, - /* .no_alloc */ true, - }; - ctx->ctx_input = ggml_init(init_params); - - ctx->inp_tokens = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); - ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch); - ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); - ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, kv_size, cparams.n_batch); - ctx->inp_KQ_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, kv_size); - ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, kv_size); - ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch); - ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch); - if (ctx->kv_self.recurrent) { - ctx->inp_s_copy = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, kv_size); - ctx->inp_s_mask = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, kv_size); - ctx->inp_s_seq = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_I32, kv_size, cparams.n_batch); - } - - ggml_set_name(ctx->inp_tokens, "inp_tokens"); - ggml_set_name(ctx->inp_embd, "inp_embd"); - ggml_set_name(ctx->inp_pos, "inp_pos"); - ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask"); - ggml_set_name(ctx->inp_KQ_pos, "inp_KQ_pos"); - ggml_set_name(ctx->inp_K_shift, "inp_K_shift"); - ggml_set_name(ctx->inp_mean, "inp_mean"); - ggml_set_name(ctx->inp_cls, "inp_cls"); - if (ctx->kv_self.recurrent) { - ggml_set_name(ctx->inp_s_copy, "inp_s_copy"); - ggml_set_name(ctx->inp_s_mask, "inp_s_mask"); - ggml_set_name(ctx->inp_s_seq, "inp_s_seq"); - } - - ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true)); - LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__, - ggml_backend_buffer_name(ctx->buf_input), - ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0); + ctx->buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buf_output_size); + if (ctx->buf_output == nullptr) { + LLAMA_LOG_ERROR("%s: failed to allocate logits buffer\n", __func__); + llama_free(ctx); + return nullptr; + } + ggml_backend_buffer_clear(ctx->buf_output, 0); + + + ctx->logits = (float *) ggml_backend_buffer_get_base(ctx->buf_output); + if (params.embeddings) { + ctx->embd = ctx->logits + ctx->logits_size; + } + + LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, + ggml_backend_buffer_name(ctx->buf_output), + ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0); } // scheduler and compute buffers @@ -12961,10 +12998,21 @@ struct llama_context * llama_new_context_with_model( // buffer used to store the computation graph and the tensor meta data ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); - ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES); + // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary + bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER; +#ifndef GGML_USE_CUBLAS + // pipeline parallelism requires support for async compute and events + // currently this is only implemented in the CUDA backend + pipeline_parallel = false; +#endif + ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel); + + if (pipeline_parallel) { + LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched)); + } // build worst-case graph - int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch); + int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch); int n_past = cparams.n_ctx - n_tokens; llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); @@ -12987,7 +13035,7 @@ struct llama_context * llama_new_context_with_model( // note: the number of splits during measure is higher than during inference due to the kv shift int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); - LLAMA_LOG_INFO("%s: graph splits (measure): %d\n", __func__, n_splits); + LLAMA_LOG_INFO("%s: graph splits: %d\n", __func__, n_splits); } } @@ -13024,6 +13072,10 @@ uint32_t llama_n_batch(const struct llama_context * ctx) { return ctx->cparams.n_batch; } +uint32_t llama_n_ubatch(const struct llama_context * ctx) { + return ctx->cparams.n_ubatch; +} + uint32_t llama_n_seq_max(const struct llama_context * ctx) { return ctx->kv_self.size; } @@ -13347,9 +13399,9 @@ size_t llama_get_state_size(const struct llama_context * ctx) { const size_t s_rng = LLAMA_MAX_RNG_STATE; const size_t s_logits_size = sizeof(size_t); // assume worst case for logits although only currently set ones are serialized - const size_t s_logits = ctx->logits.capacity() * sizeof(float); + const size_t s_logits = ctx->logits_size * sizeof(float); const size_t s_embedding_size = sizeof(size_t); - const size_t s_embedding = ctx->embd.capacity() * sizeof(float); + const size_t s_embedding = ctx->embd_size * sizeof(float); const size_t s_kv_buf_size = sizeof(size_t); const size_t s_kv_head = sizeof(uint32_t); const size_t s_kv_size = sizeof(uint32_t); @@ -13447,23 +13499,23 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat // copy logits { - const size_t logits_size = ctx->logits.size(); + const size_t logits_size = ctx->logits_size; data_ctx->write(&logits_size, sizeof(logits_size)); if (logits_size) { - data_ctx->write(ctx->logits.data(), logits_size * sizeof(float)); + data_ctx->write(ctx->logits, logits_size * sizeof(float)); } } // copy embeddings { - const size_t embeddings_size = ctx->embd.size(); + const size_t embeddings_size = ctx->embd_size; data_ctx->write(&embeddings_size, sizeof(embeddings_size)); if (embeddings_size) { - data_ctx->write(ctx->embd.data(), embeddings_size * sizeof(float)); + data_ctx->write(ctx->embd, embeddings_size * sizeof(float)); } } @@ -13566,12 +13618,10 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); - GGML_ASSERT(ctx->logits.capacity() >= logits_size); + GGML_ASSERT(ctx->logits_size >= logits_size); if (logits_size) { - ctx->logits.resize(logits_size); - - memcpy(ctx->logits.data(), inp, logits_size * sizeof(float)); + memcpy(ctx->logits, inp, logits_size * sizeof(float)); inp += logits_size * sizeof(float); } } @@ -13582,12 +13632,10 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size); - GGML_ASSERT(ctx->embd.capacity() == embeddings_size); + GGML_ASSERT(ctx->embd_size == embeddings_size); if (embeddings_size) { - ctx->embd.resize(embeddings_size); - - memcpy(ctx->embd.data(), inp, embeddings_size * sizeof(float)); + memcpy(ctx->embd, inp, embeddings_size * sizeof(float)); inp += embeddings_size * sizeof(float); } } @@ -13842,24 +13890,61 @@ int32_t llama_decode( return ret; } +void llama_synchronize(struct llama_context * ctx) { + ggml_backend_sched_synchronize(ctx->sched); + + // FIXME: if multiple single tokens are evaluated without a synchronization, + // the stats will be added to the prompt evaluation stats + // this should only happen when using batch size 1 to evaluate a batch + + // add the evaluation to the stats + if (ctx->n_queued_tokens == 1) { + ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us; + ctx->n_eval++; + } else if (ctx->n_queued_tokens > 1) { + ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us; + ctx->n_p_eval += ctx->n_queued_tokens; + } + + // get a more accurate load time, upon first eval + if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) { + ctx->t_load_us = ggml_time_us() - ctx->t_start_us; + ctx->has_evaluated_once = true; + } + + ctx->n_queued_tokens = 0; + ctx->t_compute_start_us = 0; +} + float * llama_get_logits(struct llama_context * ctx) { - return ctx->logits.data(); + llama_synchronize(ctx); + + return ctx->logits; } float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { assert(ctx->logits_valid.at(i)); - return ctx->logits.data() + i*ctx->model.hparams.n_vocab; + + llama_synchronize(ctx); + + return ctx->logits + i*ctx->model.hparams.n_vocab; } float * llama_get_embeddings(struct llama_context * ctx) { - return ctx->embd.data(); + llama_synchronize(ctx); + + return ctx->embd; } float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { - return ctx->embd.data() + i*ctx->model.hparams.n_embd; + llama_synchronize(ctx); + + return ctx->embd + i*ctx->model.hparams.n_embd; } float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) { + llama_synchronize(ctx); + auto it = ctx->embd_seq.find(seq_id); if (it == ctx->embd_seq.end()) { return nullptr; |