summaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-03-22 07:32:36 +0200
committerGitHub <noreply@github.com>2023-03-22 07:32:36 +0200
commitf5a77a629bd0f37ae1696747633ab42a5530ec15 (patch)
treeb3d147dd228ce67661ed497a6dc61b444a38e0f9 /llama.cpp
parentda0e9fe90ccf6e73597eb19dd0cfc0a28363fb3b (diff)
Introduce C-style API (#370)
* Major refactoring - introduce C-style API * Clean up * Add <cassert> * Add <iterator> * Add <algorithm> .... * Fix timing reporting and accumulation * Measure eval time only for single-token calls * Change llama_tokenize return meaning
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp1565
1 files changed, 1565 insertions, 0 deletions
diff --git a/llama.cpp b/llama.cpp
new file mode 100644
index 00000000..08dfcb31
--- /dev/null
+++ b/llama.cpp
@@ -0,0 +1,1565 @@
+#include "llama.h"
+
+#include "ggml.h"
+
+#include <cinttypes>
+#include <fstream>
+#include <random>
+#include <unordered_map>
+#include <queue>
+#include <regex>
+#include <cassert>
+
+// determine number of model parts based on the dimension
+static const std::unordered_map<int, int> LLAMA_N_PARTS = {
+ { 4096, 1 },
+ { 5120, 2 },
+ { 6656, 4 },
+ { 8192, 8 },
+};
+
+// default hparams (LLaMA 7B)
+struct llama_hparams {
+ int32_t n_vocab = 32000;
+ int32_t n_ctx = 512; // this is provided as user input?
+ int32_t n_embd = 4096;
+ int32_t n_mult = 256;
+ int32_t n_head = 32;
+ int32_t n_layer = 32;
+ int32_t n_rot = 64;
+ int32_t f16 = 1;
+};
+
+struct llama_layer {
+ // normalization
+ struct ggml_tensor * attention_norm;
+
+ // attention
+ struct ggml_tensor * wq;
+ struct ggml_tensor * wk;
+ struct ggml_tensor * wv;
+ struct ggml_tensor * wo;
+
+ // normalization
+ struct ggml_tensor * ffn_norm;
+
+ // ff
+ struct ggml_tensor * w1;
+ struct ggml_tensor * w2;
+ struct ggml_tensor * w3;
+};
+
+struct llama_model {
+ llama_hparams hparams;
+
+ struct ggml_tensor * tok_embeddings;
+
+ struct ggml_tensor * norm;
+ struct ggml_tensor * output;
+
+ std::vector<llama_layer> layers;
+
+ // key + value memory
+ struct ggml_tensor * memory_k;
+ struct ggml_tensor * memory_v;
+
+ //
+ struct ggml_context * ctx;
+ std::unordered_map<std::string, struct ggml_tensor *> tensors;
+};
+
+struct llama_vocab {
+ using id = int32_t;
+ using token = std::string;
+
+ struct token_score {
+ token tok;
+ float score;
+ };
+
+ std::unordered_map<token, id> token_to_id;
+ std::vector<token_score> id_to_token;
+};
+
+struct llama_context {
+ std::mt19937 rng;
+
+ int64_t t_load_us = 0;
+ int64_t t_start_us = 0;
+
+ int64_t t_sample_us = 0;
+ int64_t t_eval_us = 0;
+
+ int32_t n_sample = 0; // number of tokens sampled
+ int32_t n_eval = 0; // number of eval calls
+
+ llama_model model;
+ llama_vocab vocab;
+
+ size_t mem_per_token = 0;
+
+ // decode output (2-dimensional array: [n_tokens][n_vocab])
+ std::vector<float> logits;
+ bool logits_all = false;
+};
+
+struct llama_context_params llama_context_default_params() {
+ struct llama_context_params result = {
+ /*.n_ctx =*/ 512,
+ /*.n_parts =*/ -1,
+ /*.seed =*/ 0,
+ /*.f16_kv =*/ false,
+ /*.logits_all =*/ false,
+ /*.vocab_only =*/ false,
+ };
+
+ return result;
+}
+
+//
+// model loading
+//
+
+static bool llama_model_load(
+ const std::string & fname,
+ llama_context & lctx,
+ int n_ctx,
+ int n_parts,
+ ggml_type memory_type,
+ bool vocab_only) {
+ fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
+
+ const int64_t t_start_us = ggml_time_us();
+
+ lctx.t_start_us = t_start_us;
+
+ std::vector<char> f_buf(1024*1024);
+
+ auto & model = lctx.model;
+ auto & vocab = lctx.vocab;
+
+ auto fin = std::ifstream(fname, std::ios::binary);
+ fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
+ if (!fin) {
+ fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
+ return false;
+ }
+
+ // verify magic
+ {
+ uint32_t magic;
+ fin.read((char *) &magic, sizeof(magic));
+ if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
+ fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
+ __func__, fname.c_str());
+ return false;
+ }
+ if (magic != LLAMA_FILE_MAGIC) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
+ return false;
+ }
+
+ uint32_t format_version;
+ fin.read((char *) &format_version, sizeof(format_version));
+
+ if (format_version != LLAMA_FILE_VERSION) {
+ fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
+ __func__, fname.c_str(), format_version, LLAMA_FILE_VERSION);
+ return false;
+ }
+ }
+
+ int n_ff = 0;
+
+ // load hparams
+ {
+ auto & hparams = model.hparams;
+
+ fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ //fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
+ fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
+ fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
+ fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
+ fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+ fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
+ fin.read((char *) &hparams.f16, sizeof(hparams.f16));
+
+ hparams.n_ctx = n_ctx;
+
+ n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
+
+ if (n_parts < 1) {
+ n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
+ }
+
+ // temp warning to tell the user to use "--n_parts"
+ if (hparams.f16 == 4 && n_parts != 1) {
+ fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
+ fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
+ }
+
+ fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+ fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
+ fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd);
+ fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult);
+ fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head);
+ fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
+ fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot);
+ fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
+ fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff);
+ fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
+ }
+
+ // load vocab
+ {
+ std::string word;
+ vocab.id_to_token.resize(model.hparams.n_vocab);
+ std::vector<char> tmp(64);
+
+ for (int i = 0; i < model.hparams.n_vocab; i++) {
+ uint32_t len;
+ fin.read((char *) &len, sizeof(len));
+
+ word.resize(len);
+ if (len > 0) {
+ tmp.resize(len);
+ fin.read(tmp.data(), len);
+ word.assign(tmp.data(), len);
+ } else {
+ word.clear();
+ }
+
+ float score;
+ fin.read((char *) &score, sizeof(score));
+
+ vocab.token_to_id[word] = i;
+
+ auto &tok_score = vocab.id_to_token[i];
+ tok_score.tok = word;
+ tok_score.score = score;
+ }
+ }
+
+ if (vocab_only) {
+ return true;
+ }
+
+ // for the big tensors, we have the option to store the data in 16-bit floats or quantized
+ // in order to save memory and also to speed up the computation
+ // wtype is for per-layer weights, while vtype is for other weights
+ ggml_type wtype, vtype;
+ switch (model.hparams.f16) {
+ case 0: wtype = vtype = GGML_TYPE_F32; break;
+ case 1: wtype = vtype = GGML_TYPE_F16; break;
+ case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
+ case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
+ case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
+ default:
+ {
+ fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
+ __func__, fname.c_str(), model.hparams.f16);
+ return false;
+ }
+ }
+
+ auto & ctx = model.ctx;
+
+ size_t ctx_size = 0;
+
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+ const int n_vocab = hparams.n_vocab;
+
+ ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
+
+ ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
+
+ ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
+
+ ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
+
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
+ ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
+
+ ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
+
+ ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
+ ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
+ ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
+
+ ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
+ ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
+
+ ctx_size += (5 + 10*n_layer)*256; // object overhead
+
+ fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
+ }
+
+ // create the ggml context
+ {
+ struct ggml_init_params params = {
+ /*.mem_size =*/ ctx_size,
+ /*.mem_buffer =*/ NULL,
+ };
+
+ model.ctx = ggml_init(params);
+ if (!model.ctx) {
+ fprintf(stderr, "%s: ggml_init() failed\n", __func__);
+ return false;
+ }
+ }
+
+ // prepare memory for the weights
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_vocab = hparams.n_vocab;
+
+ model.layers.resize(n_layer);
+
+ model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
+
+ model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+ model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
+
+ // map by name
+ model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
+
+ model.tensors["norm.weight"] = model.norm;
+ model.tensors["output.weight"] = model.output;
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = model.layers[i];
+
+ layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+ layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+ layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+ layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
+
+ layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
+
+ layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
+ layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
+ layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
+
+ // map by name
+ model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
+
+ model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
+ model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
+ model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
+ model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
+
+ model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
+
+ model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
+ model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
+ model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
+ }
+ }
+
+ // key + value memory
+ {
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+
+ const int n_mem = n_layer*n_ctx;
+ const int n_elements = n_embd*n_mem;
+
+ model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
+ model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);
+
+ const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
+
+ fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
+ }
+
+ const size_t file_offset = fin.tellg();
+
+ fin.close();
+
+ std::vector<uint8_t> tmp;
+
+ for (int i = 0; i < n_parts; ++i) {
+ const int part_id = i;
+ //const int part_id = n_parts - i - 1;
+
+ std::string fname_part = fname;
+ if (i > 0) {
+ fname_part += "." + std::to_string(i);
+ }
+
+ fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
+
+ fin = std::ifstream(fname_part, std::ios::binary);
+ fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
+ fin.seekg(file_offset);
+
+ // load weights
+ {
+ int n_tensors = 0;
+ size_t total_size = 0;
+
+ fprintf(stderr, "%s: ", __func__);
+
+ while (true) {
+ int32_t n_dims;
+ int32_t length;
+ int32_t ftype;
+
+ fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ fin.read(reinterpret_cast<char *>(&length), sizeof(length));
+ fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+
+ if (fin.eof()) {
+ break;
+ }
+
+ int32_t nelements = 1;
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ nelements *= ne[i];
+ }
+
+ std::string name(length, 0);
+ fin.read(&name[0], length);
+
+ if (model.tensors.find(name.data()) == model.tensors.end()) {
+ fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
+ return false;
+ }
+
+ // split_type = 0: split by columns
+ // split_type = 1: split by rows
+ int split_type = 0;
+
+ // split_type = 0:
+ // regex:
+ // - tok_embeddings.*
+ // - layers.*.attention.wo.weight
+ // - layers.*.feed_forward.w2.weight
+
+ // split_type = 1:
+ // regex:
+ // - output.*
+ // - layers.*.attention.wq.weight
+ // - layers.*.attention.wk.weight
+ // - layers.*.attention.wv.weight
+ // - layers.*.feed_forward.w1.weight
+ // - layers.*.feed_forward.w3.weight
+ if (name.find("tok_embeddings") != std::string::npos) {
+ split_type = 0;
+ } else if (name.find("layers") != std::string::npos) {
+ if (name.find("attention.wo.weight") != std::string::npos) {
+ split_type = 0;
+ } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
+ split_type = 0;
+ } else {
+ split_type = 1;
+ }
+ } else if (name.find("output") != std::string::npos) {
+ split_type = 1;
+ }
+
+ auto tensor = model.tensors[name.data()];
+
+ if (n_dims == 1) {
+ if (ggml_nelements(tensor) != nelements) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+ return false;
+ }
+ } else {
+ if (ggml_nelements(tensor)/n_parts != nelements) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
+ return false;
+ }
+ }
+
+ if (n_dims == 1) {
+ if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
+ fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
+ __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
+ return false;
+ }
+ } else {
+ if (split_type == 0) {
+ if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
+ fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
+ __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
+ return false;
+ }
+ } else {
+ if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
+ fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
+ __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
+ return false;
+ }
+ }
+ }
+
+ if (0) {
+ static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
+ fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
+ }
+
+ size_t bpe = 0;
+
+ switch (ftype) {
+ case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
+ case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
+ case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
+ case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
+ default:
+ {
+ fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
+ return false;
+ }
+ };
+
+ if (n_dims == 1 || n_parts == 1) {
+ if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+ __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
