summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorKawrakow <48489457+ikawrakow@users.noreply.github.com>2024-07-27 07:55:01 +0200
committerGitHub <noreply@github.com>2024-07-27 07:55:01 +0200
commit154e0d75fccf1784fe9ff6fd76a630b66563da3d (patch)
tree81ce6dbb5b1900c1aa78a879f0593c694cab9d27 /src
parent0684c3e9c70d49323b4fc517128cbe222cab7f96 (diff)
Merge mainline llama.cpp (#3)
* Merging mainline - WIP * Merging mainline - WIP AVX2 and CUDA appear to work. CUDA performance seems slightly (~1-2%) lower as it is so often the case with llama.cpp/ggml after some "improvements" have been made. * Merging mainline - fix Metal * Remove check --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src')
-rw-r--r--src/CMakeLists.txt33
-rw-r--r--src/llama-grammar.cpp539
-rw-r--r--src/llama-grammar.h39
-rw-r--r--src/llama-impl.h26
-rw-r--r--src/llama-sampling.cpp635
-rw-r--r--src/llama-sampling.h56
-rw-r--r--src/llama-vocab.cpp1721
-rw-r--r--src/llama-vocab.h130
-rw-r--r--src/llama.cpp19336
-rw-r--r--src/unicode-data.cpp7032
-rw-r--r--src/unicode-data.h20
-rw-r--r--src/unicode.cpp818
-rw-r--r--src/unicode.h67
13 files changed, 30452 insertions, 0 deletions
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt
new file mode 100644
index 00000000..46a6ad56
--- /dev/null
+++ b/src/CMakeLists.txt
@@ -0,0 +1,33 @@
+# TODO: should not use this
+if (WIN32)
+ if (BUILD_SHARED_LIBS)
+ set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
+ endif()
+endif()
+
+#
+# libraries
+#
+
+# llama
+
+add_library(llama
+ ../include/llama.h
+ llama.cpp
+ llama-vocab.cpp
+ llama-grammar.cpp
+ llama-sampling.cpp
+ unicode.h
+ unicode.cpp
+ unicode-data.cpp
+ )
+
+target_include_directories(llama PUBLIC . ../include)
+target_compile_features (llama PUBLIC cxx_std_11) # don't bump
+
+target_link_libraries(llama PUBLIC ggml)
+
+if (BUILD_SHARED_LIBS)
+ set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
+ target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
+endif()
diff --git a/src/llama-grammar.cpp b/src/llama-grammar.cpp
new file mode 100644
index 00000000..bd9322e2
--- /dev/null
+++ b/src/llama-grammar.cpp
@@ -0,0 +1,539 @@
+#include "llama-grammar.h"
+
+#include "llama-vocab.h"
+#include "llama-sampling.h"
+
+#include <algorithm>
+
+// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
+// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
+std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
+ const std::string & src,
+ llama_partial_utf8 partial_start) {
+ static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
+ const char * pos = src.c_str();
+ std::vector<uint32_t> code_points;
+
+ // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
+ code_points.reserve(src.size() + 1);
+ uint32_t value = partial_start.value;
+ int n_remain = partial_start.n_remain;
+
+ // continue previous decode, if applicable
+ while (*pos != 0 && n_remain > 0) {
+ uint8_t next_byte = static_cast<uint8_t>(*pos);
+ if ((next_byte >> 6) != 2) {
+ // invalid sequence, abort
+ code_points.push_back(0);
+ return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
+ }
+ value = (value << 6) + (next_byte & 0x3F);
+ ++pos;
+ --n_remain;
+ }
+
+ if (partial_start.n_remain > 0 && n_remain == 0) {
+ code_points.push_back(value);
+ }
+
+ // decode any subsequent utf-8 sequences, which may end in an incomplete one
+ while (*pos != 0) {
+ uint8_t first_byte = static_cast<uint8_t>(*pos);
+ uint8_t highbits = first_byte >> 4;
+ n_remain = lookup[highbits] - 1;
+
+ if (n_remain < 0) {
+ // invalid sequence, abort
+ code_points.clear();
+ code_points.push_back(0);
+ return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
+ }
+
+ uint8_t mask = (1 << (7 - n_remain)) - 1;
+ value = first_byte & mask;
+
+ ++pos;
+ while (*pos != 0 && n_remain > 0) {
+ value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
+ ++pos;
+ --n_remain;
+ }
+ if (n_remain == 0) {
+ code_points.push_back(value);
+ }
+ }
+ code_points.push_back(0);
+
+ return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
+}
+
+const llama_grammar_rules & llama_grammar_get_rules(const struct llama_grammar * grammar) {
+ return grammar->rules;
+}
+
+llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar) {
+ return grammar->stacks;
+}
+
+// returns true iff pos points to the end of one of the definitions of a rule
+static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
+ switch (pos->type) {
+ case LLAMA_GRETYPE_END: return true; // NOLINT
+ case LLAMA_GRETYPE_ALT: return true; // NOLINT
+ default: return false;
+ }
+}
+
+// returns true iff chr satisfies the char range at pos (regular or inverse range)
+// asserts that pos is pointing to a char range element
+static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
+ const llama_grammar_element * pos,
+ const uint32_t chr) {
+
+ bool found = false;
+ bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
+
+ GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
+
+ do {
+ if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
+ // inclusive range, e.g. [a-z]
+ found = found || (pos->value <= chr && chr <= pos[1].value);
+ pos += 2;
+ } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
+ // Any character matches "."
+ found = true;
+ pos += 1;
+ } else {
+ // exact char match, e.g. [a] or "a"
+ found = found || pos->value == chr;
+ pos += 1;
+ }
+ } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
+
+ return std::make_pair(found == is_positive_char, pos);
+}
+
+// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
+// range at pos (regular or inverse range)
+// asserts that pos is pointing to a char range element
+static bool llama_grammar_match_partial_char(
+ const llama_grammar_element * pos,
+ const llama_partial_utf8 partial_utf8) {
+ bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
+ GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
+
+ uint32_t partial_value = partial_utf8.value;
+ int n_remain = partial_utf8.n_remain;
+
+ // invalid sequence or 7-bit char split across 2 bytes (overlong)
+ if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
+ return false;
+ }
+
+ // range of possible code points this partial UTF-8 sequence could complete to
+ uint32_t low = partial_value << (n_remain * 6);
+ uint32_t high = low | ((1 << (n_remain * 6)) - 1);
+
+ if (low == 0) {
+ if (n_remain == 2) {
+ low = 1 << 11;
+ } else if (n_remain == 3) {
+ low = 1 << 16;
+ }
+ }
+
+ do {
+ if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
+ // inclusive range, e.g. [a-z]
+ if (pos->value <= high && low <= pos[1].value) {
+ return is_positive_char;
+ }
+ pos += 2;
+ } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
+ // Any character matches "."
+ return true;
+ } else {
+ // exact char match, e.g. [a] or "a"
+ if (low <= pos->value && pos->value <= high) {
+ return is_positive_char;
+ }
+ pos += 1;
+ }
+ } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
+
+ return !is_positive_char;
+}
+
+// transforms a grammar pushdown stack into N possible stacks, all ending
+// at a character range (terminal element)
+static void llama_grammar_advance_stack(
+ const llama_grammar_rules & rules,
+ const llama_grammar_stack & stack,
+ llama_grammar_stacks & new_stacks) {
+ if (stack.empty()) {
+ if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
+ new_stacks.emplace_back(stack);
+ }
+ return;
+ }
+
+ const llama_grammar_element * pos = stack.back();
+
+ switch (pos->type) {
+ case LLAMA_GRETYPE_RULE_REF: {
+ const size_t rule_id = static_cast<size_t>(pos->value);
+ const llama_grammar_element * subpos = rules[rule_id].data();
+ do {
+ // init new stack without the top (pos)
+ llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
+ if (!llama_grammar_is_end_of_sequence(pos + 1)) {
+ // if this rule ref is followed by another element, add that to stack
+ new_stack.push_back(pos + 1);
+ }
+ if (!llama_grammar_is_end_of_sequence(subpos)) {
+ // if alternate is nonempty, add to stack
+ new_stack.push_back(subpos);
+ }
+ llama_grammar_advance_stack(rules, new_stack, new_stacks);
+ while (!llama_grammar_is_end_of_sequence(subpos)) {
+ // scan to end of alternate def
+ subpos++;
+ }
+ if (subpos->type == LLAMA_GRETYPE_ALT) {
+ // there's another alternate def of this rule to process
+ subpos++;
+ } else {
+ break;
+ }
+ } while (true);
+ break;
+ }
+ case LLAMA_GRETYPE_CHAR:
+ case LLAMA_GRETYPE_CHAR_NOT:
+ case LLAMA_GRETYPE_CHAR_ANY:
+ if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
+ // only add the stack if it's not a duplicate of one we already have
+ new_stacks.emplace_back(stack);
+ }
+ break;
+ default:
+ // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
+ // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
+ // those
+ GGML_ASSERT(false);
+ }
+}
+
+// takes a set of possible pushdown stacks on a grammar, which are required to
+// be positioned at a character range (see `llama_grammar_advance_stack`), and
+// produces the N possible stacks if the given char is accepted at those
+// positions
+void llama_grammar_accept(
+ const llama_grammar_rules & rules,
+ const llama_grammar_stacks & stacks,
+ const uint32_t chr,
+ llama_grammar_stacks & new_stacks) {
+ new_stacks.clear();
+
+ for (const auto & stack : stacks) {
+ if (stack.empty()) {
+ continue;
+ }
+
+ auto match = llama_grammar_match_char(stack.back(), chr);
+ if (match.first) {
+ const llama_grammar_element * pos = match.second;
+
+ // update top of stack to next element, if any
+ llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
+ if (!llama_grammar_is_end_of_sequence(pos)) {
+ new_stack.push_back(pos);
+ }
+ llama_grammar_advance_stack(rules, new_stack, new_stacks);
+ }
+ }
+}
+
+static llama_grammar_candidates llama_grammar_reject_candidates(
+ const llama_grammar_rules & rules,
+ const llama_grammar_stacks & stacks,
+ const llama_grammar_candidates & candidates) {
+ GGML_ASSERT(!stacks.empty()); // REVIEW
+
+ if (candidates.empty()) {
+ return {};
+ }
+
+ auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
+
+ for (size_t i = 1, size = stacks.size(); i < size; ++i) {
+ rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
+ }
+ return rejects;
+}
+
+llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
+ const llama_grammar_rules & rules,
+ const llama_grammar_stack & stack,
+ const llama_grammar_candidates & candidates) {
+
+ llama_grammar_candidates rejects;
+ rejects.reserve(candidates.size());
+
+ if (stack.empty()) {
+ for (const auto & tok : candidates) {
+ if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
+ rejects.push_back(tok);
+ }
+ }
+ return rejects;
+ }
+
+ const llama_grammar_element * stack_pos = stack.back();
+
+ llama_grammar_candidates next_candidates;
+ next_candidates.reserve(candidates.size());
+
+ for (const auto & tok : candidates) {
+ if (*tok.code_points == 0) {
+ // reached end of full codepoints in token, reject iff it ended in a partial sequence
+ // that cannot satisfy this position in grammar
+ if (tok.partial_utf8.n_remain != 0 &&
+ !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
+ rejects.push_back(tok);
+ }
+ } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
+ next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
+ } else {
+ rejects.push_back(tok);
+ }
+ }
+
+ const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
+
+ // update top of stack to next element, if any
+ llama_grammar_stack stack_after(stack.begin(), stack.end() - 1);
+ if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
+ stack_after.push_back(stack_pos_after);
+ }
+ llama_grammar_stacks next_stacks;
+ llama_grammar_advance_stack(rules, stack_after, next_stacks);
+
+ auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
+ for (const auto & tok : next_rejects) {
+ rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
+ }
+
+ return rejects;
+}
+
+static bool llama_grammar_detect_left_recursion(
+ const llama_grammar_rules & rules,
+ size_t rule_index,
+ std::vector<bool> * rules_visited,
+ std::vector<bool> * rules_in_progress,
+ std::vector<bool> * rules_may_be_empty) {
+ if ((*rules_in_progress)[rule_index]) {
+ return true;
+ }
+
+ (*rules_in_progress)[rule_index] = true;
+
+ const llama_grammar_rule & rule = rules[rule_index];
+
+ // First check if the rule might produce the empty string. This could be done combined with the second
+ // step but it's more readable as two steps.
+ bool at_rule_start = true;
+ for (size_t i = 0; i < rule.size(); i++) {
+ if (llama_grammar_is_end_of_sequence(&rule[i])) {
+ if (at_rule_start) {
+ (*rules_may_be_empty)[rule_index] = true;
+ break;
+ }
+ at_rule_start = true;
+ } else {
+ at_rule_start = false;
+ }
+ }
+
+ // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
+ // be empty)
+ bool recurse_into_nonterminal = true;
+ for (size_t i = 0; i < rule.size(); i++) {
+ if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
+ if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
+ return true;
+ }
+ if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
+ recurse_into_nonterminal = false;
+ }
+ } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
+ recurse_into_nonterminal = true;
+ } else {
+ recurse_into_nonterminal = false;
+ }
+ }
+
+ (*rules_in_progress)[rule_index] = false;
+ (*rules_visited)[rule_index] = true;
+ return false;
+}
+
+//
+// grammar - external
+//
+
+struct llama_grammar * llama_grammar_init_impl(
+ const llama_grammar_element ** rules,
+ size_t n_rules,
+ size_t start_rule_index) {
+ const llama_grammar_element * pos;
+
+ // copy rule definitions into vectors
+ llama_grammar_rules vec_rules(n_rules);
+ for (size_t i = 0; i < n_rules; i++) {
+ for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
+ vec_rules[i].push_back(*pos);
+ }
+ vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
+ }
+
+ // Check for left recursion
+ std::vector<bool> rules_visited(n_rules);
+ std::vector<bool> rules_in_progress(n_rules);
+ std::vector<bool> rules_may_be_empty(n_rules);
+ for (size_t i = 0; i < n_rules; i++) {
+ if (rules_visited[i]) {
+ continue;
+ }
+ if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
+ LLAMA_LOG_ERROR("unsupported grammar, left recursion detected for nonterminal at index %zu", i);
+ return nullptr;
+ }
+ }
+
+ // loop over alternates of start rule to build initial stacks
+ llama_grammar_stacks stacks;
+ pos = vec_rules[start_rule_index].data();
+ do {
+ llama_grammar_stack stack;
+ if (!llama_grammar_is_end_of_sequence(pos)) {
+ // if alternate is nonempty, add to stack
+ stack.push_back(pos);
+ }
+ llama_grammar_advance_stack(vec_rules, stack, stacks);
+ while (!llama_grammar_is_end_of_sequence(pos)) {
+ // scan to end of alternate def
+ pos++;
+ }
+ if (pos->type == LLAMA_GRETYPE_ALT) {
+ // there's another alternate def of this rule to process
+ pos++;
+ } else {
+ break;
+ }
+ } while (true);
+
+ // Important: vec_rules has to be moved here, not copied, because stacks contains
+ // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
+ // then the pointers would be invalidated when the local vec_rules goes out of scope.
+ return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
+}
+
+void llama_grammar_free_impl(struct llama_grammar * grammar) {
+ delete grammar;
+}
+
+struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar) {
+ llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
+
+ // redirect elements in stacks to point to new rules
+ for (size_t is = 0; is < result->stacks.size(); is++) {
+ for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
+ for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
+ for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
+ if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
+ result->stacks[is][ie] = &result->rules[ir0][ir1];
+ }
+ }
+ }
+ }
+ }
+
+ return result;
+}
+
+void llama_grammar_sample_impl(const struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token_data_array * candidates) {
+ GGML_ASSERT(grammar);
+ GGML_ASSERT(vocab);
+
+ int64_t t_start_sample_us = ggml_time_us();
+
+ bool allow_eog = false;
+ for (const auto & stack : grammar->stacks) {
+ if (stack.empty()) {
+ allow_eog = true;
+ break;
+ }
+ }
+
+ std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
+ candidates_decoded.reserve(candidates->size);
+
+ llama_grammar_candidates candidates_grammar;
+ candidates_grammar.reserve(candidates->size);
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ const llama_token id = candidates->data[i].id;
+ const std::string & piece = vocab->cache_token_to_piece.at(id);
+
+ if (llama_token_is_eog_impl(*vocab, id)) {
+ if (!allow_eog) {
+ candidates->data[i].logit = -INFINITY;
+ }
+ } else if (piece.empty() || piece[0] == 0) {
+ candidates->data[i].logit = -INFINITY;
+ } else {
+ candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
+ candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
+ }
+ }
+
+ const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
+ for (const auto & reject : rejects) {
+ candidates->data[reject.index].logit = -INFINITY;
+ }
+
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+}
+
+void llama_grammar_accept_token_impl(struct llama_grammar * grammar, const struct llama_vocab * vocab, const struct llama_sampling * smpl, llama_token token) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ if (llama_token_is_eog_impl(*vocab, token)) {
+ for (const auto & stack : grammar->stacks) {
+ if (stack.empty()) {
+ return;
+ }
+ }
+ GGML_ASSERT(false);
+ }
+
+ const std::string & piece = vocab->cache_token_to_piece.at(token);
+
+ // Note terminating 0 in decoded string
+ const auto decoded = decode_utf8(piece, grammar->partial_utf8);
+ const auto & code_points = decoded.first;
+
+ llama_grammar_stacks tmp_new_stacks;
+ for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
+ llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
+ grammar->stacks = tmp_new_stacks;
+ }
+
+ grammar->partial_utf8 = decoded.second;
+ GGML_ASSERT(!grammar->stacks.empty());
+
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+}
diff --git a/src/llama-grammar.h b/src/llama-grammar.h
new file mode 100644
index 00000000..695ea063
--- /dev/null
+++ b/src/llama-grammar.h
@@ -0,0 +1,39 @@
+#pragma once
+
+#include "llama-impl.h"
+
+struct llama_vocab;
+struct llama_sampling;
+
+struct llama_grammar {
+ const llama_grammar_rules rules;
+ llama_grammar_stacks stacks;
+
+ // buffer for partially generated UTF-8 sequence from accepted tokens
+ llama_partial_utf8 partial_utf8;
+};
+
+//
+// internal API
+//
+
+struct llama_grammar * llama_grammar_init_impl(
+ const llama_grammar_element ** rules,
+ size_t n_rules,
+ size_t start_rule_index);
+
+void llama_grammar_free_impl(struct llama_grammar * grammar);
+
+struct llama_grammar * llama_grammar_copy_impl(const struct llama_grammar * grammar);
+
+void llama_grammar_sample_impl(
+ const struct llama_grammar * grammar,
+ const struct llama_vocab * vocab,
+ const struct llama_sampling * smpl,
+ llama_token_data_array * candidates);
+
+void llama_grammar_accept_token_impl(
+ struct llama_grammar * grammar,
+ const struct llama_vocab * vocab,
+ const struct llama_sampling * smpl,
+ llama_token token);
diff --git a/src/llama-impl.h b/src/llama-impl.h
new file mode 100644
index 00000000..dcc8c1c1
--- /dev/null
+++ b/src/llama-impl.h
@@ -0,0 +1,26 @@
+#pragma once
+
+#define LLAMA_API_INTERNAL
+#include "llama.h"
+
+#ifdef __GNUC__
+#ifdef __MINGW32__
+#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
+#else
+#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
+#endif
+#else
+#define LLAMA_ATTRIBUTE_FORMAT(...)
