diff options
author | firecoperana <xuqiaowei1124@gmail.com> | 2025-06-08 14:27:00 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-06-08 17:27:00 +0300 |
commit | 58f08e43859a942dcc4d585f04b729eb50603264 (patch) | |
tree | e1f1370970eb4f871c69468a83d96c2c216a91e5 /src/unicode.cpp | |
parent | 1eabdb420b3b7b8464bb2b44d9e797b141a580f6 (diff) |
Fix non rpc build error (#506)
* Add RPC backend in device list to override tensors.
* rpc : prevent crashes on invalid input (#9040)
Add more checks which prevent RPC server from crashing if invalid input
is received from client
# Conflicts:
# ggml/src/ggml-rpc.cpp
* rpc : print error message when failed to connect endpoint (#9042)
* Fix RPC error
* Add vulkan, sycl to rpc backend
* add thread in rpc cpu backend
* add cache folder and other improvement in rpc
* add header file
* support for models with non-512 aligned tensors
* rpc : do not wait for response when sending RPC_CMD_SET_TENSOR (#12943)
RPC_CMD_SET_TENSOR always returns an empty response and we send this 4
times per token. We can improve TG speed if we don't wait for this empty
response.
The performance impact of this change depends on the network latency.
# Conflicts:
# ggml/src/ggml-rpc.cpp
* fix(rpc): Improve input validation and error handling (#13069)
* fix(rpc): Improve input validation and error handling
The `rpc-server` was vulnerable to Denial of Service attacks via
several RPC commands (`SET_TENSOR`, `GRAPH_COMPUTE`, etc.). Malformed
messages could trigger failed assertions (e.g., invalid `ggml_type`)
or out-of-bounds reads/writes leading to `GGML_ABORT` calls,
crashing the server process.
This PR introduces robust input validation and replaces `abort()`
calls with graceful error handling:
- **Type Validation:** `deserialize_tensor` now checks if the
`tensor->type` is within the valid `GGML_TYPE_COUNT` range
*before* calling `ggml_new_tensor_4d`. Returns `nullptr` on
invalid type.
- **Bounds Checks:** Replaced `GGML_ABORT` in `set_tensor`,
`set_tensor_hash`, and `get_tensor` handlers with error
logging and returning `false` when data/offset parameters
are out of buffer bounds.
- **Size Checks:** Added safe arithmetic checks (for overflow) in
`graph_compute` when calculating required message sizes based
on client-provided `n_nodes` and `n_tensors`. Returns early
if the reported sizes conflict with the actual message size or
would lead to overflow.
- **Error Propagation:**
- `create_node` now checks for `nullptr` return values from
`deserialize_tensor` and its recursive calls, propagating
`nullptr` upwards on failure. Uses `find` instead of `at`
for safer map access.
- `copy_tensor` now checks for `nullptr` from `deserialize_tensor`
and sets the response status to failure if deserialization
or bounds checks fail.
- `graph_compute` now checks for `nullptr` return from
`create_node` and returns failure status correctly. The final
return value now reflects the actual computation status.
These changes improve the RPC server's resilience
against malformed client requests, preventing crashes and ensuring
errors are handled more gracefully.
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
* refactor(rpc): address pr comments
removed comments and unnecessary returns
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
* refactor(rpc): ambiguous nullptr from create_node
rpc_server::create_node could previously return nullptr if the input ID
was 0 (valid) or if an internal error (deserialization, recursion
failure) occurred (invalid). This ambiguity made error handling
difficult for the caller (`graph_compute`).
This commit clarifies the meaning of nullptr:
- `graph_compute` now checks if the input 'id' was non-zero when
`create_node` returns nullptr, correctly identifying failures
versus intentional null links.
- `create_node` avoids recursive calls for zero IDs and propagates
nullptr unambiguously on failure during recursion.
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
* refactor(rpc): initial zero check in create_node
The caller (`graph_compute`) already checks `id != 0` when handling
a `nullptr` return from `create_node`, correctly distinguishing
intentional null links from actual errors. This makes the initial
`if (id == 0)` check redundant.
Also removes the log message when a tensor ID is not found in the
provided map which was added in this branch.
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
* fix(rpc): Handle get_alloc_size failure in server
Check the return value of `server.get_alloc_size` in the RPC server
loop. If the call fails, return early to close the connection.
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
* refactor(rpc): input size validation in graph_compute
Removes detailed, step-by-step size calculations and overflow
checks in favor of simpler direct comparisons, assuming 64-bit
overflow is unlikely.