+ return false;
+ }
+
+ if (part_id == 0) {
+ fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
+ } else {
+ fin.seekg(ggml_nbytes(tensor), std::ios::cur);
+ }
+
+ total_size += ggml_nbytes(tensor);
+ } else {
+ if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
+ fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
+ __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
+ return false;
+ }
+
+ if (split_type == 0) {
+ const int np0 = ne[0];
+
+ const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
+ assert(row_size == tensor->nb[1]);
+
+ for (int i1 = 0; i1 < ne[1]; ++i1) {
+ const size_t offset_row = i1*row_size;
+ const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
+ fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
+ }
+ } else {
+ const int np1 = ne[1];
+
+ const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
+
+ for (int i1 = 0; i1 < ne[1]; ++i1) {
+ const size_t offset_row = (i1 + part_id*np1)*row_size;
+ fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
+ }
+ }
+
+ total_size += ggml_nbytes(tensor)/n_parts;
+ }
+
+ //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
+ if (++n_tensors % 8 == 0) {
+ fprintf(stderr, ".");
+ fflush(stderr);
+ }
+ }
+
+ fprintf(stderr, " done\n");
+
+ fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
+ }
+
+ fin.close();
+ }
+
+ lctx.logits.reserve(lctx.model.hparams.n_ctx);
+
+ lctx.t_load_us = ggml_time_us() - t_start_us;
+
+ return true;
+}
+
+// evaluate the transformer
+//
+// - lctx: llama context
+// - tokens: new batch of tokens to process
+// - n_past: the context size so far
+// - n_threads: number of threads to use
+//
+static bool llama_eval_internal(
+ llama_context & lctx,
+ const llama_token * tokens,
+ const int n_tokens,
+ const int n_past,
+ const int n_threads) {
+ const int64_t t_start_us = ggml_time_us();
+
+ const int N = n_tokens;
+
+ const auto & model = lctx.model;
+ const auto & hparams = model.hparams;
+
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_ctx = hparams.n_ctx;
+ const int n_head = hparams.n_head;
+ const int n_vocab = hparams.n_vocab;
+ const int n_rot = hparams.n_embd/hparams.n_head;
+
+ auto & mem_per_token = lctx.mem_per_token;
+
+ // TODO: fix this hardcoded size
+ static size_t buf_size = 512u*1024*1024;
+ static void * buf = malloc(buf_size);
+
+ if (mem_per_token > 0 && mem_per_token*N > buf_size) {
+ const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
+ //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
+
+ // reallocate
+ buf_size = buf_size_new;
+ buf = realloc(buf, buf_size);
+ if (buf == nullptr) {
+ fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
+ return false;
+ }
+ }
+
+ struct ggml_init_params params = {
+ /*.mem_size =*/ buf_size,
+ /*.mem_buffer =*/ buf,
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+ ggml_cgraph gf = {};
+ gf.n_threads = n_threads;
+
+ struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ memcpy(embd->data, tokens, N*ggml_element_size(embd));
+
+ struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ struct ggml_tensor * cur;
+
+ // norm
+ {
+ cur = ggml_rms_norm(ctx0, inpL);
+
+ // cur = attention_norm*cur
+ cur = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
+ cur);
+ }
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+
+ // store key and value to memory
+ if (N >= 1) {
+ struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
+
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
+ ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
+ }
+
+ // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
+ struct ggml_tensor * Q =
+ ggml_permute(ctx0,
+ ggml_rope(ctx0,
+ ggml_cpy(ctx0,
+ Qcur,
+ ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
+ n_past, n_rot, 0),
+ 0, 2, 1, 3);
+
+ // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
+ struct ggml_tensor * K =
+ ggml_permute(ctx0,
+ ggml_rope(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
+ n_past, n_rot, 1),
+ 0, 2, 1, 3);
+
+ // K * Q
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+
+ // KQ_scaled = KQ / sqrt(n_embd/n_head)
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctx0,
+ KQ,
+ ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
+ );
+
+ // KQ_masked = mask_past(KQ_scaled)
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
+
+ // KQ = soft_max(KQ_masked)
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+
+ // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
+ struct ggml_tensor * V_trans =
+ ggml_permute(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
+ 1, 2, 0, 3);
+
+ // KQV = transpose(V) * KQ_soft_max
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
+
+ // KQV_merged = KQV.permute(0, 2, 1, 3)
+ struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+
+ // cur = KQV_merged.contiguous().view(n_embd, N)
+ cur = ggml_cpy(ctx0,
+ KQV_merged,
+ ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+
+ // projection (no bias)
+ cur = ggml_mul_mat(ctx0,
+ model.layers[il].wo,
+ cur);
+ }
+
+ struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
+
+ // feed-forward network
+ {
+ // norm
+ {
+ cur = ggml_rms_norm(ctx0, inpFF);
+
+ // cur = ffn_norm*cur
+ cur = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
+ cur);
+ }
+
+ struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
+ model.layers[il].w3,
+ cur);
+
+
+ cur = ggml_mul_mat(ctx0,
+ model.layers[il].w1,
+ cur);
+
+ // SILU activation
+ cur = ggml_silu(ctx0, cur);
+
+ cur = ggml_mul(ctx0, cur, tmp);
+
+ cur = ggml_mul_mat(ctx0,
+ model.layers[il].w2,
+ cur);
+ }
+
+ cur = ggml_add(ctx0, cur, inpFF);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ // norm
+ {
+ inpL = ggml_rms_norm(ctx0, inpL);
+
+ // inpL = norm*inpL
+ inpL = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model.norm, inpL),
+ inpL);
+ }
+
+ // lm_head
+ {
+ inpL = ggml_mul_mat(ctx0, model.output, inpL);
+ }
+
+ // logits -> probs
+ //inpL = ggml_soft_max(ctx0, inpL);
+
+ // run the computation
+ ggml_build_forward_expand(&gf, inpL);
+ ggml_graph_compute (ctx0, &gf);
+
+ //if (n_past%100 == 0) {
+ // ggml_graph_print (&gf);
+ // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
+ //}
+
+ //embd_w.resize(n_vocab*N);
+ //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
+
+ auto & logits_out = lctx.logits;
+
+ if (lctx.logits_all) {
+ logits_out.resize(n_vocab * N);
+ memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
+ } else {
+ // return result for just the last token
+ logits_out.resize(n_vocab);
+ memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
+ }
+
+ if (mem_per_token == 0) {
+ mem_per_token = ggml_used_mem(ctx0)/N;
+ }
+ //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));
+
+ ggml_free(ctx0);
+
+ // measure the performance only for the single-token evals
+ if (N == 1) {
+ lctx.t_eval_us += ggml_time_us() - t_start_us;
+ lctx.n_eval++;
+ }
+
+ return true;
+}
+
+//
+// tokenizer
+//
+
+static size_t utf8_len(char src) {
+ const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
+ uint8_t highbits = static_cast<uint8_t>(src) >> 4;
+ return lookup[highbits];
+}
+
+struct llama_sp_symbol {
+ using index = int;
+ index prev;
+ index next;
+ const char * text;
+ size_t n;
+};
+
+struct llama_sp_bigram {
+ struct comparator {
+ bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
+ return (l.score < r.score) || (l.score == r.score && l.left > r.left);
+ }
+ };
+ using queue_storage = std::vector<llama_sp_bigram>;
+ using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
+ llama_sp_symbol::index left;
+ llama_sp_symbol::index right;
+ float score;
+ size_t size;
+};
+
+// original implementation:
+// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
+struct llama_tokenizer {
+ llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
+
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
+ // split string into utf8 chars
+ int index = 0;
+ size_t offs = 0;
+ while (offs < text.size()) {
+ llama_sp_symbol sym;
+ size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
+ sym.text = text.c_str() + offs;
+ sym.n = char_len;
+ offs += char_len;
+ sym.prev = index - 1;
+ sym.next = offs == text.size() ? -1 : index + 1;
+ index++;
+ symbols_.emplace_back(std::move(sym));
+ }
+
+ // seed the work queue with all possible 2-character tokens.
+ for (size_t i = 1; i < symbols_.size(); ++i) {
+ try_add_bigram(i - 1, i);
+ }
+
+ // keep substituting the highest frequency pairs for as long as we can.
+ while (!work_queue_.empty()) {
+ auto bigram = work_queue_.top();
+ work_queue_.pop();
+
+ auto & left_sym = symbols_[bigram.left];
+ auto & right_sym = symbols_[bigram.right];
+
+ // if one of the symbols already got merged, skip it.
+ if (left_sym.n == 0 || right_sym.n == 0 ||
+ left_sym.n + right_sym.n != bigram.size) {
+ continue;
+ }
+
+ // merge the right sym into the left one
+ left_sym.n += right_sym.n;
+ right_sym.n = 0;
+
+ //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
+
+ // remove the right sym from the chain
+ left_sym.next = right_sym.next;
+ if (right_sym.next >= 0) {
+ symbols_[right_sym.next].prev = bigram.left;
+ }
+
+ // find more substitutions
+ try_add_bigram(left_sym.prev, bigram.left);
+ try_add_bigram(bigram.left, left_sym.next);
+ }
+
+ for (int i = 0; i != -1; i = symbols_[i].next) {
+ auto & symbol = symbols_[i];
+ auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
+
+ if (token == vocab_.token_to_id.end()) {
+ // output any symbols that did not form tokens as bytes.