+#endif
+
+//
+// logging
+//
+
+LLAMA_ATTRIBUTE_FORMAT(2, 3)
+void llama_log_internal (ggml_log_level level, const char * format, ...);
+void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
+
+#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
+#define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
+#define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp
new file mode 100644
index 00000000..8910f6d6
--- /dev/null
+++ b/src/llama-sampling.cpp
@@ -0,0 +1,635 @@
+#include "llama-sampling.h"
+
+#include <algorithm>
+#include <cstring>
+#include <ctime>
+#include <cfloat>
+#include <numeric>
+#include <unordered_map>
+
+static void llama_log_softmax(float * array, size_t size) {
+ float max_l = *std::max_element(array, array + size);
+ float sum = 0.f;
+ for (size_t i = 0; i < size; ++i) {
+ float p = expf(array[i] - max_l);
+ sum += p;
+ array[i] = p;
+ }
+
+ for (size_t i = 0; i < size; ++i) {
+ array[i] = logf(array[i] / sum);
+ }
+}
+
+void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) {
+ if (seed == LLAMA_DEFAULT_SEED) {
+ seed = time(NULL);
+ }
+
+ smpl->rng.seed(seed);
+}
+
+void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
+ GGML_ASSERT(candidates->size > 0);
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Sort the logits in descending order
+ if (!candidates->sorted) {
+ std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit > b.logit;
+ });
+ candidates->sorted = true;
+ }
+
+ float max_l = candidates->data[0].logit;
+ float cum_sum = 0.0f;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ float p = expf(candidates->data[i].logit - max_l);
+ candidates->data[i].p = p;
+ cum_sum += p;
+ }
+ for (size_t i = 0; i < candidates->size; ++i) {
+ candidates->data[i].p /= cum_sum;
+ }
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
+ // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
+ // if (k >= (int32_t)candidates->size) {
+ // return;
+ // }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ if (k <= 0) {
+ k = candidates->size;
+ }
+
+ k = std::max(k, (int) min_keep);
+ k = std::min(k, (int) candidates->size);
+
+ // Sort scores in descending order
+ if (!candidates->sorted) {
+ auto comp = [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit > b.logit;
+ };
+ if (k <= 128) {
+ std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
+ } else {
+ constexpr int nbuckets = 128;
+ constexpr float bucket_low = -10.0f;
+ constexpr float bucket_high = 10.0f;
+ constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
+ constexpr float bucker_inter = -bucket_low * bucket_scale;
+
+ std::vector<int> bucket_idx(candidates->size);
+ std::vector<int> histo(nbuckets, 0);
+
+ for (int i = 0; i < (int)candidates->size; ++i) {
+ const float val = candidates->data[i].logit;
+ int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
+ ib = std::max(0, std::min(nbuckets-1, ib));
+ bucket_idx[i] = ib;
+ ++histo[ib];
+ }
+ int nhave = 0;
+ int ib = nbuckets - 1;
+ for ( ; ib >= 0; --ib) {
+ nhave += histo[ib];
+ if (nhave >= k) break;
+ }
+ std::vector<llama_token_data> tmp_tokens(nhave);
+ auto ptr = tmp_tokens.data();
+ std::vector<llama_token_data*> bucket_ptrs;
+ bucket_ptrs.reserve(nbuckets - ib);
+ for (int j = nbuckets - 1; j >= ib; --j) {
+ bucket_ptrs.push_back(ptr);
+ ptr += histo[j];
+ }
+ for (int i = 0; i < (int)candidates->size; ++i) {
+ int j = bucket_idx[i];
+ if (j >= ib) {
+ *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
+ }
+ }
+
+ ptr = tmp_tokens.data();
+ int ndone = 0;
+ for (int j = nbuckets-1; j > ib; --j) {
+ std::sort(ptr, ptr + histo[j], comp);
+ ptr += histo[j];
+ ndone += histo[j];
+ }
+ std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
+
+ std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
+
+ }
+ candidates->sorted = true;
+ }
+ candidates->size = k;
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_top_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
+ if (p >= 1.0f) {
+ return;
+ }
+
+ llama_sample_softmax_impl(smpl, candidates);
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Compute the cumulative probabilities
+ float cum_sum = 0.0f;
+ size_t last_idx = candidates->size;
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ cum_sum += candidates->data[i].p;
+
+ // Check if the running sum is at least p or if we have kept at least min_keep tokens
+ // we set the last index to i+1 to indicate that the current iterate should be included in the set
+ if (cum_sum >= p && i + 1 >= min_keep) {
+ last_idx = i + 1;
+ break;
+ }
+ }
+
+ // Resize the output vector to keep only the top-p tokens
+ candidates->size = last_idx;
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
+ if (p <= 0.0f || !candidates->size) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ bool min_p_applied = false;
+
+ // if the candidates aren't sorted, try the unsorted implementation first
+ if (!candidates->sorted) {
+ std::vector<llama_token_data> filtered_tokens;
+
+ float max_logit = -FLT_MAX;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ max_logit = std::max(max_logit, candidates->data[i].logit);
+ }
+ const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ if (candidates->data[i].logit >= min_logit) {
+ filtered_tokens.push_back(candidates->data[i]);
+ }
+ }
+
+ // if we have enough values the operation was a success
+ if (filtered_tokens.size() >= min_keep) {
+ memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
+ candidates->size = filtered_tokens.size();
+ min_p_applied = true;
+ }
+ }
+
+ // if the candidates are sorted or the unsorted implementation failed, use this implementation
+ if (!min_p_applied) {
+ // Sort the logits in descending order
+ if (!candidates->sorted) {
+ std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit > b.logit;
+ });
+ candidates->sorted = true;
+ }
+
+ const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
+ size_t i = 1; // first token always matches
+
+ for (; i < candidates->size; ++i) {
+ if (candidates->data[i].logit < min_logit && i >= min_keep) {
+ break; // prob too small
+ }
+ }
+
+ // Resize the output vector to keep only the matching tokens
+ candidates->size = i;
+ }
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep) {
+ if (z >= 1.0f || candidates->size <= 2) {
+ return;
+ }
+
+ llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Compute the first and second derivatives
+ std::vector<float> first_derivatives(candidates->size - 1);
+ std::vector<float> second_derivatives(candidates->size - 2);
+
+ for (size_t i = 0; i < first_derivatives.size(); ++i) {
+ first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
+ }
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
+ }
+
+ // Calculate absolute value of second derivatives
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ second_derivatives[i] = std::abs(second_derivatives[i]);
+ }
+
+ // Normalize the second derivatives
+ {
+ const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
+
+ if (second_derivatives_sum > 1e-6f) {
+ for (float & value : second_derivatives) {
+ value /= second_derivatives_sum;
+ }
+ } else {
+ for (float & value : second_derivatives) {
+ value = 1.0f / second_derivatives.size();
+ }
+ }
+ }
+
+ float cum_sum = 0.0f;
+ size_t last_idx = candidates->size;
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ cum_sum += second_derivatives[i];
+
+ // Check if the running sum is greater than z or if we have kept at least min_keep tokens
+ if (cum_sum > z && i >= min_keep) {
+ last_idx = i;
+ break;
+ }
+ }
+
+ // Resize the output vector to keep only the tokens above the tail location
+ candidates->size = last_idx;
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep) {
+ // Reference implementation:
+ // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
+ if (p >= 1.0f) {
+ return;
+ }
+
+ // Compute the softmax of logits and calculate entropy
+ llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ float entropy = 0.0f;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ entropy += -candidates->data[i].p * logf(candidates->data[i].p);
+ }
+
+ // Compute the absolute difference between negative log probability and entropy for each candidate
+ std::vector<float> shifted_scores;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
+ shifted_scores.push_back(shifted_score);
+ }
+
+ // Sort tokens based on the shifted_scores and their corresponding indices
+ std::vector<size_t> indices(candidates->size);
+ std::iota(indices.begin(), indices.end(), 0);
+
+ std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
+ return shifted_scores[a] < shifted_scores[b];
+ });
+
+ // Compute the cumulative probabilities
+ float cum_sum = 0.0f;
+ size_t last_idx = indices.size();
+
+ for (size_t i = 0; i < indices.size(); ++i) {
+ size_t idx = indices[i];
+ cum_sum += candidates->data[idx].p;
+
+ // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
+ if (cum_sum > p && i >= min_keep - 1) {
+ last_idx = i + 1;
+ break;
+ }
+ }
+
+ // Resize the output vector to keep only the locally typical tokens
+ std::vector<llama_token_data> new_candidates;
+ for (size_t i = 0; i < last_idx; ++i) {
+ size_t idx = indices[i];
+ new_candidates.push_back(candidates->data[idx]);
+ }
+
+ // Replace the data in candidates with the new_candidates data
+ std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
+ candidates->size = new_candidates.size();
+ candidates->sorted = false;
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_entropy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // no need to do anything if there is only one (or zero) candidates
+ if(candidates->size <= 1) {
+ return;
+ }
+
+ // Calculate maximum possible entropy
+ float max_entropy = -logf(1.0f / candidates->size);
+
+ llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
+
+ // Calculate entropy of the softmax probabilities
+ float entropy = 0.0f;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ float prob = candidates->data[i].p;
+ if (prob > 0.0f) { // Ensure no log(0)
+ entropy -= prob * logf(prob);
+ }
+ }
+
+ // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates->size != 1 above)
+ float normalized_entropy = entropy / max_entropy;
+
+ // Map the normalized entropy to the desired temperature range using the power function
+ float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
+
+#ifdef DEBUG
+ LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
+ LLAMA_LOG_INFO("Entropy: %f\n", entropy);
+ LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
+ LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
+ LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
+ LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
+#endif
+
+ // Apply the dynamically calculated temperature scaling
+ for (size_t i = 0; i < candidates->size; ++i) {
+ candidates->data[i].logit /= dyn_temp;
+ }
+
+ // Re-compute softmax probabilities after scaling logits with dynamic temperature
+ double max_l_double = candidates->data[0].logit;
+ double cum_sum_double = 0.0;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ double p = exp(candidates->data[i].logit - max_l_double);
+ candidates->data[i].p = p; // Store the scaled probability
+ cum_sum_double += p;
+ }
+ for (size_t i = 0; i < candidates->size; ++i) {
+ candidates->data[i].p /= cum_sum_double; // Re-normalize the probabilities
+ }
+
+#ifdef DEBUG
+ // Print the updated top 25 probabilities after temperature scaling
+ LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
+ for (size_t i = 0; i < 25 && i < candidates->size; ++i) {
+ LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates->data[i].p * 100.0f);
+ }
+#endif
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float temp) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ candidates->data[i].logit /= temp;
+ }
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_repetition_penalties_impl(
+ struct llama_sampling * smpl,
+ llama_token_data_array * candidates,
+ const llama_token * last_tokens,
+ size_t penalty_last_n,
+ float penalty_repeat,
+ float penalty_freq,
+ float penalty_present) {
+ if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Create a frequency map to count occurrences of each token in last_tokens
+ std::unordered_map<llama_token, int> token_count;
+ for (size_t i = 0; i < penalty_last_n; ++i) {
+ token_count[last_tokens[i]]++;
+ }
+
+ // Apply frequency and presence penalties to the candidates
+ for (size_t i = 0; i < candidates->size; ++i) {
+ const auto token_iter = token_count.find(candidates->data[i].id);
+ if (token_iter == token_count.end()) {
+ continue;
+ }
+
+ const int count = token_iter->second;
+
+ // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
+ // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
+ if (candidates->data[i].logit <= 0) {
+ candidates->data[i].logit *= penalty_repeat;
+ } else {
+ candidates->data[i].logit /= penalty_repeat;
+ }
+
+ candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
+ }
+
+ candidates->sorted = false;
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_apply_guidance_impl(
+ struct llama_sampling * smpl,
+ float * logits,
+ float * logits_guidance,
+ float scale) {
+ GGML_ASSERT(smpl);
+
+ const auto t_start_sample_us = ggml_time_us();
+ const auto n_vocab = smpl->n_vocab;
+
+ llama_log_softmax(logits, n_vocab);
+ llama_log_softmax(logits_guidance, n_vocab);
+
+ for (int i = 0; i < n_vocab; ++i) {
+ auto & l = logits[i];
+ const auto & g = logits_guidance[i];
+
+ l = scale * (l - g) + g;
+ }
+
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+}
+
+llama_token llama_sample_token_mirostat_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
+ GGML_ASSERT(smpl);
+
+ const int32_t n_vocab = float(smpl->n_vocab);
+
+ int64_t t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
+
+ // Estimate s_hat using the most probable m tokens
+ float s_hat = 0.0;
+ float sum_ti_bi = 0.0;
+ float sum_ti_sq = 0.0;
+ for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
+ float t_i = logf(float(i + 2) / float(i + 1));
+ float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
+ sum_ti_bi += t_i * b_i;
+ sum_ti_sq += t_i * t_i;
+ }
+ s_hat = sum_ti_bi / sum_ti_sq;
+
+ // Compute k from the estimated s_hat and target surprise value
+ float epsilon_hat = s_hat - 1;
+ float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(n_vocab, -epsilon_hat)), 1 / s_hat);
+
+ // Sample the next word X using top-k sampling
+ llama_sample_top_k_impl((struct llama_sampling *) nullptr, candidates, int(k), 1);
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ llama_token X = llama_sample_token_impl(smpl, candidates);
+ t_start_sample_us = ggml_time_us();
+
+ // Compute error as the difference between observed surprise and target surprise value
+ size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return candidate.id == X;
+ }));
+ float observed_surprise = -log2f(candidates->data[X_idx].p);
+ float e = observed_surprise - tau;
+
+ // Update mu using the learning rate and error
+ *mu = *mu - eta * e;
+
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ return X;
+}
+
+llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu) {
+ int64_t t_start_sample_us;
+ t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax_impl(smpl, candidates);
+
+ // Truncate the words with surprise values greater than mu
+ candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return -log2f(candidate.p) > *mu;
+ }));
+
+ if (candidates->size == 0) {
+ candidates->size = 1;
+ }
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+
+ // Normalize the probabilities of the remaining words
+ llama_sample_softmax_impl(smpl, candidates);
+
+ // Sample the next word X from the remaining words
+ llama_token X = llama_sample_token_impl(smpl, candidates);
+ t_start_sample_us = ggml_time_us();
+
+ // Compute error as the difference between observed surprise and target surprise value
+ size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return candidate.id == X;
+ }));
+ float observed_surprise = -log2f(candidates->data[X_idx].p);
+ float e = observed_surprise - tau;
+
+ // Update mu using the learning rate and error
+ *mu = *mu - eta * e;
+
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+ return X;
+}
+
+llama_token llama_sample_token_greedy_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Find max element
+ auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit < b.logit;
+ });
+
+ llama_token result = max_iter->id;
+ if (smpl) {
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ smpl->n_sample++;
+ }
+ return result;
+}
+
+llama_token llama_sample_token_with_rng_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng) {
+ GGML_ASSERT(smpl);
+
+ const int64_t t_start_sample_us = ggml_time_us();
+ llama_sample_softmax_impl((struct llama_sampling *) nullptr, candidates);
+
+ std::vector<float> probs;
+ probs.reserve(candidates->size);
+ for (size_t i = 0; i < candidates->size; ++i) {
+ probs.push_back(candidates->data[i].p);
+ }
+
+ std::discrete_distribution<> dist(probs.begin(), probs.end());
+ int idx = dist(rng);
+
+ llama_token result = candidates->data[idx].id;
+
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ smpl->n_sample++;
+
+ return result;
+}
+
+llama_token llama_sample_token_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
+ return llama_sample_token_with_rng_impl(smpl, candidates, smpl->rng);
+}
diff --git a/src/llama-sampling.h b/src/llama-sampling.h
new file mode 100644
index 00000000..f7f8e3ef
--- /dev/null
+++ b/src/llama-sampling.h
@@ -0,0 +1,56 @@
+#pragma once
+
+#include "llama-impl.h"
+
+struct llama_sampling {
+ llama_sampling(int32_t n_vocab) : n_vocab(n_vocab) {}
+
+ std::mt19937 rng;
+
+ int32_t n_vocab = 0;
+
+ mutable int64_t t_sample_us = 0;
+ mutable int32_t n_sample = 0;
+
+ void reset_timings() const {
+ t_sample_us = 0;
+ n_sample = 0;
+ }
+};
+
+//
+// internal API
+//
+
+void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed);
+
+void llama_sample_softmax_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
+void llama_sample_top_k_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep);
+void llama_sample_top_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
+void llama_sample_min_p_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
+void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float z, size_t min_keep);
+void llama_sample_typical_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
+void llama_sample_entropy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val);
+void llama_sample_temp_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float temp);
+
+void llama_sample_repetition_penalties_impl(
+ struct llama_sampling * smpl,
+ llama_token_data_array * candidates,
+ const llama_token * last_tokens,
+ size_t penalty_last_n,
+ float penalty_repeat,
+ float penalty_freq,
+ float penalty_present);
+
+void llama_sample_apply_guidance_impl(
+ struct llama_sampling * smpl,
+ float * logits,
+ float * logits_guidance,
+ float scale);
+
+llama_token llama_sample_token_mirostat_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu);
+llama_token llama_sample_token_mirostat_v2_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float tau, float eta, float * mu);
+llama_token llama_sample_token_greedy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
+llama_token llama_sample_token_with_rng_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, std::mt19937 & rng);
+llama_token llama_sample_token_impl (struct llama_sampling * smpl, llama_token_data_array * candidates);
+
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