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
* refactor(rpc): remove extra status code setting
Removes the explicit setting of `response.result = GGML_STATUS_FAILED`
when `create_node` returns `nullptr` within `graph_compute`.
Primary signal is the `false` return value in case of failure.
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
* refactor(rpc): remove redundant check for tensor->type
Breaks CI on ubuntu-cpu-make. Tensor type is uint32_t, thus
the check is not needed.
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
---------
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
# Conflicts:
# ggml/src/ggml-rpc.cpp
* rpc : fix cache directory initialization (#13188)
Signed-off-by: xiaofei <hbuxiaofei@gmail.com>
# Conflicts:
# examples/rpc/rpc-server.cpp
* rpc : avoid uninitialized memory in serialize_tensor (#13210)
Zero out the name and padding buffers.
* fix merge error
* Add hello command in RPC
* bug fix
* add rpc header
* fix bug for missing rpc names
* add tpc no delay for rpc
* add back webui
* fix rpc function not found error
---------
Signed-off-by: Ville Vesilehto <ville@vesilehto.fi>
Signed-off-by: xiaofei <hbuxiaofei@gmail.com>
Co-authored-by: firecoperana <firecoperana>
Co-authored-by: Radoslav Gerganov <rgerganov@gmail.com>
Co-authored-by: matt23456 <matt23456>
Co-authored-by: Ville Vesilehto <ville@vesilehto.fi>
Co-authored-by: xiaofei <hbuxiaofei@gmail.com>
Co-authored-by: Justin Santa Barbara <justinsb@google.com>
Diffstat (limited to 'src/unicode.cpp')
-rw-r--r-- | src/unicode.cpp | 179 |
1 files changed, 109 insertions, 70 deletions
diff --git a/src/unicode.cpp b/src/unicode.cpp index cfffde0d..a57456ea 100644 --- a/src/unicode.cpp +++ b/src/unicode.cpp @@ -18,6 +18,7 @@ #include <vector> #include <locale> #include <codecvt> +#include <iostream> size_t unicode_len_utf8(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; @@ -25,7 +26,7 @@ size_t unicode_len_utf8(char src) { return lookup[highbits]; } -static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) { +static std::string unicode_cpts_to_utf8(const std::vector<uint32_t>& cps) { std::string result; for (size_t i = 0; i < cps.size(); ++i) { result.append(unicode_cpt_to_utf8(cps[i])); @@ -33,7 +34,7 @@ static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) { return result; } -uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { +uint32_t unicode_cpt_from_utf8(const std::string& utf8, size_t& offset) { assert(offset < utf8.size()); if (!(utf8[offset + 0] & 0x80)) { auto result = utf8[offset + 0]; @@ -44,7 +45,7 @@ uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { throw std::invalid_argument("invalid character"); } if (!(utf8[offset + 0] & 0x20)) { - if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) { + if (offset + 1 >= utf8.size() || !((utf8[offset + 1] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f); @@ -52,7 +53,7 @@ uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { return result; } if (!(utf8[offset + 0] & 0x10)) { - if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) { + if (offset + 2 >= utf8.size() || !((utf8[offset + 1] & 0xc0) == 0x80) || !((utf8[offset + 2] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f); @@ -60,7 +61,7 @@ uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { return result; } if (!(utf8[offset + 0] & 0x08)) { - if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) { + if (offset + 3 >= utf8.size() || !((utf8[offset + 1] & 0xc0) == 0x80) || !((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f); @@ -122,10 +123,10 @@ uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { static std::vector<codepoint_flags> unicode_cpt_flags_array() { std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED); - assert (unicode_ranges_flags.front().first == 0); - assert (unicode_ranges_flags.back().first == MAX_CODEPOINTS); + assert(unicode_ranges_flags.front().first == 0); + assert(unicode_ranges_flags.back().first == MAX_CODEPOINTS); for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) { - const auto range_ini = unicode_ranges_flags[i-1]; // codepoint_ini, flags + const auto range_ini = unicode_ranges_flags[i - 1]; // codepoint_ini, flags const auto range_end = unicode_ranges_flags[i]; // codepoint_end, flags for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) { cpt_flags[cpt] = range_ini.second; @@ -144,7 +145,7 @@ static std::vector<codepoint_flags> unicode_cpt_flags_array() { cpt_flags[p.second].is_uppercase = true; } - for (auto &range : unicode_ranges_nfd) { // start, last, nfd + for (auto& range : unicode_ranges_nfd) { // start, last, nfd cpt_flags[range.nfd].is_nfd = true; } @@ -199,22 +200,55 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() { return map; } -static inline std::wstring unicode_wstring_from_utf8(const std::string & s) { +static inline bool is_valid_utf8(const std::string& str) { + int remaining_bytes = 0; // 当前多字节字符剩余的字节数 + for (unsigned char c : str) { + if (remaining_bytes == 0) { + if ((c & 0x80) == 0x00) continue; // 