summaryrefslogtreecommitdiff
path: root/src/llama.cpp
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-03 14:48:26 +0100
committerGitHub <noreply@github.com>2024-12-03 14:48:26 +0100
commitf1f4eb988fe5ee969100cd0d3782fd7460d13949 (patch)
tree97bb1a75ba7189f05e82835de6b2b65661a1ce7a /src/llama.cpp
parentc5bf589367cd609f4c0ff73a6534bbde7902abe8 (diff)
Q6_0_R4 (#122)
* Adding q6_0_r4 We get PP-512(LLaMA-3.1-8B) = 257 t/s on a Ryzen-7950X. * q6_0_r4: NEON We get PP-512(LLaMA-3.1-8B) = 95 t/s on M2-Max. In terms of ops, q6_0_r4 is identical to q5_0_r4 except for loading the high bits being vld1q_u8_x2 instead of vld1q_u8. It is strange that this can make a 5% difference in performance, especially considering that this is amortized (re-used) over 8 columns in the right matrix. Or am I running out of vector registers? * Fix AVX2 --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src/llama.cpp')
-rw-r--r--src/llama.cpp10
1 files changed, 8 insertions, 2 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index 51c7d1f8..f307fd89 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -3852,6 +3852,7 @@ struct llama_model_loader {
case GGML_TYPE_IQ4_NL_X4:ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL_X4;break;
case GGML_TYPE_Q4_0_R4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_R4; break;
case GGML_TYPE_Q5_0_R4: ftype = LLAMA_FTYPE_MOSTLY_Q5_0_R4; break;
+ case GGML_TYPE_Q6_0_R4: ftype = LLAMA_FTYPE_MOSTLY_Q6_0_R4; break;
case GGML_TYPE_Q8_0_R4: ftype = LLAMA_FTYPE_MOSTLY_Q8_0_R4; break;
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
case GGML_TYPE_IQ4_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_KS; break;
@@ -4560,6 +4561,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_IQ4_NL_X4:return "IQ4_NL_X4 - 4.5 bpw";
case LLAMA_FTYPE_MOSTLY_Q4_0_R4: return "Q4_0_R4 - 4.5 bpw";
case LLAMA_FTYPE_MOSTLY_Q5_0_R4: return "Q5_0_R4 - 5.5 bpw";
+ case LLAMA_FTYPE_MOSTLY_Q6_0_R4: return "Q6_0_R4 - 6.5 bpw";
case LLAMA_FTYPE_MOSTLY_Q8_0_R4: return "Q8_0_R4 - 8.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_KS: return "IQ4_KS - 4.25 bpw";
@@ -15783,6 +15785,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (new_type == GGML_TYPE_Q5_0_R4) {
new_type = GGML_TYPE_Q5_0;
}
+ else if (new_type == GGML_TYPE_Q6_0_R4) {
+ new_type = GGML_TYPE_Q6_0;
+ }
else if (new_type == GGML_TYPE_Q8_0_R4) {
new_type = GGML_TYPE_Q8_0;
}
@@ -16180,6 +16185,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_IQ4_NL_X4:default_type = GGML_TYPE_IQ4_NL_X4;break;
case LLAMA_FTYPE_MOSTLY_Q4_0_R4: default_type = GGML_TYPE_Q4_0_R4; break;
case LLAMA_FTYPE_MOSTLY_Q5_0_R4: default_type = GGML_TYPE_Q5_0_R4; break;
+ case LLAMA_FTYPE_MOSTLY_Q6_0_R4: default_type = GGML_TYPE_Q6_0_R4; break;
case LLAMA_FTYPE_MOSTLY_Q8_0_R4: default_type = GGML_TYPE_Q8_0_R4; break;
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ4_KS: default_type = GGML_TYPE_IQ4_KS; break;
@@ -16546,8 +16552,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
else chunk_size_multiplier = 4;
}
- else if (new_type == GGML_TYPE_Q5_0_R4) {
- if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q5_0;
+ else if (new_type == GGML_TYPE_Q6_0_R4) {
+ if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q6_0;
else chunk_size_multiplier = 4;
}
else if (new_type == GGML_TYPE_Q8_0_R4) {