+ for (int j = 0; j < (int) symbol.n; ++j) {
+ llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
+ output.push_back(token_id);
+ }
+ } else {
+ output.push_back((*token).second);
+ }
+ }
+ }
+
+private:
+ void try_add_bigram(int left, int right) {
+ if (left == -1 || right == -1) {
+ return;
+ }
+
+ const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
+ auto token = vocab_.token_to_id.find(text);
+
+ if (token == vocab_.token_to_id.end()) {
+ return;
+ }
+
+ if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
+ return;
+ }
+
+ const auto &tok_score = vocab_.id_to_token[(*token).second];
+
+ llama_sp_bigram bigram;
+ bigram.left = left;
+ bigram.right = right;
+ bigram.score = tok_score.score;
+ bigram.size = text.size();
+ work_queue_.push(bigram);
+ }
+
+ const llama_vocab & vocab_;
+ std::vector<llama_sp_symbol> symbols_;
+ llama_sp_bigram::queue work_queue_;
+};
+
+static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
+ llama_tokenizer tokenizer(vocab);
+ std::vector<llama_vocab::id> output;
+
+ if (text.size() == 0) {
+ return output;
+ }
+
+ if (bos) {
+ output.push_back(1);
+ }
+
+ tokenizer.tokenize(text, output);
+ return output;
+}
+
+//
+// sampling
+//
+
+static void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k) {
+ // find the top k tokens
+ std::partial_sort(
+ logits_id.begin(),
+ logits_id.begin() + top_k, logits_id.end(),
+ [](const std::pair<double, llama_vocab::id> & a, const std::pair<double, llama_vocab::id> & b) {
+ return a.first > b.first;
+ });
+
+ logits_id.resize(top_k);
+}
+
+static llama_vocab::id llama_sample_top_p_top_k(
+ llama_context & lctx,
+ const std::vector<llama_vocab::id> & last_n_tokens,
+ int top_k,
+ double top_p,
+ double temp,
+ double repeat_penalty) {
+ auto & rng = lctx.rng;
+
+ const auto & vocab = lctx.vocab;
+ const auto & logits = lctx.logits;
+
+ int n_logits = vocab.id_to_token.size();
+
+ std::vector<std::pair<double, llama_vocab::id>> logits_id;
+ logits_id.reserve(n_logits);
+
+ {
+ const double scale = 1.0/temp;
+ for (int i = 0; i < n_logits; ++i) {
+ // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
+ // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
+ if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
+ // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
+ if (logits[i] < 0.0) {
+ logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i));
+ } else {
+ logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i));
+ }
+ } else {
+ logits_id.push_back(std::make_pair(logits[i]*scale, i));
+ }
+ }
+ }
+
+ sample_top_k(logits_id, top_k);
+
+ double maxl = -std::numeric_limits<double>::infinity();
+ for (const auto & kv : logits_id) {
+ maxl = std::max(maxl, kv.first);
+ }
+
+ // compute probs for the top k tokens
+ std::vector<double> probs;
+ probs.reserve(logits_id.size());
+
+ double sum = 0.0;
+ for (const auto & kv : logits_id) {
+ double p = exp(kv.first - maxl);
+ probs.push_back(p);
+ sum += p;
+ }
+
+ // normalize the probs
+ for (auto & p : probs) {
+ p /= sum;
+ }
+
+ if (top_p < 1.0f) {
+ double cumsum = 0.0f;
+ for (int i = 0; i < (int) probs.size(); i++) {
+ cumsum += probs[i];
+ if (cumsum >= top_p) {
+ probs.resize(i + 1);
+ logits_id.resize(i + 1);
+ break;
+ }
+ }
+
+ cumsum = 1.0/cumsum;
+ for (int i = 0; i < (int) probs.size(); i++) {
+ probs[i] *= cumsum;
+ }
+ }
+
+ //printf("\n");
+ //for (int i = 0; i < (int) 10; i++) {
+ // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
+ //}
+ //printf("\n\n");
+ //exit(0);
+
+ std::discrete_distribution<> dist(probs.begin(), probs.end());
+ int idx = dist(rng);
+
+ return logits_id[idx].second;
+}
+
+//
+// quantization
+//
+
+// TODO: reuse code from the llama_model_load() somehow
+bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype, int qk) {
+ ggml_type type = GGML_TYPE_Q4_1;
+
+ switch (itype) {
+ case 2: type = GGML_TYPE_Q4_0; break;
+ case 3: type = GGML_TYPE_Q4_1; break;
+ default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
+ };
+
+ if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
+ fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
+ return false;
+ }
+
+ llama_vocab vocab;
+
+ printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
+
+ auto finp = std::ifstream(fname_inp, std::ios::binary);
+ if (!finp) {
+ fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
+ return false;
+ }
+
+ auto fout = std::ofstream(fname_out, std::ios::binary);
+ if (!fout) {
+ fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
+ return false;
+ }
+
+ // verify magic
+ {
+ uint32_t magic;
+ finp.read((char *) &magic, sizeof(magic));
+ if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
+ fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
+ __func__, fname_inp.c_str());
+ return false;
+ }
+ if (magic != LLAMA_FILE_MAGIC) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
+ return false;
+ }
+
+ fout.write((char *) &magic, sizeof(magic));
+
+ uint32_t format_version;
+ finp.read((char *) &format_version, sizeof(format_version));
+
+ if (format_version != LLAMA_FILE_VERSION) {
+ fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
+ __func__, fname_inp.c_str(), format_version, LLAMA_FILE_VERSION);
