summaryrefslogtreecommitdiff
path: root/src/llama.cpp
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-08-20 17:15:47 +0300
committerGitHub <noreply@github.com>2024-08-20 17:15:47 +0300
commitd259a50ca6fd3a0821abe6a16b73c0b19c5b4651 (patch)
tree4f83bbbbbbd9323192d8c0bceb51de5b0fb620c2 /src/llama.cpp
parenta325745000114a43c1546323f91720db503ed0a9 (diff)
Fused soft cap and SIMD-ified GeLU (#9)
* Softcap: WIP Fuses scale + tanh + scale as used for softcaping in some models. Just CPU for now. ~1.4% for PP-512 on Gemma2-9b, no effect on TG. Somewhat surprisingly the improvement does not increase as I go to longer contexts. Gemma2 does softcap on K*Q, which grows quadratically with context length, so I would have thought the benefit from fusing scale, tanh, scale would increase. But no, no luck. * softcap: CUDA * softcap: CUDA ~1% speedup for Gemma2-9b * softcap: Metal and NEON About 1% speedup. * Simdified gelu Gives ~1% speedup for Gemma2-9b prompt processing on AVX512/AVX2. It looks like the gelu operation is memory bound on my CPU's after SIMD-ifying it. By not using the 128 kb gelu lookup table we gain a small advantage. On the M2-Max the lookup table is slightly faster than the SIMD version, so left the lookup table for ARM_NEON. * softcap, tanh: avoid NaNs for large arguments (AVX2, AVX512) Not that I have encountered this in practice, but just to be sure. This does it for AVX512 and AVX2, still need a guard for ARM_NEON. * llama-bench: add ability to turn off warmup runs So we don't need to wait forever on, e.g., benchmarks involving long contexts. * softcap, tanh: avoid NaNs for large arguments (NEON) --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src/llama.cpp')
-rw-r--r--src/llama.cpp20
1 files changed, 12 insertions, 8 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index 17253f7a..4aee41a4 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -8317,14 +8317,17 @@ static struct ggml_tensor * llm_build_kqv(
//try from phi2
//ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
- kq = ggml_scale(ctx, kq, 30);
+ //kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
+ //kq = ggml_scale(ctx, kq, 30);
+
+ kq = ggml_softcap(ctx, kq, 0.08838834764831845f/30.0f, 30.f);
}
if (hparams.attn_soft_cap) {
- kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
- kq = ggml_tanh(ctx, kq);
- kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
+ kq = ggml_softcap(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping, hparams.f_attn_logit_softcapping);
+ //kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
+ //kq = ggml_tanh(ctx, kq);
+ //kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
}
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
@@ -11935,9 +11938,10 @@ struct llm_build_context {
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
// final logit soft-capping
- cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
- cur = ggml_tanh(ctx0, cur);
- cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
+ cur = ggml_softcap(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping, hparams.f_final_logit_softcapping);
+ //cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
+ //cur = ggml_tanh(ctx0, cur);
+ //cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
cb(cur, "result_output", -1);