diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2025-04-26 08:13:25 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-04-26 08:13:25 +0200 |
commit | 715fc552ad2ea5fad38e7ff856bf84fdb71b692e (patch) | |
tree | a9999d3d2169222d9be38256de95c3d3859f3b31 /src/llama.cpp | |
parent | 770892086c15471a397a6a1a196986de906cdc91 (diff) |
Add support for Cohere2 (#341)
* Add support for Cohere2
* Fixe IQ4_NL on AVX2
* Command-A needs fp32 precision for K*Q
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src/llama.cpp')
-rw-r--r-- | src/llama.cpp | 203 |
1 files changed, 199 insertions, 4 deletions
diff --git a/src/llama.cpp b/src/llama.cpp index c870b09e..26ddeb2e 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -229,6 +229,7 @@ enum llm_arch { LLM_ARCH_JAIS, LLM_ARCH_GRANITE = 46, LLM_ARCH_GRANITE_MOE, + LLM_ARCH_COHERE2, LLM_ARCH_UNKNOWN, }; @@ -279,6 +280,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_GRANITE, "granite" }, { LLM_ARCH_GRANITE_MOE, "granitemoe" }, + { LLM_ARCH_COHERE2, "cohere2" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1456,7 +1458,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, - + { + LLM_ARCH_COHERE2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -2539,6 +2555,7 @@ struct llama_hparams { if (this->n_layer != other.n_layer) return true; if (this->n_rot != other.n_rot) return true; if (this->n_swa != other.n_swa) return true; + if (this->n_swa_pattern != other.n_swa_pattern) return false; if (this->n_embd_head_k != other.n_embd_head_k) return true; if (this->n_embd_head_v != other.n_embd_head_v) return true; if (this->n_expert != other.n_expert) return true; @@ -5797,6 +5814,17 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_COHERE2: + { + hparams.n_swa_pattern = 4; + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); + ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_8B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -6406,6 +6434,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str()); LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa); + LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern); LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k); LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v); LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str()); @@ -8397,6 +8426,34 @@ static bool llm_load_tensors( layer.ffn_down = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); } } break; + case LLM_ARCH_COHERE2: + { + model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); + + // output + model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); + // init output from the input tok embed + model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, + llama_model_loader::TENSOR_DUPLICATED); + + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); + + layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0); + layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0); + layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0); + layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); + + layer.ffn_gate = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0); + layer.ffn_down = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); + layer.ffn_up = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0); + } + } + break; default: throw std::runtime_error("unknown architecture"); } @@ -9340,7 +9397,7 @@ static struct ggml_tensor * llm_build_kqv( // For DeepSeek-2, it is perfectly fine with fp16 for PP, but I get gibberish when uding fp16 for TG. // Not sure if it is really a matter of insufficient precision, or I have made a mistake in the fattn-vec-f16 kernel. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || - (model.arch == LLM_ARCH_DEEPSEEK2 && q->ne[1] <= 8)) { + (model.arch == LLM_ARCH_DEEPSEEK2 && q->ne[1] <= 8) || model.arch == LLM_ARCH_COHERE2) { ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); } //ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); @@ -9364,7 +9421,8 @@ static struct ggml_tensor * llm_build_kqv( //ggml_mul_mat_set_prec(kq, GGML_PREC_F32); - if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) { + if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || + model.arch == LLM_ARCH_COHERE2) { // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 ggml_mul_mat_set_prec(kq, GGML_PREC_F32); @@ -9423,7 +9481,8 @@ static struct ggml_tensor * llm_build_kqv( auto k_i = ggml_view_3d(ctx, k, k->ne[0], k->ne[1], this_ne12, k->nb[1], k->nb[2], k->nb[2]*i02); auto q_i = ggml_view_3d(ctx, q, q->ne[0], q->ne[1], this_ne12, q->nb[1], q->nb[2], q->nb[2]*i12); auto kq_i = ggml_mul_mat(ctx, k_i, q_i); - if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) { + if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || + model.arch == LLM_ARCH_COHERE2) { ggml_mul_mat_set_prec(kq_i, GGML_PREC_F32); } if (model.arch == LLM_ARCH_GROK) { @@ -15013,6 +15072,137 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_cohere2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + const float f_logit_scale = hparams.f_logit_scale; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + // cohere2 requires different mask for layers using sliding window (SWA) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(); + + // sliding window switch pattern + const int32_t sliding_window_pattern = 4; + + for (int il = 0; il < n_layer; ++il) { + // three layers sliding window attention (window size 4096) and ROPE + // fourth layer uses global attention without positional embeddings + const bool is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1); + struct ggml_tensor * KQ_mask_l = is_sliding ? KQ_mask_swa : KQ_mask; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + struct ggml_tensor * ffn_inp = cur; + + // self-attention + { + // rope freq factors for 128k context + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + if (is_sliding) { + Qcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, + beta_fast, beta_slow); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, + attn_factor, beta_fast, beta_slow); + cb(Kcur, "Kcur", il); + } else { + // For non-sliding layers, just reshape without applying RoPE + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + cb(Qcur, "Qcur", il); + + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + cb(Kcur, "Kcur", il); + } + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, + KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f / sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); + } + + struct ggml_tensor * attn_out = cur; + + // feed-forward network + { + cur = llm_build_ffn(ctx0, lctx, ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, + NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, + cb, il); + cb(cur, "ffn_out", il); + } + + // add together residual + FFN + self-attention + cur = ggml_add(ctx0, cur, inpL); + cur = ggml_add(ctx0, cur, attn_out); + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + if (f_logit_scale) { + cur = ggml_scale(ctx0, cur, f_logit_scale); + } + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + struct ggml_cgraph * build_t5_encoder() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); @@ -15813,6 +16003,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_bitnet_25(); } break; + case LLM_ARCH_COHERE2: + { + result = llm.build_cohere2(); + } break; case LLM_ARCH_T5: { if (lctx.is_encoding) { @@ -19486,6 +19680,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_CHATGLM: case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: + case LLM_ARCH_COHERE2: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2 |