1字节字符 + else if ((c & 0xE0) == 0xC0) remaining_bytes = 1; // 2字节 + else if ((c & 0xF0) == 0xE0) remaining_bytes = 2; // 3字节 + else if ((c & 0xF8) == 0xF0) remaining_bytes = 3; // 4字节 + else return false; // 非法起始字节 + } + else { + // 检查后续字节是否为10xxxxxx + if ((c & 0xC0) != 0x80) + { + return false; + } + remaining_bytes--; + } + } + return (remaining_bytes == 0); // 确保多字节字符完整 +} + +static inline std::wstring unicode_wstring_from_utf8(const std::string& s) { +#if defined(__clang__) + // disable C++17 deprecation warning for std::codecvt_utf8 +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wdeprecated-declarations" +#endif + bool isvalid = is_valid_utf8(s); std::wstring_convert<std::codecvt_utf8<wchar_t>> conv; + +#if defined(__clang__) +# pragma clang diagnostic pop +#endif + return conv.from_bytes(s); } -static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) { +static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string>& bpe_words) { std::vector<std::string> bpe_encoded_words; - for (const auto & word : bpe_words) { + for (const auto& word : bpe_words) { std::string text_utf; - auto utf_word = unicode_cpts_from_utf8(word); + auto utf_word = unicode_cpts_from_utf8(word); for (size_t i = 0; i < utf_word.size(); ++i) { text_utf += unicode_cpt_to_utf8(utf_word[i]); } std::string encoded_token; - for (char & c : text_utf) { + for (char& c : text_utf) { encoded_token += unicode_byte_to_utf8(c); } bpe_encoded_words.emplace_back(encoded_token); @@ -223,7 +257,7 @@ static std::vector<std::string> unicode_byte_encoding_process(const std::vector< } // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ -static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) { +static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string& text, const std::vector<size_t>& offsets) { std::vector<size_t> bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size @@ -237,16 +271,16 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t start = offset_end; static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF; - auto _get_cpt = [&] (const size_t pos) -> uint32_t { + auto _get_cpt = [&](const size_t pos) -> uint32_t { return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE; }; - auto _get_flags = [&] (const size_t pos) -> codepoint_flags { + auto _get_flags = [&](const size_t pos) -> codepoint_flags { return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{}; }; size_t _prev_end = offset_ini; - auto _add_token = [&] (const size_t end) -> size_t { + auto _add_token = [&](const size_t end) -> size_t { assert(_prev_end <= end && end <= offset_end); size_t len = end - _prev_end; if (len > 0) { @@ -262,29 +296,29 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t return len; }; - for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) { + for (size_t pos = offset_ini; pos < offset_end; /*pos++*/) { const uint32_t cpt = _get_cpt(pos); const auto flags = _get_flags(pos); // regex: 's|'t|'re|'ve|'m|'ll|'d - if (cpt == '\'' && pos+1 < offset_end) { - uint32_t cpt_next = _get_cpt(pos+1); + if (cpt == '\'' && pos + 1 < offset_end) { + uint32_t cpt_next = _get_cpt(pos + 1); if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') { - pos += _add_token(pos+2); + pos += _add_token(pos + 2); continue; } - if (pos+2 < offset_end) { - uint32_t cpt_next_next = _get_cpt(pos+2); + if (pos + 2 < offset_end) { + uint32_t cpt_next_next = _get_cpt(pos + 2); if ((cpt_next == 'r' && cpt_next_next == 'e') || (cpt_next == 'v' && cpt_next_next == 'e') || (cpt_next == 'l' && cpt_next_next == 'l')) { - pos += _add_token(pos+3); + pos += _add_token(pos + 3); continue; } } } - auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags); + auto flags2 = (cpt == ' ' ? _get_flags(pos + 1) : flags); // regex: <space>?\p{L}+ if (flags2.is_letter) { pos += (cpt == ' '); @@ -314,12 +348,12 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t } size_t num_whitespaces = 0; - while (_get_flags(pos+num_whitespaces).is_whitespace) { + while (_get_flags(pos + num_whitespaces).is_whitespace) { num_whitespaces++; } // regex: \s+(?!\S) - if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) { + if (num_whitespaces > 1 && _get_cpt(pos + num_whitespaces) != OUT_OF_RANGE) { pos += num_whitespaces - 1; _add_token(pos); continue; @@ -341,7 +375,7 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t } // LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+" -static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) { +static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string& text, const std::vector<size_t>& offsets) { std::vector<size_t> bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size @@ -355,16 +389,16 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & start = offset_end; static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF; - auto _get_cpt = [&] (const size_t pos) -> uint32_t { + auto _get_cpt = [&](const size_t pos) -> uint32_t { return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE; }; - auto _get_flags = [&] (const size_t pos) -> codepoint_flags { + auto _get_flags = [&](const size_t pos) -> codepoint_flags { return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{}; }; size_t _prev_end = offset_ini; - auto _add_token = [&] (const size_t end) -> size_t { + auto _add_token = [&](const size_t end) -> size_t { assert(_prev_end <= end && end <= offset_end); size_t len = end - _prev_end; if (len > 0) { @@ -380,23 +414,23 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & return len; }; - for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) { + for (size_t pos = offset_ini; pos < offset_end; /*pos++*/) { const uint32_t cpt = _get_cpt(pos); const auto flags = _get_flags(pos); // regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive - if (cpt == '\'' && pos+1 < offset_end) { - uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1)); + if (cpt == '\'' && pos + 1 < offset_end) { + uint32_t cpt_next = unicode_tolower(_get_cpt(pos + 1)); if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') { - pos += _add_token(pos+2); + pos += _add_token(pos + 2); continue; } - if (pos+2 < offset_end) { - uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2)); + if (pos + 2 < offset_end) { + uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos + 2)); if ((cpt_next == 'r' && cpt_next_next == 'e') || (cpt_next == 'v' && cpt_next_next == 'e') || (cpt_next == 'l' && cpt_next_next == 'l')) { - pos += _add_token(pos+3); + pos += _add_token(pos + 3); continue; } } @@ -404,7 +438,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & // regex: [^\r\n\p{L}\p{N}]?\p{L}+ if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) { - if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters + if (flags.is_letter || _get_flags(pos + 1).is_letter) { // one or more letters pos++; while (_get_flags(pos).is_letter) { pos++; @@ -418,7 +452,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & if (flags.is_number) { size_t ini = pos; while (_get_flags(pos).is_number) { - if (++pos - ini >= 3 ) { + if (++pos - ini >= 3) { _add_token(pos); ini = pos; } @@ -428,7 +462,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & } // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]* - auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags); + auto flags2 = (cpt == ' ' ? _get_flags(pos + 1) : flags); if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) { pos += (cpt == ' '); while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) { @@ -444,8 +478,8 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & size_t num_whitespaces = 0; size_t last_end_r_or_n = 0; - while (_get_flags(pos+num_whitespaces).is_whitespace) { - uint32_t cpt2 = _get_cpt(pos+num_whitespaces); + while (_get_flags(pos + num_whitespaces).is_whitespace) { + uint32_t cpt2 = _get_cpt(pos + num_whitespaces); if (cpt2 == '\r' || cpt2 == '\n') { last_end_r_or_n = pos + num_whitespaces + 1; } @@ -460,7 +494,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & } // regex: \s+(?!\S) - if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) { + if (num_whitespaces > 1 && _get_cpt(pos + num_whitespaces) != OUT_OF_RANGE) { pos += num_whitespaces - 1; _add_token(pos); continue; @@ -482,7 +516,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & } // use std::wregex to split the text -static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) { +static std::vector<size_t> unicode_regex_split_stl(const std::wstring& wtext, const std::wstring& regex_expr, const std::vector<size_t>& offsets) { std::wregex expr(regex_expr); std::vector<size_t> bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size @@ -502,7 +536,7 @@ static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, c ++it; } - if (start_idx < (int64_t) offset) { + if (start_idx < (int64_t)offset) { bpe_offsets.emplace_back(offset - start_idx); } start += offset; @@ -512,7 +546,7 @@ static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, c } // use std::regex to split the text -static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) { +static std::vector<size_t> unicode_regex_split_stl(const std::string& text, const std::string& regex_expr, const std::vector<size_t>& offsets) { std::regex expr(regex_expr); std::vector<size_t> bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size @@ -532,7 +566,7 @@ static std::vector<size_t> unicode_regex_split_stl(const std::string & text, con ++it; } - if (start_idx < (int64_t) offset) { + if (start_idx < (int64_t)offset) { bpe_offsets.emplace_back(offset - start_idx); } start += offset; @@ -541,14 +575,15 @@ static std::vector<size_t> unicode_regex_split_stl(const std::string & text, con return bpe_offsets; } -static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) { +static std::vector<size_t> unicode_regex_split_custom(const std::string& text, const std::string& regex_expr, const std::vector<size_t>& offsets) { std::vector<size_t> bpe_offsets; if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") { bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets); - } else if ( - regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" || - regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") { + } + else if ( + regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" || + regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") { bpe_offsets = unicode_regex_split_custom_llama3(text, offsets); } @@ -589,8 +624,8 @@ std::string unicode_cpt_to_utf8(uint32_t cp) { throw std::invalid_argument("invalid codepoint"); } -std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) { - auto comp = [] (const uint32_t cpt, const range_nfd & range) { +std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t>& cpts) { + auto comp = [](const uint32_t cpt, const range_nfd& range) { return cpt < range.first; }; std::vector<uint32_t> result(cpts.size()); @@ -602,7 +637,7 @@ std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & c return result; } -std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) { +std::vector<uint32_t> unicode_cpts_from_utf8(const std::string& utf8) { std::vector<uint32_t> result; result.reserve(utf8.size()); size_t offset = 0; @@ -618,7 +653,7 @@ codepoint_flags unicode_cpt_flags(const uint32_t cp) { return cp < cpt_flags.size() ? cpt_flags[cp] : undef; } -codepoint_flags unicode_cpt_flags(const std::string & utf8) { +codepoint_flags unicode_cpt_flags(const std::string& utf8) { static const codepoint_flags undef(codepoint_flags::UNDEFINED); if (utf8.empty()) { return undef; // undefined @@ -632,7 +667,7 @@ std::string unicode_byte_to_utf8(uint8_t byte) { return map.at(byte); } -uint8_t unicode_utf8_to_byte(const std::string & utf8) { +uint8_t unicode_utf8_to_byte(const std::string& utf8) { static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map(); return map.at(utf8); } @@ -642,7 +677,7 @@ uint32_t unicode_tolower(uint32_t cp) { return it == unicode_map_lowercase.end() ? cp : it->second; } -std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) { +std::vector<std::string> unicode_regex_split(const std::string& text, const std::vector<std::string>& regex_exprs) { // unicode categories static const std::map<std::string, int> k_ucat_enum = { { "\\p{N}", codepoint_flags::NUMBER }, @@ -671,9 +706,9 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std // compute collapsed codepoints only if needed by at least one regex bool need_collapse = false; - for (auto & regex_expr : regex_exprs) { + for (auto& regex_expr : regex_exprs) { // search for unicode categories - for (const auto & ucat : k_ucat_enum) { + for (const auto& ucat : k_ucat_enum) { if (std::string::npos != regex_expr.find(ucat.first)) { need_collapse = true; break; @@ -702,18 +737,20 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std if (flags.is_whitespace) { //NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does. //text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback - text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback - } else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) { + text_collapsed[i] = (char)0x0B; // <vertical tab> as whitespace fallback + } + else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) { text_collapsed[i] = k_ucat_cpt.at(flags.category_flag()); - } else { - text_collapsed[i] = (char) 0xD0; // fallback + } + else { + text_collapsed[i] = (char)0xD0; // fallback } } } std::vector<size_t> bpe_offsets = { cpts.size() }; - for (auto & regex_expr : regex_exprs) { + for (auto& regex_expr : regex_exprs) { // first, see if we have an efficient custom regex implementation auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets); @@ -727,7 +764,7 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category // with the corresponding collapsed representation bool use_collapsed = false; - for (auto & ucat : k_ucat_enum) { + for (auto& ucat : k_ucat_enum) { if (std::string::npos != regex_expr.find(ucat.first)) { use_collapsed = true; break; @@ -786,7 +823,8 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std //printf("text_collapsed: %s\n", text_collapsed.c_str()); //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str()); bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets); - } else { + } + else { // no unicode category used, we can use std::wregex directly const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr); @@ -802,7 +840,8 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std //printf("regex_expr: %s\n", regex_expr.c_str()); bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets); } - } catch (std::regex_error & e) { + } + catch (std::regex_error& e) { fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str()); fprintf(stderr, "Regex error: %s\n", e.what()); throw std::runtime_error("Failed to process regex"); @@ -813,7 +852,7 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size size_t start = 0; - for (size_t & offset : bpe_offsets) { + for (size_t& offset : bpe_offsets) { bpe_words.emplace_back(); for (size_t i = start; i < start + offset; ++i) { bpe_words.back() += unicode_cpt_to_utf8(cpts[i]); |