diff options
author | Kawrakow <48489457+ikawrakow@users.noreply.github.com> | 2024-07-27 07:55:01 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-27 07:55:01 +0200 |
commit | 154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch) | |
tree | 81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /src/llama-sampling.cpp | |
parent | 0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff) |
Merge mainline llama.cpp (#3)
* Merging mainline - WIP
* Merging mainline - WIP
AVX2 and CUDA appear to work.
CUDA performance seems slightly (~1-2%) lower as it is so often
the case with llama.cpp/ggml after some "improvements" have been made.
* Merging mainline - fix Metal
* Remove check
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src/llama-sampling.cpp')
-rw-r--r-- | src/llama-sampling.cpp | 635 |
1 files changed, 635 insertions, 0 deletions
diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp new file mode 100644 index 00000000..8910f6d6 --- /dev/null +++ b/src/llama-sampling.cpp @@ -0,0 +1,635 @@ +#include "llama-sampling.h" + +#include <algorithm> +#include <cstring> +#include <ctime> +#include <cfloat> +#include <numeric> +#include <unordered_map> + +static void llama_log_softmax(float * array, size_t size) { + float max_l = *std::max_element(array, array + size); + float sum = 0.f; + for (size_t i = 0; i < size; ++i) { + float p = expf(array[i] - max_l); + sum += p; + array[i] = p; + } + + for (size_t i = 0; i < size; ++i) { + array[i] = logf(array[i] / sum); + } +} + +void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) { + if (seed == LLAMA_DEFAULT_SEED) { + seed = time(NULL); + } + + smpl->rng.seed(seed); +} + +void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { + GGML_ASSERT(candidates->size > 0); + + const int64_t t_start_sample_us = ggml_time_us(); + + // Sort the logits in descending order + if (!candidates->sorted) { + std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }); + candidates->sorted = true; + } + + float max_l = candidates->data[0].logit; + float cum_sum = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + float p = expf(candidates->data[i].logit - max_l); + candidates->data[i].p = p; + cum_sum += p; + } + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].p /= cum_sum; + } + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) { + // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast + // if (k >= (int32_t)candidates->size) { + // return; + // } + + const int64_t t_start_sample_us = ggml_time_us(); + + if (k <= 0) { + k = candidates->size; + } + + k = std::max(k, (int) min_keep); + k = std::min(k, (int) candidates->size); + + // Sort scores in descending order + if (!candidates->sorted) { + auto comp = [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }; + if (k <= 128) { + std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); + } else { + constexpr int nbuckets = 128; + constexpr float bucket_low = -10.0f; + constexpr float bucket_high = 10.0f; + constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); + constexpr float bucker_inter = -bucket_low * bucket_scale; + + std::vector<int> bucket_idx(candidates->size); + std::vector<int> histo(nbuckets, 0); + + for (int i = 0; i < (int)candidates->size; ++i) { + const float val = candidates->data[i].logit; + int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); + ib = std::max(0, std::min(nbuckets-1, ib)); + bucket_idx[i] = ib; + ++histo[ib]; + } + int nhave = 0; + int ib = nbuckets - 1; + for ( ; ib >= 0; --ib) { + nhave += histo[ib]; + if (nhave >= k) break; + } + std::vector<llama_token_data> tmp_tokens(nhave); + auto ptr = tmp_tokens.data(); + std::vector<llama_token_data*> bucket_ptrs; + bucket_ptrs.reserve(nbuckets - ib); + for (int j = nbuckets - 1; j >= ib; --j) { + bucket_ptrs.push_back(ptr); + ptr += histo[j]; + } + for (int i = 0; i < (int)candidates->size; ++i) { + int j = bucket_idx[i]; + if (j >= ib) { + *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; + } + } + + ptr = tmp_tokens.data(); + int ndone = 0; + for (int j = nbuckets-1; j > ib; --j) { + std::sort(ptr, ptr + histo[j], comp); + ptr += histo[j]; + ndone += histo[j]; + } + std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); + + std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); + + } + candidates->sorted = true; + } + candidates->size = k; + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { + if (p >= 1.0f) { + return; + } + + llama_sample_softmax_impl(smpl, candidates); + + const int64_t t_start_sample_us = ggml_time_us(); + + // Compute the cumulative probabilities + float cum_sum = 0.0f; + size_t last_idx = candidates->size; + + for (size_t i = 0; i < candidates->size; ++i) { + cum_sum += candidates->data[i].p; + + // Check if the running sum is at least p or if we have kept at least min_keep tokens + // we set the last index to i+1 to indicate that the current iterate should be included in the set + if (cum_sum >= p && i + 1 >= min_keep) { + last_idx = i + 1; + break; + } + } + + // Resize the output vector to keep only the top-p tokens + candidates->size = last_idx; + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { + if (p <= 0.0f || !candidates->size) { + return; + } + + const int64_t t_start_sample_us = ggml_time_us(); + + bool min_p_applied = false; + + // if the candidates aren't sorted, try the unsorted implementation first + if (!candidates->sorted) { + std::vector<llama_token_data> filtered_tokens; + + float max_logit = -FLT_MAX; + for (size_t i = 0; i < candidates->size; ++i) { + max_logit = std::max(max_logit, candidates->data[i].logit); + } + const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max + + for (size_t i = 0; i < candidates->size; ++i) { + if (candidates->data[i].logit >= min_logit) { + filtered_tokens.push_back(candidates->data[i]); + } + } + + // if we have enough values the operation was a success + if (filtered_tokens.size() >= min_keep) { + memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); + candidates->size = filtered_tokens.size(); + min_p_applied = true; + } + } + + // if the candidates are sorted or the unsorted implementation failed, use this implementation + if (!min_p_applied) { + // Sort the logits in descending order + if (!candidates->sorted) { + std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }); + candidates->sorted = true; + } + + const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max + size_t i = 1; // first token always matches + + for (; i < candidates->size; ++i) { + if (candidates->data[i].logit < min_logit && i >= min_keep) { + break; // prob too small + } + } + + // Resize the output vector to keep only the matching tokens + candidates->size = i; + } + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) { + if (z >= 1.0f || candidates->size <= 2) { + return; + } + + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + const int64_t t_start_sample_us = ggml_time_us(); + + // Compute the first and second derivatives + std::vector<float> first_derivatives(candidates->size - 1); + std::vector<float> second_derivatives(candidates->size - 2); + + for (size_t i = 0; i < first_derivatives.size(); ++i) { + first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; + } + for (size_t i = 0; i < second_derivatives.size(); ++i) { + second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; + } + + // Calculate absolute value of second derivatives + for (size_t i = 0; i < second_derivatives.size(); ++i) { + second_derivatives[i] = std::abs(second_derivatives[i]); + } + + // Normalize the second derivatives + { + const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); + + if (second_derivatives_sum > 1e-6f) { + for (float & value : second_derivatives) { + value /= second_derivatives_sum; + } + } else { + for (float & value : second_derivatives) { + value = 1.0f / second_derivatives.size(); + } + } + } + + float cum_sum = 0.0f; + size_t last_idx = candidates->size; + for (size_t i = 0; i < second_derivatives.size(); ++i) { + cum_sum += second_derivatives[i]; + + // Check if the running sum is greater than z or if we have kept at least min_keep tokens + if (cum_sum > z && i >= min_keep) { + last_idx = i; + break; + } + } + + // Resize the output vector to keep only the tokens above the tail location + candidates->size = last_idx; + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) { + // Reference implementation: + // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr + if (p >= 1.0f) { + return; + } + + // Compute the softmax of logits and calculate entropy + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + + const int64_t t_start_sample_us = ggml_time_us(); + + float entropy = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + entropy += -candidates->data[i].p * logf(candidates->data[i].p); + } + + // Compute the absolute difference between negative log probability and entropy for each candidate + std::vector<float> shifted_scores; + for (size_t i = 0; i < candidates->size; ++i) { + float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); + shifted_scores.push_back(shifted_score); + } + + // Sort tokens based on the shifted_scores and their corresponding indices + std::vector<size_t> indices(candidates->size); + std::iota(indices.begin(), indices.end(), 0); + + std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { + return shifted_scores[a] < shifted_scores[b]; + }); + + // Compute the cumulative probabilities + float cum_sum = 0.0f; + size_t last_idx = indices.size(); + + for (size_t i = 0; i < indices.size(); ++i) { + size_t idx = indices[i]; + cum_sum += candidates->data[idx].p; + + // Check if the running sum is greater than typical or if we have kept at least min_keep tokens + if (cum_sum > p && i >= min_keep - 1) { + last_idx = i + 1; + break; + } + } + + // Resize the output vector to keep only the locally typical tokens + std::vector<llama_token_data> new_candidates; + for (size_t i = 0; i < last_idx; ++i) { + size_t idx = indices[i]; + new_candidates.push_back(candidates->data[idx]); + } + + // Replace the data in candidates with the new_candidates data + std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); + candidates->size = new_candidates.size(); + candidates->sorted = false; + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) { + const int64_t t_start_sample_us = ggml_time_us(); + + // no need to do anything if there is only one (or zero) candidates + if(candidates->size <= 1) { + return; + } + + // Calculate maximum possible entropy + float max_entropy = -logf(1.0f / candidates->size); + + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + + // Calculate entropy of the softmax probabilities + float entropy = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + float prob = candidates->data[i].p; + if (prob > 0.0f) { // Ensure no log(0) + entropy -= prob * logf(prob); + } + } + + // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above) + float normalized_entropy = entropy / max_entropy; + + // Map the normalized entropy to the desired temperature range using the power function + float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); + +#ifdef DEBUG + LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); + LLAMA_LOG_INFO("Entropy: %f\n", entropy); + LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); + LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); + LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); + LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); +#endif + + // Apply the dynamically calculated temperature scaling + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].logit /= dyn_temp; + } + + // Re-compute softmax probabilities after scaling logits with dynamic temperature + double max_l_double = candidates->data[0].logit; + double cum_sum_double = 0.0; + for (size_t i = 0; i < candidates->size; ++i) { + double p = exp(candidates->data[i].logit - max_l_double); + candidates->data[i].p = p; // Store the scaled probability + cum_sum_double += p; + } + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities + } + +#ifdef DEBUG + // Print the updated