new file mode 100644
index 00000000..c482b368
--- /dev/null
+++ b/src/llama-vocab.cpp
@@ -0,0 +1,1721 @@
+#include "llama-vocab.h"
+
+#include "unicode.h"
+
+#include <algorithm>
+#include <cassert>
+#include <cfloat>
+#include <climits>
+#include <cstdarg>
+#include <cstring>
+#include <forward_list>
+#include <queue>
+#include <sstream>
+
+//
+// helpers
+//
+
+static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
+ std::string result;
+ for (size_t pos = 0; ; pos += search.length()) {
+ auto new_pos = s.find(search, pos);
+ if (new_pos == std::string::npos) {
+ result += s.substr(pos, s.size() - pos);
+ break;
+ }
+ result += s.substr(pos, new_pos - pos) + replace;
+ pos = new_pos;
+ }
+ s = std::move(result);
+}
+
+LLAMA_ATTRIBUTE_FORMAT(1, 2)
+static std::string format(const char * fmt, ...) {
+ va_list ap;
+ va_list ap2;
+ va_start(ap, fmt);
+ va_copy(ap2, ap);
+ int size = vsnprintf(NULL, 0, fmt, ap);
+ GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
+ std::vector<char> buf(size + 1);
+ int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
+ GGML_ASSERT(size2 == size);
+ va_end(ap2);
+ va_end(ap);
+ return std::string(buf.data(), size);
+}
+
+struct naive_trie {
+ naive_trie() : has_value(false), value(0) {
+ }
+ void insert(const char * key, size_t len, int32_t value = 0) {
+ if (len == 0) {
+ this->has_value = true;
+ this->value = value;
+ return;
+ }
+ char c = key[0];
+ auto res = children.find(c);
+ if (res != children.end()) {
+ res->second.insert(key + 1, len - 1, value);
+ } else {
+ auto res = children.insert(std::make_pair(c, naive_trie()));
+ res.first->second.insert(key + 1, len - 1, value);
+ }
+ }
+ std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) {
+ if (len == 0 || offset == len) {
+ return std::make_pair(key, offset);
+ }
+ char c = key[offset];
+ auto res = children.find(c);
+ if (res != children.end()) {
+ return res->second.get_longest_prefix(key, len, offset + 1);
+ } else {
+ return std::make_pair(key, offset);
+ }
+ }
+ struct naive_trie * traverse(const char c) {
+ auto res = children.find(c);
+ if (res != children.end()) {
+ return &res->second;
+ } else {
+ return NULL;
+ }
+ }
+ std::map<char, struct naive_trie> children;
+ bool has_value;
+ llama_token value;
+};
+
+//
+// impl
+//
+
+int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
+ GGML_ASSERT(token_left.find(' ') == std::string::npos);
+ GGML_ASSERT(token_left.find('\n') == std::string::npos);
+ GGML_ASSERT(token_right.find(' ') == std::string::npos);
+ GGML_ASSERT(token_right.find('\n') == std::string::npos);
+
+ auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
+ if (it == bpe_ranks.end()) {
+ return -1;
+ }
+
+ return it->second;
+}
+
+static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
+ return vocab.type;
+}
+
+static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
+}
+
+static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
+}
+
+static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
+}
+
+static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
+}
+
+static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
+}
+
+static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
+}
+
+static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
+ GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
+ GGML_ASSERT(llama_is_byte_token(vocab, id));
+ const auto & token_data = vocab.id_to_token.at(id);
+ switch (llama_vocab_get_type(vocab)) {
+ case LLAMA_VOCAB_TYPE_SPM:
+ case LLAMA_VOCAB_TYPE_UGM: {
+ auto buf = token_data.text.substr(3, 2);
+ return strtol(buf.c_str(), NULL, 16);
+ }
+ case LLAMA_VOCAB_TYPE_BPE: {
+ GGML_ASSERT(false);
+ return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
+ }
+ case LLAMA_VOCAB_TYPE_WPM: {
+ GGML_ASSERT(false);
+ }
+ default:
+ GGML_ASSERT(false);
+ }
+}
+
+static void llama_escape_whitespace(std::string & text) {
+ replace_all(text, " ", "\xe2\x96\x81");
+}
+
+static void llama_unescape_whitespace(std::string & word) {
+ replace_all(word, "\xe2\x96\x81", " ");
+}
+
+struct llm_symbol {
+ using index = int;
+ index prev;
+ index next;
+ const char * text;
+ size_t n;
+};
+
+static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
+
+//
+// SPM tokenizer
+// original implementation:
+// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
+//
+
+struct llm_bigram_spm {
+ struct comparator {
+ bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
+ return (l.score < r.score) || (l.score == r.score && l.left > r.left);
+ }
+ };
+ using queue_storage = std::vector<llm_bigram_spm>;
+ using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
+ llm_symbol::index left;
+ llm_symbol::index right;
+ float score;
+ size_t size;
+};
+
+struct llm_tokenizer_spm {
+ llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
+
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
+ // split string into utf8 chars
+ int index = 0;
+ size_t offs = 0;
+ while (offs < text.size()) {
+ llm_symbol sym;
+ size_t len = unicode_len_utf8(text[offs]);
+ sym.text = text.c_str() + offs;
+ sym.n = std::min(len, text.size() - offs);
+ offs += sym.n;
+ sym.prev = index - 1;
+ sym.next = offs == text.size() ? -1 : index + 1;
+ index++;
+ symbols.emplace_back(sym);
+ }
+
+ // seed the work queue with all possible 2-character tokens.
+ for (size_t i = 1; i < symbols.size(); ++i) {
+ try_add_bigram(i - 1, i);
+ }
+
+ // keep substituting the highest frequency pairs for as long as we can.
+ while (!work_queue.empty()) {
+ auto bigram = work_queue.top();
+ work_queue.pop();
+
+ auto & left_sym = symbols[bigram.left];
+ auto & right_sym = symbols[bigram.right];
+
+ // if one of the symbols already got merged, skip it.
+ if (left_sym.n == 0 || right_sym.n == 0 ||
+ left_sym.n + right_sym.n != bigram.size) {
+ continue;
+ }
+
+ // merge the right sym into the left one
+ left_sym.n += right_sym.n;
+ right_sym.n = 0;
+
+ //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
+
+ // remove the right sym from the chain
+ left_sym.next = right_sym.next;
+ if (right_sym.next >= 0) {
+ symbols[right_sym.next].prev = bigram.left;
+ }
+
+ // find more substitutions
+ try_add_bigram(left_sym.prev, bigram.left);
+ try_add_bigram(bigram.left, left_sym.next);
+ }
+
+ for (int i = 0; i != -1; i = symbols[i].next) {
+ auto & symbol = symbols[i];
+ resegment(symbol, output);
+ }
+ }
+
+private:
+ void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
+ auto text = std::string(symbol.text, symbol.n);
+ auto token = vocab.token_to_id.find(text);
+
+ // Do we need to support is_unused?
+ if (token != vocab.token_to_id.end()) {
+ output.push_back((*token).second);
+ return;
+ }
+
+ const auto p = rev_merge.find(text);
+
+ if (p == rev_merge.end()) {
+ // output any symbols that did not form tokens as bytes.
+ output.reserve(output.size() + symbol.n);
+ for (int j = 0; j < (int)symbol.n; ++j) {
+ llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]);
+ output.push_back(token_id);
+ }
+ return;
+ }
+
+ resegment(symbols[p->second.first], output);
+ resegment(symbols[p->second.second], output);
+ }
+
+ void try_add_bigram(int left, int right) {
+ if (left == -1 || right == -1) {
+ return;
+ }
+
+ const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
+ auto token = vocab.token_to_id.find(text);
+
+ if (token == vocab.token_to_id.end()) {
+ return;
+ }
+
+ if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
+ return;
+ }
+
+ const auto & tok_data = vocab.id_to_token[(*token).second];
+
+ llm_bigram_spm bigram;
+ bigram.left = left;
+ bigram.right = right;
+ bigram.score = tok_data.score;
+ bigram.size = text.size();
+
+ work_queue.push(bigram);
+
+ // Do we need to support is_unused?
+ rev_merge[text] = std::make_pair(left, right);
+ }
+
+ const llama_vocab & vocab;
+
+ std::vector<llm_symbol> symbols;
+ llm_bigram_spm::queue work_queue;
+
+ std::map<std::string, std::pair<int, int>> rev_merge;
+};
+
+//
+// BPE tokenizer
+// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
+// tried to simplify unicode stuff, so most likely does not work 100% correctly!
+//
+
+// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
+
+struct llm_bigram_bpe {
+ struct comparator {
+ bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
+ return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
+ }
+ };
+
+ using queue_storage = std::vector<llm_bigram_bpe>;
+ using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
+ llm_symbol::index left;
+ llm_symbol::index right;
+ std::string text;
+ int rank;
+ size_t size;
+};
+
+struct llm_tokenizer_bpe {
+ llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
+ GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
+ switch (vocab.type_pre) {
+ case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
+ regex_exprs = {
+ // original regex from tokenizer.json
+ //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+
+ // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_DBRX:
+ case LLAMA_VOCAB_PRE_TYPE_SMAUG:
+ regex_exprs = {
+ // same as llama3
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
+ regex_exprs = {
+ "[\r\n]",
+ "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
+ "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
+ "\\s+$",
+ "[一-龥ࠀ-一가-퟿]+",
+ "\\p{N}+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
+ regex_exprs = {
+ "[\r\n]",
+ "\\s?\\p{L}+",
+ "\\s?\\p{P}+",
+ "[一-龥ࠀ-一가-퟿]+",
+ "\\p{N}",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_FALCON:
+ regex_exprs = {
+ "[\\p{P}\\$\\+<=>\\^~\\|`]+",
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
+ "[0-9][0-9][0-9]",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_STARCODER:
+ case LLAMA_VOCAB_PRE_TYPE_REFACT:
+ case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
+ case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
+ case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
+ regex_exprs = {
+ "\\p{N}",
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_GPT2:
+ case LLAMA_VOCAB_PRE_TYPE_MPT:
+ case LLAMA_VOCAB_PRE_TYPE_OLMO:
+ case LLAMA_VOCAB_PRE_TYPE_JAIS:
+ regex_exprs = {
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
+ case LLAMA_VOCAB_PRE_TYPE_QWEN2:
+ regex_exprs = {
+ // original regex from tokenizer.json
+ // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_PORO:
+ regex_exprs = {
+ " ?[^(\\s|.,!?…。,、।۔،)]+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
+ regex_exprs = {
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_VIKING:
+ regex_exprs = {
+ " ?[^(\\s|.,!?…。,、।۔،)]+",
+ "\\p{N}",
+ };
+ break;
+ case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
+ // original regex from tokenizer.json
+ // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
+ regex_exprs = {
+ "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
+ default:
+ // default regex for BPE tokenization pre-processing
+ regex_exprs = {
+ "[\\p{P}\\$\\+<=>\\^~\\|]+",
+ "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
+ "\\p{N}+",
+ "[0-9][0-9][0-9]",
+ };
+ break;
+ }
+ }
+
+ void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
+ output.push_back(token_id);
+ }
+
+ bool append_bos(std::vector<llama_vocab::id> & output) const {
+ if (vocab.tokenizer_add_bos) {
+ GGML_ASSERT(vocab.special_bos_id != -1);
+ output.push_back(vocab.special_bos_id);
+ return true;
+ }
+ return false;
+ }
+
+ bool append_eos(std::vector<llama_vocab::id> & output) const {
+ if (vocab.tokenizer_add_eos) {
+ GGML_ASSERT(vocab.special_eos_id != -1);
+ output.push_back(vocab.special_eos_id);
+ return true;
+ }
+ return false;
+ }
+
+ void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
+ if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
+ LLAMA_LOG_WARN(
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
+ "Are you sure this is what you want?\n", __FUNCTION__);
+ }
+ if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
+ LLAMA_LOG_WARN(
+ "%s: Added a EOS token to the prompt as specified by the model but the prompt "
+ "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
+ "Are you sure this is what you want?\n", __FUNCTION__);
+ }
+ }
+
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
+ int final_prev_index = -1;
+
+ const auto word_collection = unicode_regex_split(text, regex_exprs);
+
+ symbols_final.clear();
+
+ for (auto & word : word_collection) {
+ work_queue = llm_bigram_bpe::queue();
+ symbols.clear();
+
+ int index = 0;
+ size_t offset = 0;
+
+ if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
+ symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
+ offset = word.size();
+ }
+
+ while (offset < word.size()) {
+ llm_symbol sym;
+ size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
+ sym.text = word.c_str() + offset;
+ sym.n = char_len;
+ offset += sym.n;
+ sym.prev = index - 1;
+ sym.next = offset == word.size() ? -1 : index + 1;
+ index++;
+ symbols.emplace_back(sym);
+ }
+ for (size_t i = 1; i < symbols.size(); ++i) {
+ add_new_bigram(i - 1, i);
+ }
+
+ // build token(s)
+ while (!work_queue.empty()) {
+ auto bigram = work_queue.top();
+ work_queue.pop();
+
+ auto & left_symbol = symbols[bigram.left];
+ auto & right_symbol = symbols[bigram.right];
+
+ if (left_symbol.n == 0 || right_symbol.n == 0) {
+ continue;
+ }
+ std::string left_token = std::string(left_symbol.text, left_symbol.n);
+ std::string right_token = std::string(right_symbol.text, right_symbol.n);
+ if (left_token + right_token != bigram.text) {
+ continue; // Skip this bigram if it's outdated
+ }
+
+ // merge the right sym into the left one
+ left_symbol.n += right_symbol.n;
+ right_symbol.n = 0;
+
+ // remove the right sym from the chain
+ left_symbol.next = right_symbol.next;
+ if (right_symbol.next >= 0) {
+ symbols[right_symbol.next].prev = bigram.left;
+ }
+
+ add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
+ add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
+ }
+
+ // add the finished tokens to the final list keeping correct order for next and prev
+ for (auto & sym : symbols) {
+ if (sym.n > 0) {
+ sym.prev = final_prev_index;
+ sym.next = -1;
+ if (final_prev_index != -1) {
+ symbols_final[final_prev_index].next = symbols_final.size();
+ }
+ symbols_final.emplace_back(sym);
+ final_prev_index = symbols_final.size() - 1;
+ }
+ }
+ }
+
+ symbols = symbols_final;
+
+ if (!symbols.empty()) {
+ for (int i = 0; i != -1; i = symbols[i].next) {
+ auto & symbol = symbols[i];
+ if (symbol.n == 0) {
+ continue;
+ }
+
+ const std::string str = std::string(symbol.text, symbol.n);
+ const auto token = vocab.token_to_id.find(str);
+
+ if (token == vocab.token_to_id.end()) {
+ for (auto j = str.begin(); j != str.end(); ++j) {
+ std::string byte_str(1, *j);
+ auto token_multibyte = vocab.token_to_id.find(byte_str);
+ if (token_multibyte != vocab.token_to_id.end()) {
+ output.push_back(token_multibyte->second);
+ }
+ }
+ } else {
+ output.push_back((*token).second);
+ }
+ }
+ }
+ }
+
+private:
+ void add_new_bigram(int left, int right) {
+ if (left == -1 || right == -1) {
+ return;
+ }
+
+ std::string left_token = std::string(symbols[left].text, symbols[left].n);
+ std::string right_token = std::string(symbols[right].text, symbols[right].n);
+
+ int rank_found = -1;
+
+ rank_found = vocab.find_bpe_rank(left_token, right_token);
+
+ if (rank_found < 0) {
+ return;
+ }
+
+ llm_bigram_bpe bigram;
+
+ bigram.left = left;
+ bigram.right = right;
+ bigram.text = left_token + right_token;
+ bigram.size = left_token.size() + right_token.size();
+ bigram.rank = rank_found;
+
+ work_queue.push(bigram);
+ }
+
+ const llama_vocab & vocab;
+
+ std::vector<std::string> regex_exprs;
+
+ std::vector<llm_symbol> symbols;
+ std::vector<llm_symbol> symbols_final;
+
+ llm_bigram_bpe::queue work_queue;
+};
+
+//
+// WPM tokenizer
+//
+
+struct llm_tokenizer_wpm {
+ llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
+
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
+ const auto & token_map = vocab.token_to_id;
+
+ // normalize and split by whitespace
+ std::vector<std::string> words = preprocess(text);
+
+ // bos token prepended already
+
+ // find the longest tokens that form the words
+ for (const std::string & word : words) {
+ // skip empty words
+ if (word.size() == 0) {
+ continue;
+ }
+
+ // prepend phantom space
+ const std::string word1 = "\xe2\x96\x81" + word;
+ const int n = word1.size();
+
+ const size_t current_tokens = output.size();
+
+ // we're at the start of a new word
+ // move through character position in word
+ for (int i = 0; i < n; ++i) {
+ // loop through possible match length
+ bool match = false;
+ for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
+ auto it = token_map.find(word1.substr(i, j - i));
+ if (it != token_map.end()) {
+ output.push_back(it->second);
+ match = true;
+ i = j - 1;
+ break;
+ }
+ }
+
+ if (!match) { // discard all
+ output.resize(current_tokens);
+ break; // and discard next tokens
+ }
+ }
+
+ // we didn't find any matches for this word
+ if (current_tokens == output.size()) {
+ output.push_back(vocab.special_unk_id);
+ }
+ }
+ }
+
+ // TODO: reduce string copies by using cpts_offs array
+ std::vector<std::string> preprocess(const std::string & text) const {
+ const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
+ std::vector<std::string> words(1, "");
+
+ for (const uint32_t cpt : cpts_nfd) {
+ const auto flags = unicode_cpt_flags(cpt);
+
+ if (flags.is_whitespace) {
+ if (words.back().size()) { // finish previous word if any
+ words.emplace_back();
+ }
+ continue;
+ }
+
+ assert (!flags.is_separator);
+ if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
+ continue;
+ }
+
+ const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
+ if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
+ if (words.back().size()) { // finish previous word if any
+ words.emplace_back();
+ }
+ words.back() = s; // single char word
+ words.emplace_back(); // start a new word
+ } else {
+ words.back() += s; // append char to word
+ }
+ }
+
+ if (!words.back().size()) {
+ words.pop_back();
+ }
+
+ return words;
+ }
+
+ static bool is_chinese_char(uint32_t cpt) {
+ return
+ (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
+ (cpt >= 0x03400 && cpt <= 0x04DBF) ||
+ (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
+ (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
+ (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
+ (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
+ (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
+ (cpt >= 0x2F800 && cpt <= 0x2FA1F);
+ //(cpt >= 0x3000 && cpt <= 0x303F) ||
+ //(cpt >= 0xFF00 && cpt <= 0xFFEF);
+ }
+
+ const llama_vocab & vocab;
+};
+
+//
+// UGM tokenizer
+//
+
+struct llm_tokenizer_ugm {
+ llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) {
+ if (vocab.precompiled_charsmap.size() > 0) {
+ size_t charsmap_offset = 0;
+
+ // First four bytes of precompiled_charsmap contains length of binary
+ // blob containing XOR-compressed compact double array (XCDA) entries
+ uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
+ charsmap_offset += sizeof(xcda_blob_size);
+ if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
+ throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
+ }
+
+ // Next xcda_blob_size bytes contain entries of XOR-compressed compact
+ // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
+ xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
+ xcda_array_size = xcda_blob_size / sizeof(uint32_t);
+ charsmap_offset += xcda_blob_size;
+
+ // Remaining bytes of precompiled charsmap contain null-terminated
+ // replacement strings for prefixes matched by the XCDA.
+ prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
+ prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
+ }
+
+ for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
+ const auto &token_data = vocab.id_to_token[id];
+
+ if (llama_is_normal_token(vocab, id)) {
+ min_score = std::min<float>(min_score, token_data.score);
+ max_score = std::max<float>(max_score, token_data.score);
+ }
+
+ if (llama_is_normal_token(vocab, id) ||
+ llama_is_user_defined_token(vocab, id) ||
+ llama_is_unused_token(vocab, id)) {
+ token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
+ }
+
+ if (llama_is_user_defined_token(vocab, id)) {
+ user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
+ }
+ }
+
+ unknown_token_score = min_score - unknown_token_score_penalty;
+ }
+
+ /* This implementation is based on SentencePiece optimized Viterbi algorithm for
+ * unigram language models. The general idea is to:
+ * - move along the input sequence in steps of one UTF code point,
+ * - at each step find all possible tokenizations of the prefix by
+ * traversing the tokens trie,
+ * - for each tokenization store the best one so far (by higher score)
+ * - use the position in sequence after given token as an index to store
+ * results
+ * - if there was no valid tokenization of the current UTF code point
+ * then use unknown token with additional score penalty
+ * After processing the whole sequence we backtrack from the end to get
+ * the best tokenization.
+ */
+ void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
+ // normalize the input first
+ std::string normalized;
+ normalize(text, &normalized);
+ size_t input_len = normalized.size();
+ if (input_len == 0) {
+ return;
+ }
+
+ // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
+ std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
+ // at the beginning tokenization score is zero
+ tokenization_results[0] = { vocab.special_unk_id, 0, 0 };
+
+ for (size_t input_offset = 0; input_offset < input_len;) {
+ size_t prefix_offset = input_offset;
+ // calculate how many code units are in the currently processed UTF code point
+ size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
+
+ // traverse the token matcher trie to find a matching token
+ bool single_codepoint_token_found = false;
+ const struct best_tokenization & current_best = tokenization_results[input_offset];
+ struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]);
+
+ while (prefix_offset <= input_len && node != NULL) {
+ // check if we found valid token in prefix
+ if (node->has_value) {
+ // check if it corresponds to the whole UTF code point
+ if (prefix_offset - input_offset == n_utf8_code_units) {
+ single_codepoint_token_found = true;
+ }
+ llama_token token_id = node->value;
+ const auto & token_data = vocab.id_to_token[token_id];
+
+ // we set the user-defined token scores to 0 to make them more likely to be selected
+ // (normal token scores are log probabilities, so they are negative)
+ // score type is double here to make tokenization results exactly
+ // the same as in the HF tokenizer using SentencePiece
+ const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
+ const double challenger_score = current_best.score_sum + token_score;
+ struct best_tokenization & current_champ = tokenization_results[prefix_offset];
+ if (challenger_score > current_champ.score_sum) {
+ struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
+ current_champ = challenger;
+ }
+ }
+ node = node->traverse(normalized[prefix_offset++]);
+ }
+
+ // if we didn't find a valid token corresponding to the whole UTF code point
+ // then use unknown token as the tokenization of this UTF code point
+ if (!single_codepoint_token_found) {
+ const double challenger_score = current_best.score_sum + unknown_token_score;
+ prefix_offset = input_offset + n_utf8_code_units;
+ struct best_tokenization & current_champ = tokenization_results[prefix_offset];
+ if (challenger_score > current_champ.score_sum) {
+ struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
+ current_champ = challenger;
+ }
+ }
+
+ // move to the next UTF code point
+ input_offset += n_utf8_code_units;
+ }
+
+ // now backtrack from the end to gather token ids of the best tokenization
+ // merge sequences of consecutive unknown tokens into single unknown tokens
+ bool is_prev_unknown = false;
+ for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
+ bool is_unknown = tokenization.token_id == vocab.special_unk_id;
+ if (!(is_prev_unknown && is_unknown)) {
+ output.push_back(tokenization.token_id);
+ }
+ if (tokenization.input_offset == 0) {
+ break;
+ }
+ is_prev_unknown = is_unknown;
+ }
+
+ // reverse the output since we added tokens starting from the end of the input
+ std::reverse(output.begin(), output.end());
+ }
+
+private:
+ const llama_vocab & vocab;
+
+ // helper structure for returning normalization results
+ struct normalization_result {
+ const char * normalized;
+ size_t normalized_len;
+ size_t consumed_input;
+ };
+
+ void normalize(const std::string& input, std::string * normalized) {
+ normalized->clear();
+ normalized->reserve(input.size() * 3);
+
+ const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " ";
+
+ bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
+ bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
+ bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;
+
+ bool is_space_prepended = false;
+ bool processing_non_ws = false;
+
+ size_t input_len = input.size();
+
+ for (size_t input_offset = 0; input_offset < input_len; ) {
+ auto norm_res = normalize_prefix(input, input_offset);
+ for (size_t i = 0; i < norm_res.normalized_len; i++) {
+ char c = norm_res.normalized[i];
+ if (c != ' ') {
+ if (!processing_non_ws) {
+ processing_non_ws = true;
+ if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
+ normalized->append(space);
+ is_space_prepended = true;
+ }
+ }
+ normalized->push_back(c);
+ } else {
+ if (processing_non_ws) {
+ processing_non_ws = false;
+ }
+ if (!shall_merge_spaces) {
+ normalized->append(space);
+ }
+ }
+ }
+
+ input_offset += norm_res.consumed_input;
+ }
+
+ if (shall_append_space) {
+ normalized->append(space);
+ }
+ }
+
+ /*
+ * This structure is a view wrapper for XOR-compressed double array (XCDA)
+ * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
+ * Eeach bit-packed entry contains:
+ * - BASE array value in bits 10-30
+ * - LCHECK array value in bits 0-7
+ * - LEAF array value in bit 9
+ * Entries containing indexes of replacement sequences have set bit 31
+ */
+ struct xcda_array_view {
+ public:
+ xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
+ }
+ uint32_t get_base(size_t index) {
+ uint32_t packed_node = get_node(index);
+ return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
+ }
+ uint32_t get_lcheck(size_t index) {
+ uint32_t packed_node = get_node(index);
+ return packed_node & ((1U << 31) | 0xff);
+ }
+ bool get_leaf(size_t index) {
+ uint32_t packed_node = get_node(index);
+ return (packed_node >> 8) & 1;
+ }
+ uint32_t get_value(size_t index) {
+ uint32_t packed_node = get_node(index);
+ return packed_node & ((1U << 31) - 1);
+ }
+ private:
+ uint32_t get_node(size_t index) {
+ if (index > xcda_array_size) {
+ throw std::runtime_error("Index out of array bounds in XCDA array!");
+ }
+ return xcda_array[index];
+ }
+ const uint32_t * xcda_array;
+ size_t xcda_array_size;
+ };
+
+ struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
+ if (input_offset == input.size()) {
+ return { &input[input_offset], 0, 0 };
+ }
+
+ // if input prefix matches some user-defined token return this token as normalization result
+ auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
+ if (user_defined_token_match.second > 0) {
+ return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
+ }
+
+ size_t longest_prefix_length = 0;
+ size_t longest_prefix_offset = 0;
+
+ if (xcda_array_size > 0) {
+ struct xcda_array_view xcda_view(xcda_array, xcda_array_size);
+
+ // Find the longest normalized sequence matching the input prefix by walking
+ // the XOR-compressed compact double array (XCDA) starting from the root node
+ // We find the index of the next node by calculating BASE[s] ^ c where s is
+ // the index of the previous node and c is a numerical character value
+ uint32_t node_index = 0;
+ // get BASE of the root node
+ node_index = xcda_view.get_base(node_index);
+ for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
+ unsigned char c = input[prefix_offset];
+ if (c == 0) {
+ break;
+ }
+ node_index ^= c;
+ // if value of LCHECK is not c it means that this is not a child of
+ // the previous node, so we stop matching
+ if (xcda_view.get_lcheck(node_index) != c) {
+ break;
+ }
+ bool is_leaf = xcda_view.get_leaf(node_index);
+ // get BASE of the current node
+ node_index ^= xcda_view.get_base(node_index);
+ // if LEAF of the current node is true, it means that its BASE points to the node
+ // containing index of replacement sequence for currently matched input prefix
+ if (is_leaf)
+ {
+ longest_prefix_length = prefix_offset - input_offset + 1;
+ // get index of replacement sequence for currently matched input prefix
+ longest_prefix_offset = xcda_view.get_value(node_index);
+ }
+ }
+ }
+
+ if (longest_prefix_length > 0) {
+ // we have a match, so return the replacement sequence
+ if (longest_prefix_offset >= prefix_replacements_size) {
+ throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
+ }
+ const char * prefix_replacement = &prefix_replacements[longest_prefix_offset];
+ return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
+ } else {
+ // check if the input prefix contains a valid sequence of UTF-8 code units
+ try {
+ // if yes, return this sequence unmodified
+ size_t prefix_offset = input_offset;
+ unicode_cpt_from_utf8(input, prefix_offset);
+ return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
+ } catch (std::invalid_argument & /*ex*/) {
+ // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
+ return { "\xEF\xBF\xBD", 3, 1 };
+ }
+ }
+ }
+
+ // escaped space symbol - U+2581 (Lower One Eighth Block)
+ const std::string escaped_space = "\xE2\x96\x81";
+
+ const char * prefix_replacements = NULL;
+ size_t prefix_replacements_size = 0;
+
+ const uint32_t * xcda_array = NULL;
+ size_t xcda_array_size = 0;
+
+ struct naive_trie user_defined_token_matcher;
+
+ // this structure stores the best tokenization so far at input_offset
+ struct best_tokenization {
+ llama_token token_id;
+ size_t input_offset;
+ float score_sum;
+ };
+
+ float min_score = FLT_MAX;
+ float max_score = -FLT_MAX;
+
+ float unknown_token_score_penalty = 10.0;
+ float unknown_token_score;
+
+ struct naive_trie token_matcher;
+};
+
+//
+// (de-) tokenize
+//
+
+typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
+ FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
+ FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
+} FRAGMENT_BUFFER_VARIANT_TYPE;
+
+struct fragment_buffer_variant {
+ fragment_buffer_variant(llama_vocab::id _token)
+ :
+ type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
+ token(_token),
+ raw_text(_dummy),
+ offset(0),
+ length(0) {}
+
+ fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
+ :
+ type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
+ token((llama_vocab::id) - 1),
+ raw_text(_raw_text),
+ offset(_offset),
+ length(_length){
+ GGML_ASSERT(_offset >= 0);
+ GGML_ASSERT(_length >= 1);
+ GGML_ASSERT(offset + length <= raw_text.length());
+ }
+
+ const FRAGMENT_BUFFER_VARIANT_TYPE type;
+ const llama_vocab::id token;
+ const std::string _dummy;
+ const std::string & raw_text;
+ const uint64_t offset;
+ const uint64_t length;
+};
+
+// #define PRETOKENIZERDEBUG
+
+static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
+ // for each special token
+ for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
+ const auto & data = vocab.id_to_token[special_id];
+ const auto & special_token = data.text;
+
+ if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
+ // Ignore control and unknown tokens when parse_special == false
+ continue;
+ // User-defined tokens are still pre-tokenized before everything else
+ // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
+ // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
+ }
+
+ // for each text fragment
+ std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
+ while (it != buffer.end()) {
+ auto & fragment = (*it);
+
+ // if a fragment is text ( not yet processed )
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto & raw_text = fragment.raw_text;
+
+ auto raw_text_base_offset = fragment.offset;
+ auto raw_text_base_length = fragment.length;
+
+ // loop over the text
+ while (true) {
+ // find the first occurrence of a given special token in this fragment
+ // passing offset argument only limit the "search area" but match coordinates
+ // are still relative to the source full raw_text
+ auto match = raw_text.find(special_token, raw_text_base_offset);
+
+ // no occurrences found, stop processing this fragment for a given special token
+ if (match == std::string::npos) break;
+
+ // check if match is within bounds of offset <-> length
+ if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
+#endif
+ auto source = std::distance(buffer.begin(), it);
+
+ // if match is further than base offset
+ // then we have some text to the left of it
+ if (match > raw_text_base_offset) {
+ // left
+ const int64_t left_reminder_offset = raw_text_base_offset + 0;
+ int64_t left_reminder_length = match - raw_text_base_offset;
+
+ if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
+ while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
+ left_reminder_length--;
+ }
+ }
+
+ if (left_reminder_length > 0) {
+ buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
+ it++;
+ }
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
+#endif
+ }
+
+ // special token
+ buffer.emplace_after(it, special_id);
+ it++;
+
+ // right
+ if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
+ int64_t right_reminder_offset = match + special_token.length();
+ int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
+
+ if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
+ while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
+ right_reminder_offset++;
+ right_reminder_length--;
+ }
+ }
+
+ if (right_reminder_length > 0) {
+ buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
+ it++;
+ }
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
+#endif
+
+ if (source == 0) {
+ buffer.erase_after(buffer.before_begin());
+ } else {
+ buffer.erase_after(std::next(buffer.begin(), (source-1)));
+ }
+
+ // repeat for the right side
+ raw_text_base_offset = right_reminder_offset;
+ raw_text_base_length = right_reminder_length;
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
+#endif
+ } else {
+ if (source == 0) {
+ buffer.erase_after(buffer.before_begin());
+ } else {
+ buffer.erase_after(std::next(buffer.begin(), (source-1)));
+ }
+ break;
+ }
+ }
+ }
+ it++;
+ }
+ }
+}
+
+std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
+ std::vector<llama_vocab::id> output;
+ std::forward_list<fragment_buffer_variant> fragment_buffer;
+
+ if (!raw_text.empty()) {
+ fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
+ tokenizer_st_partition(vocab, fragment_buffer, parse_special);
+ }
+
+ switch (vocab.type) {
+ case LLAMA_VOCAB_TYPE_SPM:
+ {
+ // OG tokenizer behavior:
+ //
+ // tokenizer.encode('', add_special_tokens=True) returns [1]
+ // tokenizer.encode('', add_special_tokens=False) returns []
+
+ bool is_prev_special = true; // prefix with space if first token
+
+ if (add_special && vocab.tokenizer_add_bos) {
+ GGML_ASSERT(vocab.special_bos_id != -1);
+ output.push_back(vocab.special_bos_id);
+ is_prev_special = true;
+ }
+
+ for (const auto & fragment : fragment_buffer) {
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
+
+ // prefix with space if previous is special
+ if (vocab.tokenizer_add_space_prefix && is_prev_special) {
+ raw_text = " " + raw_text;
+ }
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
+#endif
+ llm_tokenizer_spm tokenizer(vocab);
+ llama_escape_whitespace(raw_text);
+ tokenizer.tokenize(raw_text, output);
+ is_prev_special = false;
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
+ output.push_back(fragment.token);
+ is_prev_special = true;
+ }
+ }
+
+ if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
+ LLAMA_LOG_WARN(
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
+ "Are you sure this is what you want?\n", __FUNCTION__);
+ }
+
+ if (add_special && vocab.tokenizer_add_eos) {
+ GGML_ASSERT(vocab.special_eos_id != -1);
+ output.push_back(vocab.special_eos_id);
+ }
+ } break;
+ case LLAMA_VOCAB_TYPE_BPE:
+ {
+ llm_tokenizer_bpe tokenizer(vocab);
+
+ if (add_special) {
+ tokenizer.append_bos(output);
+ }
+ for (const auto & fragment : fragment_buffer) {
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
+#endif
+ tokenizer.tokenize(raw_text, output);
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
+ tokenizer.append(fragment.token, output);
+ }
+ }
+
+ if (add_special) {
+ tokenizer.append_eos(output);
+ tokenizer.check_double_bos_eos(output);
+ }
+ } break;
+ case LLAMA_VOCAB_TYPE_WPM:
+ {
+ if (add_special) {
+ GGML_ASSERT(vocab.special_cls_id != -1);
+ output.push_back(vocab.special_cls_id);
+ }
+
+ llm_tokenizer_wpm tokenizer(vocab);
+
+ for (const auto & fragment : fragment_buffer) {
