summaryrefslogtreecommitdiff
path: root/src/llama.cpp
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2025-07-14 18:55:08 +0200
committerGitHub <noreply@github.com>2025-07-14 18:55:08 +0200
commit45fae1a14444622478774f9a417e1d417af1ca46 (patch)
tree2609ef06be5640749834d4fc691446771ab29f42 /src/llama.cpp
parentf5353047ef461e6fc9d527e09a06c9802c699929 (diff)
Adding IQ2_KL (#602)
* Experiments for 2.6875 bpw quants At least according to rmse, this is significantly better than q2_K, while using only 1/16 more bits per weight. * iq2_kl: basics * iq2_kl: CUDA dequantize * iq2_kl: small improvement in PPL Also check the two neighbouring values for the block scale and use the one that minimizes RMSE. * iq2_kl: MMQ Quite good: PP-512(L3-8B) = 8472 t/s. * iq2_kl: MMVQ We get PP-128(L3-8B) = 162 t/s. Which means that this is not quite as good as it should be as (almost) same bpq q2_K is at 170 t/s. * iq2_kl: Zen4 GEMM/GEMV Not particularly fast. I may need to think about rearranging the bits. * iq2_kl: better Zen4 * iq2_kl: convert/repack to q8_k_r8 (AVX2) * iq2_kl: AVX2 GEMM/GEMV * iq2_kl: WIP NEON The compiler started crashing!!! * iq2_kl: NEON Had to work around a compiler crash when using vzip2q_u8 using vqtbl2q_u8. * iq2_kl: convert/repack to q8_k_r8 (NEON) * iq2_kl: Metal dequantize * iq2_kl: Metal GEMV - pretty slow * iq2_kl: Metal GEMV - slightly better (40 t/s -> 44.5 t/s) * iq2_kl: Metal GEMV - slightly better (44.5 t/s -> 46.5 t/s) * iq2_kl: Metal GEMV - slightly better (46.5 t/s -> 47.2 t/s) * iq2_kl: slightly better Metal dequantize PP-512 goes to 476 t/s up from 466 t/s. * iq2_kl: slightly better Metal dequantize PP-512 goes to 492 t/s up from 476 t/s. * Add iq2_kl to constants.py --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src/llama.cpp')
-rw-r--r--src/llama.cpp15
1 files changed, 13 insertions, 2 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index ac02abf6..c11affb6 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -4435,6 +4435,7 @@ struct llama_model_loader {
case GGML_TYPE_IQ2_K: ftype = LLAMA_FTYPE_MOSTLY_IQ2_K; break;
case GGML_TYPE_IQ2_K_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_K_R4;break;
case GGML_TYPE_IQ3_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_KS; break;
+ case GGML_TYPE_IQ2_KL: ftype = LLAMA_FTYPE_MOSTLY_IQ2_KL; break;
case GGML_TYPE_IQ3_K: ftype = LLAMA_FTYPE_MOSTLY_IQ3_K; break;
case GGML_TYPE_IQ3_K_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ3_K_R4;break;
case GGML_TYPE_IQ4_K: ftype = LLAMA_FTYPE_MOSTLY_IQ4_K; break;
@@ -5177,6 +5178,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_IQ2_K: return "IQ2_K - 2.375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_K_R4: return "IQ2_K_R4 - 2.375 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_KS: return "IQ3_KS - 3.1875 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ2_KL: return "IQ2_KL - 2.6875 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_K: return "IQ3_K - 3.4325 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_K_R4: return "IQ3_K_R4 - 3.4325 bpw";
case LLAMA_FTYPE_MOSTLY_IQ3_KL: return "IQ3_KL - 4 bpw";
@@ -19133,7 +19135,7 @@ static ggml_type change_type_if_necessary(ggml_type new_type, int nx, int ny) {
