summaryrefslogtreecommitdiff
path: root/src/llama.cpp
diff options
context:
space:
mode:
authorsaood06 <saood05@gmail.com>2025-01-23 10:24:10 -0600
committerGitHub <noreply@github.com>2025-01-23 18:24:10 +0200
commit2195632581c4f52707059b5963fe622ccead0dd2 (patch)
tree34d46a344c5d32ff699126cea9255eb13fd3b38a /src/llama.cpp
parentc2624b2fd324ff98cc137397f5b0e1d22869cb58 (diff)
Deepseek V3 support added (#176)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Diffstat (limited to 'src/llama.cpp')
-rw-r--r--src/llama.cpp100
1 files changed, 96 insertions, 4 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index b983c84b..29bd14af 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -106,7 +106,7 @@
// bump if necessary
#define LLAMA_MAX_LAYERS 512
-#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
+#define LLAMA_MAX_EXPERTS 256 // DeepSeekV2
//
// helpers
@@ -294,6 +294,8 @@ enum llm_kv {
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_EXPERT_SHARED_COUNT,
LLM_KV_EXPERT_WEIGHTS_SCALE,
+ LLM_KV_EXPERT_WEIGHTS_NORM,
+ LLM_KV_EXPERT_GATING_FUNC,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
@@ -399,6 +401,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
+ { LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" },
+ { LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" },
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
@@ -520,6 +524,7 @@ enum llm_tensor {
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
+ LLM_TENSOR_FFN_EXP_PROBS_B,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
@@ -1211,6 +1216,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
+ { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
},
},
{
@@ -2186,6 +2192,7 @@ enum e_model {
MODEL_70B,
MODEL_236B,
MODEL_314B,
+ MODEL_671B,
MODEL_SMALL,
MODEL_MEDIUM,
MODEL_LARGE,
@@ -2203,6 +2210,21 @@ static const size_t kiB = 1024;
static const size_t MiB = 1024*kiB;
static const size_t GiB = 1024*MiB;
+enum llm_expert_gating_func_type {
+ LLM_EXPERT_GATING_FUNC_SOFTMAX = 1,
+ LLM_EXPERT_GATING_FUNC_SIGMOID = 2,
+};
+
+static const char * llama_expert_gating_func_name(llm_expert_gating_func_type type) {
+ switch (type) {
+ case LLM_EXPERT_GATING_FUNC_SOFTMAX: return "softmax";
+ case LLM_EXPERT_GATING_FUNC_SIGMOID: return "sigmoid";
+ default: return "unknown";
+ }
+}
+
+
+
struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
@@ -2232,6 +2254,8 @@ struct llama_hparams {
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
float expert_weights_scale = 0.0;
+ bool expert_weights_norm = false;
+ uint32_t expert_gating_func = LLM_EXPERT_GATING_FUNC_SOFTMAX;
float f_norm_eps;
float f_norm_rms_eps;
@@ -2502,6 +2526,7 @@ struct llama_layer {
struct ggml_tensor * ffn_down_b = nullptr; // b2
struct ggml_tensor * ffn_up_b = nullptr; // b3
struct ggml_tensor * ffn_act;
+ struct ggml_tensor * ffn_exp_probs_b = nullptr;
// mamba proj
struct ggml_tensor * ssm_in;
@@ -4677,6 +4702,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_70B: return "70B";
case MODEL_236B: return "236B";
case MODEL_314B: return "314B";
+ case MODEL_671B: return "671B";
case MODEL_SMALL: return "0.1B";
case MODEL_MEDIUM: return "0.4B";
case MODEL_LARGE: return "0.8B";
@@ -5302,11 +5328,19 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
+ ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
+ if (hparams.expert_gating_func == 0) {
+ // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
+ // that have no expert_gating_func model parameter set
+ hparams.expert_gating_func = LLM_EXPERT_GATING_FUNC_SOFTMAX;
+ }
ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
switch (hparams.n_layer) {
case 27: model.type = e_model::MODEL_16B; break;
case 60: model.type = e_model::MODEL_236B; break;
+ case 61: model.type = e_model::MODEL_671B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
@@ -5566,6 +5600,10 @@ static void llm_load_vocab(
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
vocab.tokenizer_clean_spaces = false;
} else if (
+ tokenizer_pre == "deepseek-v3") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
+ vocab.tokenizer_clean_spaces = false;
+ } else if (
tokenizer_pre == "falcon") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
} else if (