+ return false;
+ }
+
+ fout.write((char *) &format_version, sizeof(format_version));
+ }
+
+ llama_hparams hparams;
+
+ // load hparams
+ {
+ finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ //finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
+ finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
+ finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
+ finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
+ finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+ finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
+ finp.read((char *) &hparams.f16, sizeof(hparams.f16));
+
+ printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
+ printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
+ printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
+ printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
+ printf("%s: n_head = %d\n", __func__, hparams.n_head);
+ printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
+ printf("%s: f16 = %d\n", __func__, hparams.f16);
+
+ fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
+ //fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
+ fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
+ fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
+ fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
+ fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
+ fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
+ fout.write((char *) &itype, sizeof(hparams.f16));
+ }
+
+ // load vocab
+ {
+ const int32_t n_vocab = hparams.n_vocab;
+
+ if (n_vocab != hparams.n_vocab) {
+ fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
+ __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
+ return false;
+ }
+
+ std::string word;
+ vocab.id_to_token.resize(n_vocab);
+ for (int i = 0; i < n_vocab; i++) {
+ uint32_t len;
+ finp.read ((char *) &len, sizeof(len));
+ fout.write((char *) &len, sizeof(len));
+
+ word.resize(len);
+ finp.read ((char *) word.data(), len);
+ fout.write((char *) word.data(), len);
+
+ float score;
+ finp.read ((char *) &score, sizeof(score));
+ fout.write((char *) &score, sizeof(score));
+
+ vocab.token_to_id[word] = i;
+
+ auto &tok_score = vocab.id_to_token[i];
+ tok_score.tok = word;
+ tok_score.score = score;
+ }
+ }
+
+ // load weights
+ {
+ size_t total_size_org = 0;
+ size_t total_size_new = 0;
+
+ std::vector<float> work;
+
+ std::vector<uint8_t> data_u8;
+ std::vector<ggml_fp16_t> data_f16;
+ std::vector<float> data_f32;
+
+ std::vector<int64_t> hist_all(1 << 4, 0);
+
+ while (true) {
+ int32_t n_dims;
+ int32_t length;
+ int32_t ftype;
+
+ finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ finp.read(reinterpret_cast<char *>(&length), sizeof(length));
+ finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+
+ if (finp.eof()) {
+ break;
+ }
+
+ int32_t nelements = 1;
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ nelements *= ne[i];
+ }
+
+ std::string name(length, 0);
+ finp.read (&name[0], length);
+
+ {
+ static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
+ printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
+ }
+
+ // regexes of tensor names to be quantized
+ const std::vector<std::string> k_names = {
+ ".*weight",
+ };
+
+ bool quantize = false;
+ for (const auto & s : k_names) {
+ if (std::regex_match(name, std::regex(s))) {
+ quantize = true;
+ break;
+ }
+ }
+
+ // quantize only 2D tensors
+ quantize &= (n_dims == 2);
+
+ if (quantize) {
+ if (ftype != 0 && ftype != 1) {
+ fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
+ return false;
+ }
+
+ if (ftype == 1) {
+ data_f16.resize(nelements);
+ finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
+ data_f32.resize(nelements);
+ for (int i = 0; i < nelements; ++i) {
+ data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
+ }
+ } else {
+ data_f32.resize(nelements);
+ finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
+ }
+
+ ftype = itype;
+ } else {
+ const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
+
+ data_u8.resize(nelements*bpe);
+ finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
+ }
+
+ fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
+ fout.write(reinterpret_cast<char *>(&length), sizeof(length));
+ fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
+ for (int i = 0; i < n_dims; ++i) {
+ fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
+ }
+ fout.write(&name[0], length);
+
+ if (quantize) {
+ printf("quantizing .. ");
+ work.resize(nelements); // for quantization
+
+ size_t cur_size = 0;
+ std::vector<int64_t> hist_cur(1 << 4, 0);
+
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ {
+ cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
+ } break;
+ case GGML_TYPE_Q4_1:
+ {
+ cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], qk, hist_cur.data());
+ } break;
+ default:
+ {
+ fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
+ return false;
+ }
+ }
+
+ fout.write(reinterpret_cast<char *>(work.data()), cur_size);
+ total_size_new += cur_size;
+
+ printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
+ for (int i = 0; i < (int) hist_cur.size(); ++i) {