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
+
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
+#endif
+ tokenizer.tokenize(raw_text, output);
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
+ output.push_back(fragment.token);
+ }
+ }
+
+ if (add_special) {
+ GGML_ASSERT(vocab.special_sep_id != -1);
+ output.push_back(vocab.special_sep_id);
+ }
+ } break;
+ case LLAMA_VOCAB_TYPE_UGM:
+ {
+ llm_tokenizer_ugm tokenizer(vocab);
+
+ if (add_special && vocab.tokenizer_add_bos != 0) {
+ GGML_ASSERT(vocab.special_bos_id != -1);
+ output.push_back(vocab.special_bos_id);
+ }
+
+ for (const auto & fragment : fragment_buffer) {
+ if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
+ auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
+#ifdef PRETOKENIZERDEBUG
+ LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
+#endif
+ tokenizer.tokenize(raw_text, output);
+ } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
+ output.push_back(fragment.token);
+ }
+ }
+
+ if (add_special && vocab.tokenizer_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
+ LLAMA_LOG_WARN(
+ "%s: Added a BOS token to the prompt as specified by the model but the prompt "
+ "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
+ "Are you sure this is what you want?\n", __FUNCTION__);
+ }
+
+ if (add_special && vocab.tokenizer_add_eos == 1) {
+ GGML_ASSERT(vocab.special_eos_id != -1);
+ output.push_back(vocab.special_eos_id);
+ }
+ } break;
+ case LLAMA_VOCAB_TYPE_NONE:
+ GGML_ASSERT(false);
+ }
+
+ return output;
+}
+
+llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) {
+ GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
+ static const char * hex = "0123456789ABCDEF";
+ switch (llama_vocab_get_type(vocab)) {
+ case LLAMA_VOCAB_TYPE_SPM:
+ case LLAMA_VOCAB_TYPE_UGM: {
+ const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
+ auto token = vocab.token_to_id.find(buf);
+ if (token != vocab.token_to_id.end()) {
+ return (*token).second;
+ }
+ // Try to fall back to just the byte as a string
+ const char buf2[2] = { (char)ch, 0 };
+ return vocab.token_to_id.at(buf2);
+ }
+ case LLAMA_VOCAB_TYPE_WPM:
+ case LLAMA_VOCAB_TYPE_BPE: {
+ return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
+ }
+ default:
+ GGML_ASSERT(false);
+ }
+}
+
+const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[token].text.c_str();
+}
+
+float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[token].score;
+}
+
+llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) {
+ GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
+ return vocab.id_to_token[token].attr;
+}
+
+bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
+ return token != -1 && (
+ token == llama_token_eos_impl(vocab) ||
+ token == llama_token_eot_impl(vocab)
+ );
+}
+
+bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
+ return llama_is_control_token(vocab, token);
+}
+
+llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
+ return vocab.special_bos_id;
+}
+
+llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {
+ return vocab.special_eos_id;
+}
+
+llama_token llama_token_cls_impl(const struct llama_vocab & vocab) {
+ return vocab.special_cls_id;
+}
+
+llama_token llama_token_sep_impl(const struct llama_vocab & vocab) {
+ return vocab.special_sep_id;
+}
+
+llama_token llama_token_nl_impl(const struct llama_vocab & vocab) {
+ return vocab.linefeed_id;
+}
+
+llama_token llama_token_pad_impl(const struct llama_vocab & vocab) {
+ return vocab.special_pad_id;
+}
+
+int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab) {
+ return vocab.tokenizer_add_bos;
+}
+
+int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab) {
+ return vocab.tokenizer_add_eos;
+}
+
+llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) {
+ return vocab.special_prefix_id;
+}
+
+llama_token llama_token_middle_impl(const struct llama_vocab & vocab) {
+ return vocab.special_middle_id;
+}
+
+llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) {
+ return vocab.special_suffix_id;
+}
+
+llama_token llama_token_eot_impl(const struct llama_vocab & vocab) {
+ return vocab.special_eot_id;
+}
+
+int32_t llama_tokenize_impl(
+ const struct llama_vocab & vocab,
+ const char * text,
+ int32_t text_len,
+ llama_token * tokens,
+ int32_t n_tokens_max,
+ bool add_special,
+ bool parse_special) {
+ auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special);
+ if (n_tokens_max < (int) res.size()) {
+ // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
+ return -((int) res.size());
+ }
+
+ for (size_t i = 0; i < res.size(); i++) {
+ tokens[i] = res[i];
+ }
+
+ return res.size();
+}
+
+static std::string llama_decode_text(const std::string & text) {
+ std::string decoded_text;
+
+ const auto cpts = unicode_cpts_from_utf8(text);
+ for (const auto cpt : cpts) {
+ const auto utf8 = unicode_cpt_to_utf8(cpt);
+ try {
+ decoded_text += unicode_utf8_to_byte(utf8);
+ } catch (const std::out_of_range & /*e*/) {
+ decoded_text += "[UNK_BYTE_0x";
+ for (const auto c : utf8) {
+ decoded_text += format("%02x", (uint8_t) c);
+ }
+ decoded_text += text + "]";
+ }
+ }
+
+ return decoded_text;
+}
+
+// does not write null-terminator to buf
+int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
+ // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
+ static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
+ const llama_token_attr attr = llama_token_get_attr_impl(vocab, token);
+ if (!special && (attr & attr_special)) {
+ return 0;
+ }
+
+ // copy piece chars to output text buffer
+ // skip up to 'lstrip' leading spaces before copying
+ auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
+ for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
+ token++;
+ size--;
+ }
+ if (length < (int32_t)size) {
+ return -(int32_t) size;
+ }
+ memcpy(buf, token, size);
+ return (int32_t) size;
+ };
+
+ // if we have a cache - use it
+ {
+ const auto & cache = vocab.cache_token_to_piece;
+
+ if (!cache.empty()) {
+ const auto & result = cache.at(token);
+ return _try_copy(result.data(), result.size());
+ }
+ }
+
+ if (0 <= token && token < (int32_t) vocab.id_to_token.size()) {
+ const std::string & token_text = vocab.id_to_token[token].text;
+ switch (llama_vocab_get_type(vocab)) {
+ case LLAMA_VOCAB_TYPE_WPM:
+ case LLAMA_VOCAB_TYPE_SPM:
+ case LLAMA_VOCAB_TYPE_UGM: {
+ // NOTE: we accept all unsupported token types,
+ // suppressing them like CONTROL tokens.
+ if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
+ return _try_copy(token_text.data(), token_text.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
+ std::string result = token_text;
+ llama_unescape_whitespace(result);
+ return _try_copy(result.data(), result.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_BYTE) {
+ char byte = (char) llama_token_to_byte(vocab, token);
+ return _try_copy((char*) &byte, 1);
+ }
+ break;
+ }
+ case LLAMA_VOCAB_TYPE_BPE: {
+ // NOTE: we accept all unsupported token types,
+ // suppressing them like CONTROL tokens.
+ if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
+ return _try_copy(token_text.data(), token_text.size());
+ } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
+ std::string result = llama_decode_text(token_text);
+ return _try_copy(result.data(), result.size());
+ }
+ break;
+ }
+ default:
+ GGML_ASSERT(false);
+ }
+ }
+
+ return 0;
+}
+
+int32_t llama_detokenize_impl(
+ const struct llama_vocab & vocab,
+ const llama_token * tokens,
+ int32_t n_tokens,
+ char * text,
+ int32_t text_len_max,
+ bool remove_special,
+ bool unparse_special) {
+ int32_t avail = text_len_max;
+ int32_t total = 0;
+
+ // remove the leading space
+ bool remove_space = vocab.tokenizer_add_space_prefix;
+
+ if (remove_special && vocab.tokenizer_add_bos) {
+ if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) {
+ remove_space = false;
+ n_tokens--;
+ tokens++;
+ }
+ }
+
+ if (remove_special && vocab.tokenizer_add_eos) {
+ if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) {
+ n_tokens--;
+ }
+ }
+
+ for (int32_t i = 0; i < n_tokens; ++i) {
+ GGML_ASSERT(avail >= 0);
+ int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special);
+ remove_space = false;
+ if (n_chars < 0) {
+ avail = 0;
+ total -= n_chars;
+ } else if (n_chars > 0) {
+ avail -= n_chars;
+ text += n_chars;
+ total += n_chars;
+ }
+ }
+
+ if (total > text_len_max) {
+ return -total;
+ }
+
+ if (vocab.tokenizer_clean_spaces) {
+ text -= total; // restart text
+
+ // first pass: characters ?!., //TODO: where do these characters come from?
+ const int32_t total1 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total1; ++i) {
+ const char x = text[i];
+ if (text[i - 1] == ' ') {
+ if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
+ total--; // remove space
+ }
+ }
+ text[total++] = x;
+ }
+
+ // second pass: strip single apostrophe between spaces
+ const int32_t total2 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total2; ++i) {
+ const char x = text[i];
+ if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
+ total--; // remove prev space
+ text[++i] = '\0'; // remove next space
+ }
+ text[total++] = x;
+ }
+
+ // third pass: apostrophe contractions //NOTE: this makes sense?
+ const int32_t total3 = total;
+ total = total ? 1 : 0;
+ for (int32_t i = 1; i < total3; ++i) {
+ const char x = text[i];
+ if (text[i - 1] == ' ') {
+ if (x == '\'' && i + 1 < total3) {
+ const char x1 = text[i + 1];
+ if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
+ //total--; // remove space
+ } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
+ total--; // remove space
+ } else if (i + 2 < total3) {
+ const char x2 = text[i + 2];
+ if ((x1 == 'l' && x2 == 'l')) { // " 'll"
+ //total--; // remove space
+ } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
+ total--; // remove space
+ } else {
+ //total--; // remove space
+ }
+ } else {
+ //total--; // remove space
+ }
+ }
+ }
+ text[total++] = x;
+ }
+ }
+
+ return total <= text_len_max ? total : -total;
+}
diff --git a/src/llama-vocab.h b/src/llama-vocab.h
new file mode 100644
index 00000000..30b565d5
--- /dev/null
+++ b/src/llama-vocab.h
@@ -0,0 +1,130 @@
+#pragma once
+
+#include "llama-impl.h"
+
+#include <string>
+#include <vector>
+#include <unordered_map>
+#include <map>
+
+struct llama_vocab {
+ using id = llama_token;
+ using token = std::string;
+ using tattr = llama_token_attr;
+
+ struct token_data {
+ token text;
+ float score;
+ tattr attr;
+ };
+
+ enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
+ enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+
+ int max_token_len = 0; // used for optimizing longest token search
+
+ std::unordered_map<token, id> token_to_id;
+ std::vector<token_data> id_to_token;
+
+ std::vector<id> cache_special_tokens;
+ std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
+
+ std::map<std::pair<std::string, std::string>, int> bpe_ranks;
+
+ // default LLaMA special tokens
+ id special_bos_id = 1;
+ id special_eos_id = 2;
+ id special_unk_id = 0;
+ id special_sep_id = -1;
+ id special_pad_id = -1;
+ id special_cls_id = -1;
+ id special_mask_id = -1;
+
+ id linefeed_id = 13;
+ id special_prefix_id = -1;
+ id special_suffix_id = -1;
+ id special_middle_id = -1;
+ id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
+
+ // tokenizer flags
+ bool tokenizer_add_space_prefix = false;
+ bool tokenizer_add_bos = false;
+ bool tokenizer_add_eos = false;
+ bool tokenizer_ignore_merges = false;
+ bool tokenizer_clean_spaces = false; // clean_up_tokenization_spaces
+ bool tokenizer_remove_extra_whitespaces = false;
+ bool tokenizer_escape_whitespaces = true;
+ bool tokenizer_treat_whitespace_as_suffix = false;
+
+ std::vector<char> precompiled_charsmap;
+
+ int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
+};
+
+const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx);
+
+//
+// internal API
+//
+
+// TODO: rename to llama_tokenize_impl
+// TODO: This should probably be in llama.h
+std::vector<llama_vocab::id> llama_tokenize_internal(
+ const llama_vocab & vocab,
+ std::string raw_text,
+ bool add_special,
+ bool parse_special = false);
+
+llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch);
+
+const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token);
+
+float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token);
+
+llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token);
+
+bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token);
+
+bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token);
+
+llama_token llama_token_bos_impl(const struct llama_vocab & vocab);
+llama_token llama_token_eos_impl(const struct llama_vocab & vocab);
+llama_token llama_token_cls_impl(const struct llama_vocab & vocab);
+llama_token llama_token_sep_impl(const struct llama_vocab & vocab);
+llama_token llama_token_nl_impl (const struct llama_vocab & vocab);
+llama_token llama_token_pad_impl(const struct llama_vocab & vocab);
+
+int32_t llama_add_bos_token_impl(const struct llama_vocab & vocab);
+int32_t llama_add_eos_token_impl(const struct llama_vocab & vocab);
+
+llama_token llama_token_prefix_impl(const struct llama_vocab & vocab);
+llama_token llama_token_middle_impl(const struct llama_vocab & vocab);
+llama_token llama_token_suffix_impl(const struct llama_vocab & vocab);
+llama_token llama_token_eot_impl (const struct llama_vocab & vocab);
+
+int32_t llama_tokenize_impl(
+ const struct llama_vocab & vocab,
+ const char * text,
+ int32_t text_len,
+ llama_token * tokens,
+ int32_t n_tokens_max,
+ bool add_special,
+ bool parse_special);
+
+// does not write null-terminator to buf
+int32_t llama_token_to_piece_impl(
+ const struct llama_vocab & vocab,
+ llama_token token,
+ char * buf,
+ int32_t length,
+ int32_t lstrip,
+ bool special);
+
+int32_t llama_detokenize_impl(
+ const struct llama_vocab & vocab,
+ const llama_token * tokens,
+ int32_t n_tokens,
+ char * text,
+ int32_t text_len_max,
+ bool remove_special,
+ bool unparse_special);
diff --git a/src/llama.cpp b/src/llama.cpp
new file mode 100644
index 00000000..eecfccbd
--- /dev/null
+++ b/src/llama.cpp
@@ -0,0 +1,19336 @@
+#include "llama-impl.h"
+#include "llama-vocab.h"
+#include "llama-grammar.h"
+#include "llama-sampling.h"
+
+#include "unicode.h"
+
+#include "ggml.h"
+#include "ggml-alloc.h"
+#include "ggml-backend.h"
+
+#ifdef GGML_USE_RPC
+# include "ggml-rpc.h"
+#endif
+
+#ifdef GGML_USE_CUDA
+# include "ggml-cuda.h"
+#elif defined(GGML_USE_VULKAN)
+# include "ggml-vulkan.h"
+#elif defined(GGML_USE_SYCL)
+# include "ggml-sycl.h"
+#elif defined(GGML_USE_KOMPUTE)
+# include "ggml-kompute.h"
+#elif defined(GGML_USE_CANN)
+# include "ggml-cann.h"
+#endif
+
+#ifdef GGML_USE_BLAS
+# include "ggml-blas.h"
+#endif
+
+#ifdef GGML_USE_METAL
+# include "ggml-metal.h"
+#endif
+
+// TODO: replace with ggml API call
+#define QK_K 256
+#define QK_IQ1BN 64
+
+#ifdef __has_include
+ #if __has_include(<unistd.h>)
+ #include <unistd.h>
+ #if defined(_POSIX_MAPPED_FILES)
+ #include <sys/mman.h>
+ #include <fcntl.h>
+ #endif
+ #if defined(_POSIX_MEMLOCK_RANGE)
+ #include <sys/resource.h>
+ #endif
+ #endif
+#endif
+
+#if defined(_WIN32)
+ #define WIN32_LEAN_AND_MEAN
+ #ifndef NOMINMAX
+ #define NOMINMAX
+ #endif
+ #include <windows.h>
+ #ifndef PATH_MAX
+ #define PATH_MAX MAX_PATH
+ #endif
+ #include <io.h>
+#endif
+
+#if __cplusplus >= 202000L
+ #define LU8(x) (const char*)(u8##x)
+#else
+ #define LU8(x) u8##x
+#endif
+
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <cctype>
+#include <cfloat>
+#include <cinttypes>
+#include <climits>
+#include <cmath>
+#include <cstdarg>
+#include <cstddef>
+#include <cstdint>
+#include <cstdio>
+#include <cstring>
+#include <ctime>
+#include <fstream>
+#include <functional>
+#include <future>
+#include <initializer_list>
+#include <locale>
+#include <map>
+#include <memory>
+#include <mutex>
+#include <numeric>
+#include <set>
+#include <sstream>
+#include <thread>
+#include <type_traits>
+#include <unordered_map>
+
+#if defined(_MSC_VER)
+#pragma warning(disable: 4244 4267) // possible loss of data
+#endif
+
+// bump if necessary
+#define LLAMA_MAX_NODES 8192
+#define LLAMA_MAX_LAYERS 512
+#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
+
+//
+// helpers
+//
+
+// trim whitespace from the beginning and end of a string
+static std::string trim(const std::string & str) {
+ size_t start = 0;
+ size_t end = str.size();
+ while (start < end && isspace(str[start])) {
+ start += 1;
+ }
+ while (end > start && isspace(str[end - 1])) {
+ end -= 1;
+ }
+ return str.substr(start, end - start);
+}
+
+static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
+ std::string result;
+ for (size_t pos = 0; ; pos += search.length()) {
+ auto new_pos = s.find(search, pos);
+ if (new_pos == std::string::npos) {
+ result += s.substr(pos, s.size() - pos);
+ break;
+ }
+ result += s.substr(pos, new_pos - pos) + replace;
+ pos = new_pos;
+ }
+ s = std::move(result);
+}
+
+static bool is_float_close(float a, float b, float abs_tol) {
+ // Check for non-negative tolerance
+ if (abs_tol < 0.0) {
+ throw std::invalid_argument("Tolerance must be non-negative");
+ }
+
+ // Exact equality check
+ if (a == b) {
+ return true;
+ }
+
+ // Check for infinities
+ if (std::isinf(a) || std::isinf(b)) {
+ return false;
+ }
+
+ // Regular comparison using the provided absolute tolerance
+ return std::fabs(b - a) <= abs_tol;
+}
+
+static void zeros(std::ofstream & file, size_t n) {
+ char zero = 0;
+ for (size_t i = 0; i < n; ++i) {
