summaryrefslogtreecommitdiff
path: root/src/llama.cpp
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-15 09:54:21 +0100
committerGitHub <noreply@github.com>2024-12-15 09:54:21 +0100
commit85c5a1a99569ccc00c280835fe3a69b4af02c43b (patch)
treeda421487d5ddd0467b2bfd6cbbfb2666406c46f1 /src/llama.cpp
parent20758edcae65213b2f575b6d23dfea67ad9dd0e0 (diff)
BF16_R16 - 16 interleaved bf16 rows (#142)
* Not working bf16_r4 * Adding bf16_r8 Small performance gain compared to bf16 - 258 t/s vs 234 t/s. I guess, this is still sub-obtimal. * bf16_rx: Very slightly faster by interleaving 16 rows 258 t/s -> 263 t/s * Rename bf16_r4 to bf16_r16 We are interleaving 16 rows now. * Cleanup unused stuff --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src/llama.cpp')
-rw-r--r--src/llama.cpp13
1 files changed, 13 insertions, 0 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index 035e5b1a..536b2f97 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -3828,6 +3828,7 @@ struct llama_model_loader {
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
+ case GGML_TYPE_BF16_R16:ftype = LLAMA_FTYPE_MOSTLY_BF16_R16;break;
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
@@ -4540,6 +4541,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
+ case LLAMA_FTYPE_MOSTLY_BF16_R16: return "BF16_R16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
@@ -15833,6 +15835,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (new_type == GGML_TYPE_Q8_0_R4) {
new_type = GGML_TYPE_Q8_0;
}
+ else if (new_type == GGML_TYPE_BF16_R16) {
+ new_type = GGML_TYPE_BF16;
+ }
}
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M ||
@@ -16228,6 +16233,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
+ case LLAMA_FTYPE_MOSTLY_BF16_R16: default_type = GGML_TYPE_BF16_R16; break;
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
// K-quants
@@ -16520,6 +16526,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (quantize) {
new_type = default_type;
+ if (new_type == GGML_TYPE_BF16_R16 && strcmp(tensor->name, "token_embd.weight") == 0) {
+ new_type = GGML_TYPE_BF16;
+ }
// get more optimal quantization type based on the tensor shape, layer, etc.
if (!params->pure && ggml_is_quantized(default_type)) {
@@ -16680,6 +16689,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ4_K;
else chunk_size_multiplier = 4;
}
+ else if (new_type == GGML_TYPE_BF16_R16) {
+ if (tensor->ne[1] % 16 != 0) new_type = GGML_TYPE_BF16;
+ else chunk_size_multiplier = 16;
+ }
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
fflush(stdout);