top 25 probabilities after temperature scaling + LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); + for (size_t i = 0; i < 25 && i < candidates->size; ++i) { + LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f); + } +#endif + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) { + const int64_t t_start_sample_us = ggml_time_us(); + + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].logit /= temp; + } + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_repetition_penalties_impl( + struct llama_sampling * smpl, + llama_token_data_array * candidates, + const llama_token * last_tokens, + size_t penalty_last_n, + float penalty_repeat, + float penalty_freq, + float penalty_present) { + if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { + return; + } + + const int64_t t_start_sample_us = ggml_time_us(); + + // Create a frequency map to count occurrences of each token in last_tokens + std::unordered_map<llama_token, int> token_count; + for (size_t i = 0; i < penalty_last_n; ++i) { + token_count[last_tokens[i]]++; + } + + // Apply frequency and presence penalties to the candidates + for (size_t i = 0; i < candidates->size; ++i) { + const auto token_iter = token_count.find(candidates->data[i].id); + if (token_iter == token_count.end()) { + continue; + } + + const int count = token_iter->second; + + // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. + // This is common fix for this problem, which is to multiply by the penalty instead of dividing. + if (candidates->data[i].logit <= 0) { + candidates->data[i].logit *= penalty_repeat; + } else { + candidates->data[i].logit /= penalty_repeat; + } + + candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; + } + + candidates->sorted = false; + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_apply_guidance_impl( + struct llama_sampling * smpl, + float * logits, + float * logits_guidance, + float scale) { + GGML_ASSERT(smpl); + + const auto t_start_sample_us = ggml_time_us(); + const auto n_vocab = smpl->n_vocab; + + llama_log_softmax(logits, n_vocab); + llama_log_softmax(logits_guidance, n_vocab); + + for (int i = 0; i < n_vocab; ++i) { + auto & l = logits[i]; + const auto & g = logits_guidance[i]; + + l = scale * (l - g) + g; + } + + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; +} + +llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { + GGML_ASSERT(smpl); + + const int32_t n_vocab = float(smpl->n_vocab); + + int64_t t_start_sample_us = ggml_time_us(); + + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + + // Estimate s_hat using the most probable m tokens + float s_hat = 0.0; + float sum_ti_bi = 0.0; + float sum_ti_sq = 0.0; + for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { + float t_i = logf(float(i + 2) / float(i + 1)); + float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); + sum_ti_bi += t_i * b_i; + sum_ti_sq += t_i * t_i; + } + s_hat = sum_ti_bi / sum_ti_sq; + + // Compute k from the estimated s_hat and target surprise value + float epsilon_hat = s_hat - 1; + float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat); + + // Sample the next word X using top-k sampling + llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1); + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + llama_token X = llama_sample_token_impl(smpl, candidates); + t_start_sample_us = ggml_time_us(); + + // Compute error as the difference between observed surprise and target surprise value + size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return candidate.id == X; + })); + float observed_surprise = -log2f(candidates->data[X_idx].p); + float e = observed_surprise - tau; + + // Update mu using the learning rate and error + *mu = *mu - eta * e; + + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + return X; +} + +llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) { + int64_t t_start_sample_us; + t_start_sample_us = ggml_time_us(); + + llama_sample_softmax_impl(smpl, candidates); + + // Truncate the words with surprise values greater than mu + candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return -log2f(candidate.p) > *mu; + })); + + if (candidates->size == 0) { + candidates->size = 1; + } + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } + + // Normalize the probabilities of the remaining words + llama_sample_softmax_impl(smpl, candidates); + + // Sample the next word X from the remaining words + llama_token X = llama_sample_token_impl(smpl, candidates); + t_start_sample_us = ggml_time_us(); + + // Compute error as the difference between observed surprise and target surprise value + size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return candidate.id == X; + })); + float observed_surprise = -log2f(candidates->data[X_idx].p); + float e = observed_surprise - tau; + + // Update mu using the learning rate and error + *mu = *mu - eta * e; + + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + } + return X; +} + +llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { + const int64_t t_start_sample_us = ggml_time_us(); + + // Find max element + auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit < b.logit; + }); + + llama_token result = max_iter->id; + if (smpl) { + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + smpl->n_sample++; + } + return result; +} + +llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) { + GGML_ASSERT(smpl); + + const int64_t t_start_sample_us = ggml_time_us(); + llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates); + + std::vector<float> probs; + probs.reserve(candidates->size); + for (size_t i = 0; i < candidates->size; ++i) { + probs.push_back(candidates->data[i].p); + } + + std::discrete_distribution<> dist(probs.begin(), probs.end()); + int idx = dist(rng); + + llama_token result = candidates->data[idx].id; + + smpl->t_sample_us += ggml_time_us() - t_start_sample_us; + smpl->n_sample++; + + return result; +} + +llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) { + return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng); +} |