+ file.write(&zero, 1);
+ }
+}
+
+LLAMA_ATTRIBUTE_FORMAT(1, 2)
+static std::string format(const char * fmt, ...) {
+ va_list ap;
+ va_list ap2;
+ va_start(ap, fmt);
+ va_copy(ap2, ap);
+ int size = vsnprintf(NULL, 0, fmt, ap);
+ GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
+ std::vector<char> buf(size + 1);
+ int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
+ GGML_ASSERT(size2 == size);
+ va_end(ap2);
+ va_end(ap);
+ return std::string(buf.data(), size);
+}
+
+//
+// gguf constants (sync with gguf.py)
+//
+
+enum llm_arch {
+ LLM_ARCH_LLAMA,
+ LLM_ARCH_FALCON,
+ LLM_ARCH_BAICHUAN,
+ LLM_ARCH_GROK,
+ LLM_ARCH_GPT2,
+ LLM_ARCH_GPTJ,
+ LLM_ARCH_GPTNEOX,
+ LLM_ARCH_MPT,
+ LLM_ARCH_STARCODER,
+ LLM_ARCH_REFACT,
+ LLM_ARCH_BERT,
+ LLM_ARCH_NOMIC_BERT,
+ LLM_ARCH_JINA_BERT_V2,
+ LLM_ARCH_BLOOM,
+ LLM_ARCH_STABLELM,
+ LLM_ARCH_QWEN,
+ LLM_ARCH_QWEN2,
+ LLM_ARCH_QWEN2MOE,
+ LLM_ARCH_PHI2,
+ LLM_ARCH_PHI3,
+ LLM_ARCH_PLAMO,
+ LLM_ARCH_CODESHELL,
+ LLM_ARCH_ORION,
+ LLM_ARCH_INTERNLM2,
+ LLM_ARCH_MINICPM,
+ LLM_ARCH_GEMMA,
+ LLM_ARCH_GEMMA2,
+ LLM_ARCH_STARCODER2,
+ LLM_ARCH_MAMBA,
+ LLM_ARCH_XVERSE,
+ LLM_ARCH_COMMAND_R,
+ LLM_ARCH_DBRX,
+ LLM_ARCH_OLMO,
+ LLM_ARCH_OPENELM,
+ LLM_ARCH_ARCTIC,
+ LLM_ARCH_DEEPSEEK2,
+ LLM_ARCH_CHATGLM,
+ LLM_ARCH_BITNET,
+ LLM_ARCH_T5,
+ LLM_ARCH_JAIS,
+ LLM_ARCH_UNKNOWN,
+};
+
+static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
+ { LLM_ARCH_LLAMA, "llama" },
+ { LLM_ARCH_FALCON, "falcon" },
+ { LLM_ARCH_GROK, "grok" },
+ { LLM_ARCH_GPT2, "gpt2" },
+ { LLM_ARCH_GPTJ, "gptj" },
+ { LLM_ARCH_GPTNEOX, "gptneox" },
+ { LLM_ARCH_MPT, "mpt" },
+ { LLM_ARCH_BAICHUAN, "baichuan" },
+ { LLM_ARCH_STARCODER, "starcoder" },
+ { LLM_ARCH_REFACT, "refact" },
+ { LLM_ARCH_BERT, "bert" },
+ { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
+ { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
+ { LLM_ARCH_BLOOM, "bloom" },
+ { LLM_ARCH_STABLELM, "stablelm" },
+ { LLM_ARCH_QWEN, "qwen" },
+ { LLM_ARCH_QWEN2, "qwen2" },
+ { LLM_ARCH_QWEN2MOE, "qwen2moe" },
+ { LLM_ARCH_PHI2, "phi2" },
+ { LLM_ARCH_PHI3, "phi3" },
+ { LLM_ARCH_PLAMO, "plamo" },
+ { LLM_ARCH_CODESHELL, "codeshell" },
+ { LLM_ARCH_ORION, "orion" },
+ { LLM_ARCH_INTERNLM2, "internlm2" },
+ { LLM_ARCH_MINICPM, "minicpm" },
+ { LLM_ARCH_GEMMA, "gemma" },
+ { LLM_ARCH_GEMMA2, "gemma2" },
+ { LLM_ARCH_STARCODER2, "starcoder2" },
+ { LLM_ARCH_MAMBA, "mamba" },
+ { LLM_ARCH_XVERSE, "xverse" },
+ { LLM_ARCH_COMMAND_R, "command-r" },
+ { LLM_ARCH_DBRX, "dbrx" },
+ { LLM_ARCH_OLMO, "olmo" },
+ { LLM_ARCH_OPENELM, "openelm" },
+ { LLM_ARCH_ARCTIC, "arctic" },
+ { LLM_ARCH_DEEPSEEK2, "deepseek2" },
+ { LLM_ARCH_CHATGLM, "chatglm" },
+ { LLM_ARCH_BITNET, "bitnet" },
+ { LLM_ARCH_T5, "t5" },
+ { LLM_ARCH_JAIS, "jais" },
+ { LLM_ARCH_UNKNOWN, "(unknown)" },
+};
+
+enum llm_kv {
+ LLM_KV_GENERAL_TYPE,
+ LLM_KV_GENERAL_ARCHITECTURE,
+ LLM_KV_GENERAL_QUANTIZATION_VERSION,
+ LLM_KV_GENERAL_ALIGNMENT,
+ LLM_KV_GENERAL_NAME,
+ LLM_KV_GENERAL_AUTHOR,
+ LLM_KV_GENERAL_VERSION,
+ LLM_KV_GENERAL_URL,
+ LLM_KV_GENERAL_DESCRIPTION,
+ LLM_KV_GENERAL_LICENSE,
+ LLM_KV_GENERAL_SOURCE_URL,
+ LLM_KV_GENERAL_SOURCE_HF_REPO,
+
+ LLM_KV_VOCAB_SIZE,
+ LLM_KV_CONTEXT_LENGTH,
+ LLM_KV_EMBEDDING_LENGTH,
+ LLM_KV_BLOCK_COUNT,
+ LLM_KV_LEADING_DENSE_BLOCK_COUNT,
+ LLM_KV_FEED_FORWARD_LENGTH,
+ LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
+ LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
+ LLM_KV_USE_PARALLEL_RESIDUAL,
+ LLM_KV_TENSOR_DATA_LAYOUT,
+ LLM_KV_EXPERT_COUNT,
+ LLM_KV_EXPERT_USED_COUNT,
+ LLM_KV_EXPERT_SHARED_COUNT,
+ LLM_KV_EXPERT_WEIGHTS_SCALE,
+ LLM_KV_POOLING_TYPE,
+ LLM_KV_LOGIT_SCALE,
+ LLM_KV_DECODER_START_TOKEN_ID,
+ LLM_KV_ATTN_LOGIT_SOFTCAPPING,
+ LLM_KV_FINAL_LOGIT_SOFTCAPPING,
+
+ LLM_KV_ATTENTION_HEAD_COUNT,
+ LLM_KV_ATTENTION_HEAD_COUNT_KV,
+ LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
+ LLM_KV_ATTENTION_CLAMP_KQV,
+ LLM_KV_ATTENTION_KEY_LENGTH,
+ LLM_KV_ATTENTION_VALUE_LENGTH,
+ LLM_KV_ATTENTION_LAYERNORM_EPS,
+ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
+ LLM_KV_ATTENTION_CAUSAL,
+ LLM_KV_ATTENTION_Q_LORA_RANK,
+ LLM_KV_ATTENTION_KV_LORA_RANK,
+ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
+ LLM_KV_ATTENTION_SLIDING_WINDOW,
+
+ LLM_KV_ROPE_DIMENSION_COUNT,
+ LLM_KV_ROPE_FREQ_BASE,
+ LLM_KV_ROPE_SCALE_LINEAR,
+ LLM_KV_ROPE_SCALING_TYPE,
+ LLM_KV_ROPE_SCALING_FACTOR,
+ LLM_KV_ROPE_SCALING_ATTN_FACTOR,
+ LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
+ LLM_KV_ROPE_SCALING_FINETUNED,
+ LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
+
+ LLM_KV_SPLIT_NO,
+ LLM_KV_SPLIT_COUNT,
+ LLM_KV_SPLIT_TENSORS_COUNT,
+
+ LLM_KV_SSM_INNER_SIZE,
+ LLM_KV_SSM_CONV_KERNEL,
+ LLM_KV_SSM_STATE_SIZE,
+ LLM_KV_SSM_TIME_STEP_RANK,
+
+ LLM_KV_TOKENIZER_MODEL,
+ LLM_KV_TOKENIZER_PRE,
+ LLM_KV_TOKENIZER_LIST,
+ LLM_KV_TOKENIZER_TOKEN_TYPE,
+ LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
+ LLM_KV_TOKENIZER_SCORES,
+ LLM_KV_TOKENIZER_MERGES,
+ LLM_KV_TOKENIZER_BOS_ID,
+ LLM_KV_TOKENIZER_EOS_ID,
+ LLM_KV_TOKENIZER_UNK_ID,
+ LLM_KV_TOKENIZER_SEP_ID,
+ LLM_KV_TOKENIZER_PAD_ID,
+ LLM_KV_TOKENIZER_CLS_ID,
+ LLM_KV_TOKENIZER_MASK_ID,
+ LLM_KV_TOKENIZER_ADD_BOS,
+ LLM_KV_TOKENIZER_ADD_EOS,
+ LLM_KV_TOKENIZER_ADD_PREFIX,
+ LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
+ LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
+ LLM_KV_TOKENIZER_HF_JSON,
+ LLM_KV_TOKENIZER_RWKV,
+ LLM_KV_TOKENIZER_PREFIX_ID,
+ LLM_KV_TOKENIZER_SUFFIX_ID,
+ LLM_KV_TOKENIZER_MIDDLE_ID,
+ LLM_KV_TOKENIZER_EOT_ID,
+
+ LLM_KV_ADAPTER_TYPE,
+ LLM_KV_ADAPTER_LORA_ALPHA,
+};
+
+static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
+ { LLM_KV_GENERAL_TYPE, "general.type" },
+ { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
+ { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
+ { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
+ { LLM_KV_GENERAL_NAME, "general.name" },
+ { LLM_KV_GENERAL_AUTHOR, "general.author" },
+ { LLM_KV_GENERAL_VERSION, "general.version" },
+ { LLM_KV_GENERAL_URL, "general.url" },
+ { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
+ { LLM_KV_GENERAL_LICENSE, "general.license" },
+ { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
+ { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
+
+ { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
+ { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
+ { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
+ { LLM_KV_BLOCK_COUNT, "%s.block_count" },
+ { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
+ { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
+ { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
+ { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
+ { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
+ { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
+ { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
+ { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
+ { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
+ { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
+ { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
+ { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
+ { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
+ { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
+ { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
+
+ { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
+ { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
+ { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
+ { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
+ { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
+ { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
+ { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
+ { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
+ { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
+ { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
+ { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
+ { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
+ { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
+
+ { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
+ { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
+ { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
+ { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
+ { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
+ { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
+ { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
+ { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
+ { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
+
+ { LLM_KV_SPLIT_NO, "split.no" },
+ { LLM_KV_SPLIT_COUNT, "split.count" },
+ { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
+
+ { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
+ { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
+ { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
+ { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
+
+ { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
+ { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
+ { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
+ { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
+ { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
+ { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
+ { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
+ { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
+ { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
+ { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
+ { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
+ { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
+ { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
+ { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
+ { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
+ { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
+ { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
+ { LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" },
+ { LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
+ { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
+ { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
+ { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
+ { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
+ { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
+ { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
+
+ { LLM_KV_ADAPTER_TYPE, "adapter.type" },
+ { LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" },
+};
+
+struct LLM_KV {
+ LLM_KV(llm_arch arch) : arch(arch) {}
+
+ llm_arch arch;
+
+ std::string operator()(llm_kv kv) const {
+ return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
+ }
+};
+
+enum llm_tensor {
+ LLM_TENSOR_TOKEN_EMBD,
+ LLM_TENSOR_TOKEN_EMBD_NORM,
+ LLM_TENSOR_TOKEN_TYPES,
+ LLM_TENSOR_POS_EMBD,
+ LLM_TENSOR_OUTPUT,
+ LLM_TENSOR_OUTPUT_NORM,
+ LLM_TENSOR_ROPE_FREQS,
+ LLM_TENSOR_ROPE_FACTORS_LONG,
+ LLM_TENSOR_ROPE_FACTORS_SHORT,
+ LLM_TENSOR_ATTN_Q,
+ LLM_TENSOR_ATTN_K,
+ LLM_TENSOR_ATTN_V,
+ LLM_TENSOR_ATTN_QKV,
+ LLM_TENSOR_ATTN_OUT,
+ LLM_TENSOR_ATTN_NORM,
+ LLM_TENSOR_ATTN_NORM_2,
+ LLM_TENSOR_ATTN_OUT_NORM,
+ LLM_TENSOR_ATTN_POST_NORM,
+ LLM_TENSOR_ATTN_ROT_EMBD,
+ LLM_TENSOR_FFN_GATE_INP,
+ LLM_TENSOR_FFN_GATE_INP_SHEXP,
+ LLM_TENSOR_FFN_NORM,
+ LLM_TENSOR_FFN_POST_NORM,
+ LLM_TENSOR_FFN_GATE,
+ LLM_TENSOR_FFN_DOWN,
+ LLM_TENSOR_FFN_UP,
+ LLM_TENSOR_FFN_ACT,
+ LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
+ LLM_TENSOR_FFN_GATE_EXP,
+ LLM_TENSOR_FFN_UP_EXP,
+ LLM_TENSOR_FFN_NORM_EXPS,
+ LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
+ LLM_TENSOR_FFN_GATE_EXPS,
+ LLM_TENSOR_FFN_UP_EXPS,
+ LLM_TENSOR_FFN_DOWN_SHEXP,
+ LLM_TENSOR_FFN_GATE_SHEXP,
+ LLM_TENSOR_FFN_UP_SHEXP,
+ LLM_TENSOR_ATTN_Q_NORM,
+ LLM_TENSOR_ATTN_K_NORM,
+ LLM_TENSOR_LAYER_OUT_NORM,
+ LLM_TENSOR_SSM_IN,
+ LLM_TENSOR_SSM_CONV1D,
+ LLM_TENSOR_SSM_X,
+ LLM_TENSOR_SSM_DT,
+ LLM_TENSOR_SSM_A,
+ LLM_TENSOR_SSM_D,
+ LLM_TENSOR_SSM_OUT,
+ LLM_TENSOR_ATTN_Q_A,
+ LLM_TENSOR_ATTN_Q_B,
+ LLM_TENSOR_ATTN_KV_A_MQA,
+ LLM_TENSOR_ATTN_KV_B,
+ LLM_TENSOR_ATTN_Q_A_NORM,
+ LLM_TENSOR_ATTN_KV_A_NORM,
+ LLM_TENSOR_ATTN_SUB_NORM,
+ LLM_TENSOR_FFN_SUB_NORM,
+ LLM_TENSOR_DEC_ATTN_NORM,
+ LLM_TENSOR_DEC_ATTN_Q,
+ LLM_TENSOR_DEC_ATTN_K,
+ LLM_TENSOR_DEC_ATTN_V,
+ LLM_TENSOR_DEC_ATTN_OUT,
+ LLM_TENSOR_DEC_ATTN_REL_B,
+ LLM_TENSOR_DEC_CROSS_ATTN_NORM,
+ LLM_TENSOR_DEC_CROSS_ATTN_Q,
+ LLM_TENSOR_DEC_CROSS_ATTN_K,
+ LLM_TENSOR_DEC_CROSS_ATTN_V,
+ LLM_TENSOR_DEC_CROSS_ATTN_OUT,
+ LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
+ LLM_TENSOR_DEC_FFN_NORM,
+ LLM_TENSOR_DEC_FFN_GATE,
+ LLM_TENSOR_DEC_FFN_DOWN,
+ LLM_TENSOR_DEC_FFN_UP,
+ LLM_TENSOR_DEC_OUTPUT_NORM,
+ LLM_TENSOR_ENC_ATTN_NORM,
+ LLM_TENSOR_ENC_ATTN_Q,
+ LLM_TENSOR_ENC_ATTN_K,
+ LLM_TENSOR_ENC_ATTN_V,
+ LLM_TENSOR_ENC_ATTN_OUT,
+ LLM_TENSOR_ENC_ATTN_REL_B,
+ LLM_TENSOR_ENC_FFN_NORM,
+ LLM_TENSOR_ENC_FFN_GATE,
+ LLM_TENSOR_ENC_FFN_DOWN,
+ LLM_TENSOR_ENC_FFN_UP,
+ LLM_TENSOR_ENC_OUTPUT_NORM,
+};
+
+static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
+ {
+ LLM_ARCH_LLAMA,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ },
+ },
+ {
+ LLM_ARCH_BAICHUAN,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_FALCON,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_GROK,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
+ { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
+ },
+ },
+ {
+ LLM_ARCH_GPT2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_POS_EMBD, "position_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ },
+ },
+ {
+ LLM_ARCH_GPTJ,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ },
+ },
+ {
+ LLM_ARCH_GPTNEOX,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_MPT,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output"},
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
+ { LLM_TENSOR_POS_EMBD, "position_embd" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
+ },
+ },
+ {
+ LLM_ARCH_STARCODER,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_POS_EMBD, "position_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ },
+ },
+ {
+ LLM_ARCH_REFACT,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_BERT,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
+ { LLM_TENSOR_TOKEN_TYPES, "token_types" },
+ { LLM_TENSOR_POS_EMBD, "position_embd" },
+ { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_NOMIC_BERT,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
+ { LLM_TENSOR_TOKEN_TYPES, "token_types" },
+ { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_JINA_BERT_V2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
+ { LLM_TENSOR_TOKEN_TYPES, "token_types" },
+ { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
+ { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_BLOOM,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ },
+ },
+ {
+ LLM_ARCH_STABLELM,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
+ },
+ },
+ {
+ LLM_ARCH_QWEN,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_QWEN2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_QWEN2MOE,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
+ { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
+ { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
+ { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
+ },
+ },
+ {
+ LLM_ARCH_PHI2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_PHI3,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
+ { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_PLAMO,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_CODESHELL,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_ORION,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_INTERNLM2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_MINICPM,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
+ },
+ },
+ {
+ LLM_ARCH_GEMMA,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_GEMMA2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
+ },
+ },
+ {
+ LLM_ARCH_STARCODER2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_MAMBA,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
+ { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
+ { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
+ { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
+ { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
+ { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
+ { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
+ },
+ },
+ {
+ LLM_ARCH_XVERSE,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_COMMAND_R,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
+ },
+ },
+ {
+ LLM_ARCH_DBRX,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ },
+ },
+ {
+ LLM_ARCH_OLMO,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_OPENELM,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_ARCTIC,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ },
+ },
+ {
+ LLM_ARCH_DEEPSEEK2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
+ { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
+ { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
+ { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
+ { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
+ { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
+ { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
+ { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
+ },
+ },
+ {
+ LLM_ARCH_BITNET,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
+ },
+ },