@@ -6075,6 +6113,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
+ LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
+ LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((enum llm_expert_gating_func_type) hparams.expert_gating_func));
LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
}
@@ -7540,6 +7580,7 @@ static bool llm_load_tensors(
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
} else {
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+ layer.ffn_exp_probs_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert} );
GGML_ASSERT(n_expert > 0);
GGML_ASSERT(n_expert_used > 0);
@@ -8346,12 +8387,14 @@ static struct ggml_tensor * llm_build_moe_ffn(
struct ggml_tensor * up_exps,
struct ggml_tensor * gate_exps,
struct ggml_tensor * down_exps,
+ struct ggml_tensor * exp_probs_b,
int64_t n_expert,
int64_t n_expert_used,
llm_ffn_op_type type_op,
bool norm_w,
bool scale_w,
float w_scale,
+llm_expert_gating_func_type gating_op,
const llm_build_cb & cb,
int il) {
int64_t n_embd = cur->ne[0];
@@ -8360,11 +8403,32 @@ static struct ggml_tensor * llm_build_moe_ffn(
ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
cb(logits, "ffn_moe_logits", il);
- ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
+ //ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
+ ggml_tensor * probs = nullptr;
+ switch (gating_op) {
+ case LLM_EXPERT_GATING_FUNC_SOFTMAX:
+ {
+ probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
+ } break;
+ case LLM_EXPERT_GATING_FUNC_SIGMOID:
+ {
+ probs = ggml_sigmoid(ctx, logits); // [n_expert, n_tokens]
+ } break;
+ default:
+ GGML_ABORT("fatal error");
+ }
cb(probs, "ffn_moe_probs", il);
+ // add experts selection bias - introduced in DeepSeek V3
+ // leave probs unbiased as it's later used to get expert weights
+ ggml_tensor * selection_probs = probs;
+ if (exp_probs_b != nullptr) {
+ selection_probs = ggml_add(ctx, probs, exp_probs_b);
+ cb(selection_probs, "ffn_moe_probs_biased", il);
+ }
+
// select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
+ ggml_tensor * selected_experts = ggml_top_k(ctx, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
cb(selected_experts->src[0], "ffn_moe_argsort", il);
cb(selected_experts, "ffn_moe_topk", il);
@@ -9180,9 +9244,11 @@ struct llm_build_context {
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
+ LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
}
@@ -9673,9 +9739,11 @@ struct llm_build_context {
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_GELU, true,
false, 0.0,
+ LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
@@ -9814,9 +9882,11 @@ struct llm_build_context {
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
+ LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
@@ -10944,9 +11014,11 @@ struct llm_build_context {
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
+ LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
@@ -13109,9 +13181,11 @@ struct llm_build_context {
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
+ LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il);
cb(cur, "ffn_moe_out", il);
@@ -13324,9 +13398,11 @@ struct llm_build_context {
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
+ model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
- LLM_FFN_SILU, false,
+ LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
+ (enum llm_expert_gating_func_type) hparams.expert_gating_func,
cb, il);
cb(moe_out, "ffn_moe_out", il);
@@ -18547,6 +18623,7 @@ struct llama_data_read {
read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 0) {
+ llama_batch_free(batch);
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
@@ -19732,6 +19809,21 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) {
ss << "Assistant:";
}
+ } else if (tmpl == "deepseek3" || tmpl_contains(LU8("'<|Assistant|>' + message['content'] + '<|end▁of▁sentence|>'"))) {
+ // DeepSeek-V3
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << message->content << "\n\n";
+ } else if (role == "user") {
+ ss << LU8("<|User|>") << message->content;
+ } else if (role == "assistant") {
+ ss << LU8("<|Assistant|>") << message->content << LU8("<|end▁of▁sentence|>");
+ }
+ }
+ if (add_ass) {
+ ss << LU8("<|Assistant|>");
+ }
} else {
// template not supported
return -1;