new_type == GGML_TYPE_IQ3_XXS_R4 || new_type == GGML_TYPE_IQ2_XXS_R4 || new_type == GGML_TYPE_IQ2_XS_R4 ||
new_type == GGML_TYPE_IQ2_S_R4|| new_type == GGML_TYPE_IQ3_S_R4|| new_type == GGML_TYPE_IQ3_KS ||
new_type == GGML_TYPE_IQ2_KT || new_type == GGML_TYPE_IQ3_KT || new_type == GGML_TYPE_IQ4_KT ||
- new_type == GGML_TYPE_IQ5_KS || new_type == GGML_TYPE_IQ5_KS_R4) {
+ new_type == GGML_TYPE_IQ5_KS || new_type == GGML_TYPE_IQ5_KS_R4|| new_type == GGML_TYPE_IQ2_KL) {
if (nx % QK_K != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
convert_incompatible_tensor = true;
@@ -19165,6 +19167,7 @@ static ggml_type change_type_if_necessary(ggml_type new_type, int nx, int ny) {
case GGML_TYPE_Q3_K_R4:
case GGML_TYPE_IQ2_K:
case GGML_TYPE_IQ2_K_R4:
+ case GGML_TYPE_IQ2_KL:
case GGML_TYPE_IQ3_KS:
case GGML_TYPE_IQ3_K:
case GGML_TYPE_IQ3_K_R4:
@@ -19301,7 +19304,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_KS ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ2_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_KL ||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M_R4 ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M_R4 ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_KT || ftype == LLAMA_FTYPE_MOSTLY_IQ3_KT) {
@@ -19508,6 +19511,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_KS && qs.model.hparams.n_gqa() >= 2) {
new_type = GGML_TYPE_IQ4_KS;
}
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_KL && qs.model.hparams.n_gqa() >= 2) {
+ new_type = GGML_TYPE_IQ4_KS;
+ }
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_K_R4 && qs.model.hparams.n_gqa() >= 2) {
new_type = GGML_TYPE_IQ4_K_R4;
}
@@ -19553,6 +19559,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_IQ3_S) new_type = GGML_TYPE_Q4_K;
else if (new_type == GGML_TYPE_IQ3_K) new_type = GGML_TYPE_IQ4_K;
else if (new_type == GGML_TYPE_IQ3_KS) new_type = GGML_TYPE_IQ4_KS;
+ else if (new_type == GGML_TYPE_IQ2_KL) new_type = GGML_TYPE_IQ4_KS;
else if (new_type == GGML_TYPE_IQ3_S_R4) new_type = GGML_TYPE_Q4_K_R4;
else if (new_type == GGML_TYPE_Q3_K_R4) new_type = GGML_TYPE_Q4_K_R4;
else if (new_type == GGML_TYPE_Q4_K || new_type == GGML_TYPE_IQ4_XS) new_type = GGML_TYPE_Q5_K;
@@ -19685,6 +19692,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type = GGML_TYPE_Q5_K; // should the IQ_K quants be applied here as the new type for the IQ_K ftypes ?
// also, this condition could be reproduced on attn_q, eventually with Q4_K instead of Q5_K.
}
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_KL) {
+ new_type = GGML_TYPE_IQ4_KS;
+ }
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; // This list could be generalized and streamlined
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
@@ -19922,6 +19932,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_IQ2_K: default_type = GGML_TYPE_IQ2_K; break;
case LLAMA_FTYPE_MOSTLY_IQ2_K_R4:default_type = GGML_TYPE_IQ2_K_R4;break;
case LLAMA_FTYPE_MOSTLY_IQ3_KS: default_type = GGML_TYPE_IQ3_KS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_KL: default_type = GGML_TYPE_IQ2_KL; break;
case LLAMA_FTYPE_MOSTLY_IQ3_K: default_type = GGML_TYPE_IQ3_K; break;
case LLAMA_FTYPE_MOSTLY_IQ3_K_R4:default_type = GGML_TYPE_IQ3_K_R4;break;
case LLAMA_FTYPE_MOSTLY_IQ3_KL: default_type = GGML_TYPE_IQ3_K; break;