+ {
+ LLM_ARCH_T5,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_DEC_OUTPUT_NORM, "dec.output_norm" },
+ { LLM_TENSOR_DEC_ATTN_NORM, "dec.blk.%d.attn_norm" },
+ { LLM_TENSOR_DEC_ATTN_Q, "dec.blk.%d.attn_q" },
+ { LLM_TENSOR_DEC_ATTN_K, "dec.blk.%d.attn_k" },
+ { LLM_TENSOR_DEC_ATTN_V, "dec.blk.%d.attn_v" },
+ { LLM_TENSOR_DEC_ATTN_OUT, "dec.blk.%d.attn_o" },
+ { LLM_TENSOR_DEC_ATTN_REL_B, "dec.blk.%d.attn_rel_b" },
+ { LLM_TENSOR_DEC_CROSS_ATTN_NORM, "dec.blk.%d.cross_attn_norm" },
+ { LLM_TENSOR_DEC_CROSS_ATTN_Q, "dec.blk.%d.cross_attn_q" },
+ { LLM_TENSOR_DEC_CROSS_ATTN_K, "dec.blk.%d.cross_attn_k" },
+ { LLM_TENSOR_DEC_CROSS_ATTN_V, "dec.blk.%d.cross_attn_v" },
+ { LLM_TENSOR_DEC_CROSS_ATTN_OUT, "dec.blk.%d.cross_attn_o" },
+ { LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "dec.blk.%d.cross_attn_rel_b" },
+ { LLM_TENSOR_DEC_FFN_NORM, "dec.blk.%d.ffn_norm" },
+ { LLM_TENSOR_DEC_FFN_GATE, "dec.blk.%d.ffn_gate" },
+ { LLM_TENSOR_DEC_FFN_DOWN, "dec.blk.%d.ffn_down" },
+ { LLM_TENSOR_DEC_FFN_UP, "dec.blk.%d.ffn_up" },
+ { LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
+ { LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
+ { LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
+ { LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
+ { LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
+ { LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
+ { LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
+ { LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
+ { LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
+ { LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
+ { LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
+ },
+ },
+ {
+ LLM_ARCH_JAIS,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ },
+ },
+ {
+ LLM_ARCH_UNKNOWN,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ },
+ },
+};
+
+static llm_arch llm_arch_from_string(const std::string & name) {
+ for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
+ if (kv.second == name) {
+ return kv.first;
+ }
+ }
+
+ return LLM_ARCH_UNKNOWN;
+}
+
+// helper to handle gguf constants
+// usage:
+//
+// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
+//
+// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
+// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
+// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
+//
+struct LLM_TN {
+ LLM_TN(llm_arch arch) : arch(arch) {}
+
+ llm_arch arch;
+
+ std::string operator()(llm_tensor tensor) const {
+ if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
+ return "__missing__";
+ }
+ return LLM_TENSOR_NAMES.at(arch).at(tensor);
+ }
+
+ std::string operator()(llm_tensor tensor, const std::string & suffix) const {
+ if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
+ return "__missing__";
+ }
+ return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
+ }
+
+ std::string operator()(llm_tensor tensor, int bid) const {
+ if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
+ return "__missing__";
+ }
+ return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
+ }
+
+ std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
+ if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
+ return "__missing__";
+ }
+ return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
+ }
+
+ std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
+ if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
+ return "__missing__";
+ }
+ return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
+ }
+};
+
+//
+// gguf helpers
+//
+
+static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
+ { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
+ { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
+ { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
+};
+
+static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
+ for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
+ if (kv.second == name) {
+ return (llama_rope_scaling_type) kv.first;
+ }
+ }
+
+ return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
+}
+
+static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
+ switch (type) {
+ case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
+ case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
+ case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
+ case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
+ case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
+ case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
+ case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
+ case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
+ case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
+ case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
+ case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
+ default: return format("unknown type %d", type);
+ }
+}
+
+static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
+ const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
+
+ switch (type) {
+ case GGUF_TYPE_STRING:
+ return gguf_get_val_str(ctx_gguf, i);
+ case GGUF_TYPE_ARRAY:
+ {
+ const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
+ int arr_n = gguf_get_arr_n(ctx_gguf, i);
+ const void * data = gguf_get_arr_data(ctx_gguf, i);
+ std::stringstream ss;
+ ss << "[";
+ for (int j = 0; j < arr_n; j++) {
+ if (arr_type == GGUF_TYPE_STRING) {
+ std::string val = gguf_get_arr_str(ctx_gguf, i, j);
+ // escape quotes
+ replace_all(val, "\\", "\\\\");
+ replace_all(val, "\"", "\\\"");
+ ss << '"' << val << '"';
+ } else if (arr_type == GGUF_TYPE_ARRAY) {
+ ss << "???";
+ } else {
+ ss << gguf_data_to_str(arr_type, data, j);
+ }
+ if (j < arr_n - 1) {
+ ss << ", ";
+ }
+ }
+ ss << "]";
+ return ss.str();
+ }
+ default:
+ return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
+ }
+}
+
+//
+// llama helpers
+//
+
+#if defined(_WIN32)
+static std::string llama_format_win_err(DWORD err) {
+ LPSTR buf;
+ size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
+ NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
+ if (!size) {
+ return "FormatMessageA failed";
+ }
+ std::string ret(buf, size);
+ LocalFree(buf);
+ return ret;
+}
+#endif
+
+template <typename T>
+struct no_init {
+ T value;
+ no_init() { /* do nothing */ }
+};
+
+struct llama_file {
+
+#if defined(_WIN32)
+ // use FILE * so we don't have to re-open the file to mmap
+ FILE * fp;
+ HANDLE fp_win32;
+ size_t size;
+
+private:
+ std::string GetErrorMessageWin32(DWORD error_code) const {
+ std::string ret;
+ LPSTR lpMsgBuf = NULL;
+ DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
+ NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
+ if (!bufLen) {
+ ret = format("Win32 error code: %s", error_code);
+ } else {
+ ret = lpMsgBuf;
+ LocalFree(lpMsgBuf);
+ }
+
+ return ret;
+ }
+
+public:
+
+ llama_file(const char * fname, const char * mode) {
+ fp = ggml_fopen(fname, mode);
+ if (fp == NULL) {
+ throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
+ }
+ fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
+ seek(0, SEEK_END);
+ size = tell();
+ seek(0, SEEK_SET);
+ }
+
+ size_t tell() const {
+ // SetFilePointerEx returns the current position when seeking relative 0 bytes
+ LARGE_INTEGER li;
+ li.QuadPart = 0;
+ BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
+ if (!ret) {
+ throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
+ }
+
+ return li.QuadPart;
+ }
+
+ void seek(size_t offset, int whence) const {
+ // no need to convert SEEK_* to FILE_*. The enums are the same.
+ // Still, keep static asserts to avoid failures in the future.
+ static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
+ static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
+ static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
+
+ LARGE_INTEGER li;
+ li.QuadPart = offset;
+ BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
+ if (!ret) {
+ throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
+ }
+ }
+
+ void read_raw(void * ptr, size_t len) const {
+ // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
+ // use the Win32 API to do file io instead of the C/C++ library functions.
+
+ // There are conditions under which ReadFile cannot read chunks >64MB.
+ // Thus split the operation into smaller chunks if len exceeds this limit.
+ size_t bytes_read = 0;
+ while (bytes_read < len) {
+ size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
+ DWORD chunk_read = 0;
+ BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
+ if (!result) {
+ throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
+ }
+ if (chunk_read < chunk_size || chunk_read == 0) {
+ throw std::runtime_error("unexpectedly reached end of file");
+ }
+
+ bytes_read += chunk_read;
+ } ;
+ }
+
+ uint32_t read_u32() const {
+ uint32_t val;
+ read_raw(&val, sizeof(val));
+ return val;
+ }
+
+ void write_raw(const void * ptr, size_t len) const {
+ // There are conditions under which WriteFile cannot write chunks >64MB.
+ // Thus split the operation into smaller chunks if len exceeds this limit.
+ size_t bytes_written = 0;
+ while (bytes_written < len) {
+ size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
+ DWORD chunk_written = 0;
+ BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
+ if (!result) {
+ throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
+ }
+ if (chunk_written < chunk_size || chunk_written == 0) {
+ throw std::runtime_error("unexpectedly failed to write bytes");
+ }
+
+ bytes_written += chunk_written;
+ }
+ }
+
+ void write_u32(std::uint32_t val) const {
+ write_raw(&val, sizeof(val));
+ }
+
+ ~llama_file() {
+ if (fp) {
+ std::fclose(fp);
+ }
+ }
+#else
+ // use FILE * so we don't have to re-open the file to mmap
+ FILE * fp;
+ size_t size;
+
+ llama_file(const char * fname, const char * mode) {
+ fp = ggml_fopen(fname, mode);
+ if (fp == NULL) {
+ throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
+ }
+ seek(0, SEEK_END);
+ size = tell();
+ seek(0, SEEK_SET);
+ }
+
+ size_t tell() const {
+#ifdef _WIN32
+ __int64 ret = _ftelli64(fp);
+#else
+ long ret = std::ftell(fp);
+#endif
+ if (ret == -1) {
+ throw std::runtime_error(format("ftell error: %s", strerror(errno)));
+ }
+
+ return (size_t) ret;
+ }
+
+ void seek(size_t offset, int whence) const {
+#ifdef _WIN32
+ int ret = _fseeki64(fp, (__int64) offset, whence);
+#else
+ int ret = std::fseek(fp, (long) offset, whence);
+#endif
+ if (ret != 0) {
+ throw std::runtime_error(format("seek error: %s", strerror(errno)));
+ }
+ }
+
+ void read_raw(void * ptr, size_t len) const {
+ if (len == 0) {
+ return;
+ }
+ errno = 0;
+ std::size_t ret = std::fread(ptr, len, 1, fp);
+ if (ferror(fp)) {
+ throw std::runtime_error(format("read error: %s", strerror(errno)));
+ }
+ if (ret != 1) {
+ throw std::runtime_error("unexpectedly reached end of file");
+ }
+ }
+
+ uint32_t read_u32() const {
+ uint32_t ret;
+ read_raw(&ret, sizeof(ret));
+ return ret;
+ }
+
+ void write_raw(const void * ptr, size_t len) const {
+ if (len == 0) {
+ return;
+ }
+ errno = 0;
+ size_t ret = std::fwrite(ptr, len, 1, fp);
+ if (ret != 1) {
+ throw std::runtime_error(format("write error: %s", strerror(errno)));
+ }
+ }
+
+ void write_u32(std::uint32_t val) const {
+ write_raw(&val, sizeof(val));
+ }
+
+ ~llama_file() {
+ if (fp) {
+ std::fclose(fp);
+ }
+ }
+#endif
+};
+using llama_files = std::vector<std::unique_ptr<llama_file>>;
+
+struct llama_mmap {
+ void * addr;
+ size_t size;
+
+ llama_mmap(const llama_mmap &) = delete;
+
+#ifdef _POSIX_MAPPED_FILES
+ static constexpr bool SUPPORTED = true;
+
+ // list of mapped fragments (first_offset, last_offset)
+ std::vector<std::pair<size_t, size_t>> mapped_fragments;
+
+ llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
+ size = file->size;
+ int fd = fileno(file->fp);
+ int flags = MAP_SHARED;
+ // prefetch/readahead impairs performance on NUMA systems
+ if (numa) { prefetch = 0; }
+#ifdef __linux__
+ // advise the kernel to read the file sequentially (increases readahead)
+ if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
+ LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
+ strerror(errno));
+ }
+ if (prefetch) { flags |= MAP_POPULATE; }
+#endif
+ addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
+ if (addr == MAP_FAILED) { // NOLINT
+ throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
+ }
+
+ if (prefetch > 0) {
+ // advise the kernel to preload the mapped memory
+ if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
+ LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
+ strerror(errno));
+ }
+ }
+ if (numa) {
+ // advise the kernel not to use readahead
+ // (because the next page might not belong on the same node)
+ if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
+ LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
+ strerror(errno));
+ }
+ }
+
+ // initialize list of mapped_fragments
+ mapped_fragments.emplace_back(0, file->size);
+ }
+
+ static void align_range(size_t * first, size_t * last, size_t page_size) {
+ // align first to the next page
+ size_t offset_in_page = *first & (page_size - 1);
+ size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
+ *first += offset_to_page;
+
+ // align last to the previous page
+ *last = *last & ~(page_size - 1);
+
+ if (*last <= *first) {
+ *last = *first;
+ }
+ }
+
+ // partially unmap the file in the range [first, last)
+ void unmap_fragment(size_t first, size_t last) {
+ // note: this function must not be called multiple times with overlapping ranges
+ // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
+ int page_size = sysconf(_SC_PAGESIZE);
+ align_range(&first, &last, page_size);
+ size_t len = last - first;
+
+ if (len == 0) {
+ return;
+ }
+
+ GGML_ASSERT(first % page_size == 0);
+ GGML_ASSERT(last % page_size == 0);
+ GGML_ASSERT(last > first);
+
+ void * next_page_start = (uint8_t *) addr + first;
+
+ // unmap the range
+ if (munmap(next_page_start, len)) {
+ LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
+ }
+
+ // update the list of mapped fragments to avoid unmapping the same range again in the destructor
+ std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
+ for (const auto & frag : mapped_fragments) {
+ if (frag.first < first && frag.second > last) {
+ // the range is in the middle of the fragment, split it
+ new_mapped_fragments.emplace_back(frag.first, first);
+ new_mapped_fragments.emplace_back(last, frag.second);
+ } else if (frag.first < first && frag.second > first) {
+ // the range starts in the middle of the fragment
+ new_mapped_fragments.emplace_back(frag.first, first);
+ } else if (frag.first < last && frag.second > last) {
+ // the range ends in the middle of the fragment
+ new_mapped_fragments.emplace_back(last, frag.second);
+ } else if (frag.first >= first && frag.second <= last) {
+ // the range covers the entire fragment
+ } else {
+ // the range is outside the fragment
+ new_mapped_fragments.push_back(frag);
+ }
+ }
+ mapped_fragments = std::move(new_mapped_fragments);
+ }
+
+ ~llama_mmap() {
+ for (const auto & frag : mapped_fragments) {
+ if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
+ LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
+ }
+ }
+ }
+#elif defined(_WIN32)
+ static constexpr bool SUPPORTED = true;
+
+ llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
+ GGML_UNUSED(numa);
+
+ size = file->size;
+
+ HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
+
+ HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
+
+ if (hMapping == NULL) {
+ DWORD error = GetLastError();
+ throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
+ }
+
+ addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
+ DWORD error = GetLastError();
+ CloseHandle(hMapping);
+
+ if (addr == NULL) {
+ throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
+ }
+
+ if (prefetch > 0) {
+#if _WIN32_WINNT >= 0x602
+ // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
+ BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
+ HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
+
+ // may fail on pre-Windows 8 systems
+ pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
+
+ if (pPrefetchVirtualMemory) {
+ // advise the kernel to preload the mapped memory
+ WIN32_MEMORY_RANGE_ENTRY range;
+ range.VirtualAddress = addr;
+ range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
+ if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
+ LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
+ llama_format_win_err(GetLastError()).c_str());
+ }
+ }
+#else
+ throw std::runtime_error("PrefetchVirtualMemory unavailable");
+#endif
+ }
+ }
+
+ void unmap_fragment(size_t first, size_t last) {
+ // not supported
+ GGML_UNUSED(first);
+ GGML_UNUSED(last);
+ }
+
+ ~llama_mmap() {
+ if (!UnmapViewOfFile(addr)) {
+ LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
+ llama_format_win_err(GetLastError()).c_str());
+ }
+ }
+#else
+ static constexpr bool SUPPORTED = false;
+
+ llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
+ GGML_UNUSED(file);
+ GGML_UNUSED(prefetch);
+ GGML_UNUSED(numa);
+
+ throw std::runtime_error("mmap not supported");
+ }
+
+ void unmap_fragment(size_t first, size_t last) {
+ GGML_UNUSED(first);
+ GGML_UNUSED(last);
+
+ throw std::runtime_error("mmap not supported");
+ }
+#endif
+};
+using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
+
+// Represents some region of memory being locked using mlock or VirtualLock;
+// will automatically unlock on destruction.