+ hist_all[i] += hist_cur[i];
+ }
+
+ for (int i = 0; i < (int) hist_cur.size(); ++i) {
+ printf("%5.3f ", hist_cur[i] / (float)nelements);
+ }
+ printf("\n");
+ } else {
+ printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
+ fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
+ total_size_new += data_u8.size();
+ }
+
+ total_size_org += nelements * sizeof(float);
+ }
+
+ printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
+ printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
+
+ {
+ int64_t sum_all = 0;
+ for (int i = 0; i < (int) hist_all.size(); ++i) {
+ sum_all += hist_all[i];
+ }
+
+ printf("%s: hist: ", __func__);
+ for (int i = 0; i < (int) hist_all.size(); ++i) {
+ printf("%5.3f ", hist_all[i] / (float)sum_all);
+ }
+ printf("\n");
+ }
+ }
+
+ finp.close();
+ fout.close();
+
+ return true;
+}
+
+//
+// interface implementation
+//
+
+struct llama_context * llama_init_from_file(
+ const char * path_model,
+ struct llama_context_params params) {
+ ggml_time_init();
+
+ llama_context * ctx = new llama_context;
+
+ ctx->rng = std::mt19937(params.seed);
+ ctx->logits_all = params.logits_all;
+
+ ggml_type type_memory = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
+
+ if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_parts, type_memory, params.vocab_only)) {
+ fprintf(stderr, "%s: failed to load model\n", __func__);
+ delete ctx;
+ return nullptr;
+ }
+
+ return ctx;
+}
+
+void llama_free(struct llama_context * ctx) {
+ ggml_free(ctx->model.ctx);
+
+ delete ctx;
+}
+
+int llama_model_quantize(
+ const char * fname_inp,
+ const char * fname_out,
+ int itype,
+ int qk) {
+ if (!llama_model_quantize_internal(fname_inp, fname_out, itype, qk)) {
+ fprintf(stderr, "%s: failed to quantize\n", __func__);
+ return 1;
+ }
+
+ return 0;
+}
+
+int llama_eval(
+ struct llama_context * ctx,
+ const llama_token * tokens,
+ int n_tokens,
+ int n_past,
+ int n_threads) {
+ if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
+ fprintf(stderr, "%s: failed to eval\n", __func__);
+ return 1;
+ }
+
+ return 0;
+}
+
+int llama_tokenize(
+ struct llama_context * ctx,
+ const char * text,
+ llama_token * tokens,
+ int n_max_tokens,
+ bool add_bos) {
+ auto res = llama_tokenize(ctx->vocab, text, add_bos);
+
+ if (n_max_tokens < (int) res.size()) {
+ fprintf(stderr, "%s: too many tokens\n", __func__);
+ return -((int) res.size());
+ }
+
+ for (size_t i = 0; i < res.size(); i++) {
+ tokens[i] = res[i];
+ }
+
+ return res.size();
+}
+
+int llama_n_vocab(struct llama_context * ctx) {
+ return ctx->vocab.id_to_token.size();
+}
+
+int llama_n_ctx(struct llama_context * ctx) {
+ return ctx->model.hparams.n_ctx;
+}
+
+float * llama_get_logits(struct llama_context * ctx) {
+ return ctx->logits.data();
+}
+
+const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
+ if (token >= llama_n_vocab(ctx)) {
+ return nullptr;
+ }
+
+ return ctx->vocab.id_to_token[token].tok.c_str();
+}
+
+llama_token llama_token_bos() {
+ return 1;
+}
+
+llama_token llama_token_eos() {
+ return 2;
+}
+
+llama_token llama_sample_top_p_top_k(
+ llama_context * ctx,
+ const llama_token * last_n_tokens_data,
+ int last_n_tokens_size,
+ int top_k,
+ double top_p,
+ double temp,
+ double repeat_penalty) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ llama_token result = 0;
+
+ // TODO: avoid this ...
+ const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
+
+ result = llama_sample_top_p_top_k(
+ *ctx,
+ last_n_tokens,
+ top_k,
+ top_p,
+ temp,
+ repeat_penalty);
+
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ ctx->n_sample++;
+
+ return result;
+}
+
+
+void llama_print_timings(struct llama_context * ctx) {
+ const int64_t t_end_us = ggml_time_us();
+
+ const int32_t n_sample = std::max(1, ctx->n_sample);
+ const int32_t n_eval = std::max(1, ctx->n_eval);
+
+ fprintf(stderr, "\n");
+ fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0f);
+ fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_sample_us, n_sample, 1e-3f * ctx->t_sample_us / n_sample);
+ fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3f * ctx->t_eval_us, n_eval, 1e-3f * ctx->t_eval_us / n_eval);
+ fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
+}
+
+void llama_reset_timings(struct llama_context * ctx) {
+ ctx->t_start_us = ggml_time_us();
+
+ ctx->t_sample_us = ctx->n_sample = 0;
+ ctx->t_eval_us = ctx->n_eval = 0;
+}
+
+const char * llama_print_system_info(void) {
+ static std::string s;
+
+ s = "";
+ s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
+ s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
+ s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
+ s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
+ s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
+ s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
+ s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
+ s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
+ s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
+ s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
+ s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
+ s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
+
+ return s.c_str();
+}
+