+struct llama_mlock {
+ void * addr = NULL;
+ size_t size = 0;
+
+ bool failed_already = false;
+
+ llama_mlock() {}
+ llama_mlock(const llama_mlock &) = delete;
+
+ ~llama_mlock() {
+ if (size) {
+ raw_unlock(addr, size);
+ }
+ }
+
+ void init(void * ptr) {
+ GGML_ASSERT(addr == NULL && size == 0); // NOLINT
+ addr = ptr;
+ }
+
+ void grow_to(size_t target_size) {
+ GGML_ASSERT(addr);
+ if (failed_already) {
+ return;
+ }
+ size_t granularity = lock_granularity();
+ target_size = (target_size + granularity - 1) & ~(granularity - 1);
+ if (target_size > size) {
+ if (raw_lock((uint8_t *) addr + size, target_size - size)) {
+ size = target_size;
+ } else {
+ failed_already = true;
+ }
+ }
+ }
+
+#ifdef _POSIX_MEMLOCK_RANGE
+ static constexpr bool SUPPORTED = true;
+
+ static size_t lock_granularity() {
+ return (size_t) sysconf(_SC_PAGESIZE);
+ }
+
+ #ifdef __APPLE__
+ #define MLOCK_SUGGESTION \
+ "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
+ "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
+ #else
+ #define MLOCK_SUGGESTION \
+ "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
+ #endif
+
+ bool raw_lock(const void * addr, size_t size) const {
+ if (!mlock(addr, size)) {
+ return true;
+ }
+
+ char* errmsg = std::strerror(errno);
+ bool suggest = (errno == ENOMEM);
+
+ // Check if the resource limit is fine after all
+ struct rlimit lock_limit;
+ if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
+ suggest = false;
+ }
+ if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
+ suggest = false;
+ }
+
+ LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
+ size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
+ return false;
+ }
+
+ #undef MLOCK_SUGGESTION
+
+ static void raw_unlock(void * addr, size_t size) {
+ if (munlock(addr, size)) {
+ LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
+ }
+ }
+#elif defined(_WIN32)
+ static constexpr bool SUPPORTED = true;
+
+ static size_t lock_granularity() {
+ SYSTEM_INFO si;
+ GetSystemInfo(&si);
+ return (size_t) si.dwPageSize;
+ }
+
+ bool raw_lock(void * ptr, size_t len) const {
+ for (int tries = 1; ; tries++) {
+ if (VirtualLock(ptr, len)) {
+ return true;
+ }
+ if (tries == 2) {
+ LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
+ len, size, llama_format_win_err(GetLastError()).c_str());
+ return false;
+ }
+
+ // It failed but this was only the first try; increase the working
+ // set size and try again.
+ SIZE_T min_ws_size, max_ws_size;
+ if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
+ LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
+ llama_format_win_err(GetLastError()).c_str());
+ return false;
+ }
+ // Per MSDN: "The maximum number of pages that a process can lock
+ // is equal to the number of pages in its minimum working set minus
+ // a small overhead."
+ // Hopefully a megabyte is enough overhead:
+ size_t increment = len + 1048576;
+ // The minimum must be <= the maximum, so we need to increase both:
+ min_ws_size += increment;
+ max_ws_size += increment;
+ if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
+ LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
+ llama_format_win_err(GetLastError()).c_str());
+ return false;
+ }
+ }
+ }
+
+ static void raw_unlock(void * ptr, size_t len) {
+ if (!VirtualUnlock(ptr, len)) {
+ LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
+ llama_format_win_err(GetLastError()).c_str());
+ }
+ }
+#else
+ static constexpr bool SUPPORTED = false;
+
+ static size_t lock_granularity() {
+ return (size_t) 65536;
+ }
+
+ bool raw_lock(const void * addr, size_t len) const {
+ LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
+ return false;
+ }
+
+ static void raw_unlock(const void * addr, size_t len) {}
+#endif
+};
+using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
+
+// NOTE: avoid ever using this except for building the token_to_piece caches
+static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
+ std::string piece;
+ piece.resize(piece.capacity()); // using string internal cache
+ const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
+ if (n_chars < 0) {
+ piece.resize(-n_chars);
+ int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
+ GGML_ASSERT(check == -n_chars);
+ }
+ else {
+ piece.resize(n_chars);
+ }
+
+ return piece;
+}
+
+static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
+ ggml_backend_buffer_type_t buft = nullptr;
+
+#if defined(GGML_USE_CUDA)
+ // host buffers should only be used when data is expected to be copied to/from the GPU
+ if (host_buffer) {
+ buft = ggml_backend_cuda_host_buffer_type();
+ }
+#elif defined(GGML_USE_SYCL)
+ if (host_buffer) {
+ buft = ggml_backend_sycl_host_buffer_type();
+ }
+#elif defined(GGML_USE_CPU_HBM)
+ buft = ggml_backend_cpu_hbm_buffer_type();
+#elif defined(GGML_USE_VULKAN)
+ if (host_buffer) {
+ buft = ggml_backend_vk_host_buffer_type();
+ }
+#endif
+
+ if (buft == nullptr) {
+ buft = ggml_backend_cpu_buffer_type();
+ }
+ return buft;
+
+ GGML_UNUSED(host_buffer);
+}
+
+//
+// globals
+//
+
+struct llama_state {
+ llama_state() {
+#ifdef GGML_USE_METAL
+ ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
+#elif defined(GGML_USE_CUDA)
+ ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
+#elif defined(GGML_USE_CANN)
+ ggml_backend_cann_log_set_callback(log_callback, log_callback_user_data);
+#endif
+ }
+
+ // We save the log callback globally
+ ggml_log_callback log_callback = llama_log_callback_default;
+ void * log_callback_user_data = nullptr;
+};
+
+static llama_state g_state;
+
+// available llama models
+enum e_model {
+ MODEL_UNKNOWN,
+ MODEL_14M,
+ MODEL_17M,
+ MODEL_22M,
+ MODEL_33M,
+ MODEL_60M,
+ MODEL_70M,
+ MODEL_80M,
+ MODEL_109M,
+ MODEL_137M,
+ MODEL_160M,
+ MODEL_220M,
+ MODEL_250M,
+ MODEL_270M,
+ MODEL_335M,
+ MODEL_410M,
+ MODEL_450M,
+ MODEL_770M,
+ MODEL_780M,
+ MODEL_0_5B,
+ MODEL_1B,
+ MODEL_1_3B,
+ MODEL_1_4B,
+ MODEL_2B,
+ MODEL_2_8B,
+ MODEL_3B,
+ MODEL_4B,
+ MODEL_6B,
+ MODEL_6_9B,
+ MODEL_7B,
+ MODEL_8B,
+ MODEL_9B,
+ MODEL_11B,
+ MODEL_12B,
+ MODEL_13B,
+ MODEL_14B,
+ MODEL_15B,
+ MODEL_16B,
+ MODEL_20B,
+ MODEL_30B,
+ MODEL_34B,
+ MODEL_35B,
+ MODEL_40B,
+ MODEL_65B,
+ MODEL_70B,
+ MODEL_236B,
+ MODEL_314B,
+ MODEL_SMALL,
+ MODEL_MEDIUM,
+ MODEL_LARGE,
+ MODEL_XL,
+ MODEL_A2_7B,
+ MODEL_8x7B,
+ MODEL_8x22B,
+ MODEL_16x12B,
+ MODEL_10B_128x3_66B,
+ MODEL_57B_A14B,
+ MODEL_27B,
+};
+
+static const size_t kiB = 1024;
+static const size_t MiB = 1024*kiB;
+static const size_t GiB = 1024*MiB;
+
+struct llama_hparams {
+ bool vocab_only;
+ bool rope_finetuned;
+ bool use_par_res;
+
+ uint32_t n_vocab;
+ uint32_t n_ctx_train; // context size the model was trained on
+ uint32_t n_embd;
+ uint32_t n_layer;
+ uint32_t n_rot;
+ uint32_t n_swa = 0; // sliding window attention (SWA)
+ uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
+ uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
+ uint32_t n_expert = 0;
+ uint32_t n_expert_used = 0;
+ uint32_t n_vocab_type = 0; // for BERT-style token types
+ uint32_t n_rel_attn_bkts = 0;
+
+ std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
+ std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
+ std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
+
+ uint32_t n_layer_dense_lead = 0;
+ uint32_t n_lora_q = 0;
+ uint32_t n_lora_kv = 0;
+ uint32_t n_ff_exp = 0;
+ uint32_t n_ff_shexp = 0;
+ uint32_t n_expert_shared = 0;
+ float expert_weights_scale = 0.0;
+
+ float f_norm_eps;
+ float f_norm_rms_eps;
+
+ float f_attn_logit_softcapping = 50.0f;
+ float f_final_logit_softcapping = 30.0f;
+
+ float rope_attn_factor = 1.0f;
+ float rope_freq_base_train;
+ float rope_freq_scale_train;
+ uint32_t n_ctx_orig_yarn;
+ float rope_yarn_log_mul;
+
+ // for State Space Models
+ uint32_t ssm_d_conv = 0;
+ uint32_t ssm_d_inner = 0;
+ uint32_t ssm_d_state = 0;
+ uint32_t ssm_dt_rank = 0;
+
+ float f_clamp_kqv = 0.0f;
+ float f_max_alibi_bias = 0.0f;
+ float f_logit_scale = 0.0f;
+
+ bool causal_attn = true;
+ bool use_alibi = false;
+ bool attn_soft_cap = false;
+
+ // needed by encoder-decoder models (e.g. T5, FLAN-T5)
+ // ref: https://github.com/ggerganov/llama.cpp/pull/8141
+ llama_token dec_start_token_id = -1;
+
+ enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
+ enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
+ enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
+
+ bool operator!=(const llama_hparams & other) const {
+ if (this->vocab_only != other.vocab_only) return true;
+ if (this->n_vocab != other.n_vocab) return true;
+ if (this->n_ctx_train != other.n_ctx_train) return true;
+ if (this->n_embd != other.n_embd) return true;
+ if (this->n_layer != other.n_layer) return true;
+ if (this->n_rot != other.n_rot) return true;
+ if (this->n_swa != other.n_swa) return true;
+ if (this->n_embd_head_k != other.n_embd_head_k) return true;
+ if (this->n_embd_head_v != other.n_embd_head_v) return true;
+ if (this->n_expert != other.n_expert) return true;
+ if (this->n_expert_used != other.n_expert_used) return true;
+
+ if (this->n_head_arr != other.n_head_arr) return true;
+ if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
+ if (this->n_ff_arr != other.n_ff_arr) return true;
+
+ if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
+ if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
+ if (this->n_lora_q != other.n_lora_q) return true;
+ if (this->n_lora_kv != other.n_lora_kv) return true;
+ if (this->n_ff_exp != other.n_ff_exp) return true;
+ if (this->n_ff_shexp != other.n_ff_shexp) return true;
+ if (this->n_expert_shared != other.n_expert_shared) return true;
+
+ if (this->rope_finetuned != other.rope_finetuned) return true;
+ if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
+
+ if (this->ssm_d_conv != other.ssm_d_conv) return true;
+ if (this->ssm_d_inner != other.ssm_d_inner) return true;
+ if (this->ssm_d_state != other.ssm_d_state) return true;
+ if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
+
+ if (this->dec_start_token_id != other.dec_start_token_id) return true;
+
+ const float EPSILON = 1e-9f;
+
+ if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
+ if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
+ if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
+ if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
+ if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
+ if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
+ if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
+
+ return false;
+ }
+
+ uint32_t n_head(uint32_t il = 0) const {
+ if (il < n_layer) {
+ return n_head_arr[il];
+ }
+
+ GGML_ASSERT(false);
+ return 0;
+ }
+
+ uint32_t n_head_kv(uint32_t il = 0) const {
+ if (il < n_layer) {
+ return n_head_kv_arr[il];
+ }
+
+ GGML_ASSERT(false);
+ return 0;
+ }
+
+ uint32_t n_ff(uint32_t il = 0) const {
+ if (il < n_layer) {
+ return n_ff_arr[il];
+ }
+
+ GGML_ASSERT(false);
+ return 0;
+ }
+
+ uint32_t n_gqa(uint32_t il = 0) const {
+ const uint32_t n_head = this->n_head(il);
+ const uint32_t n_head_kv = this->n_head_kv(il);
+
+ if (n_head_kv == 0) {
+ return 0;
+ }
+
+ return n_head/n_head_kv;
+ }
+
+ uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
+ const uint32_t n_head_kv = this->n_head_kv(il);
+
+ return n_embd_head_k * n_head_kv;
+ }
+
+ uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
+ const uint32_t n_head_kv = this->n_head_kv(il);
+
+ return n_embd_head_v * n_head_kv;
+ }
+
+ uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
+ // corresponds to Mamba's conv_states size
+ // TODO: maybe support other convolution strides than 1
+ // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
+ return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
+ }
+
+ uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
+ // corresponds to Mamba's ssm_states size
+ return ssm_d_state * ssm_d_inner;
+ }
+};
+
+static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
+
+struct llama_cparams {
+ uint32_t n_ctx; // context size used during inference
+ uint32_t n_batch;
+ uint32_t n_ubatch;
+ uint32_t n_seq_max;
+ uint32_t n_threads; // number of threads to use for generation
+ uint32_t n_threads_batch; // number of threads to use for batch processing
+
+ float rope_freq_base;
+ float rope_freq_scale;
+
+ uint32_t n_ctx_orig_yarn;
+ // These hyperparameters are not exposed in GGUF, because all
+ // existing YaRN models use the same values for them.
+ float yarn_ext_factor;
+ float yarn_attn_factor;
+ float yarn_beta_fast;
+ float yarn_beta_slow;
+ float defrag_thold;
+
+ bool embeddings;
+ bool causal_attn;
+ bool offload_kqv;
+ bool flash_attn;
+
+ enum llama_pooling_type pooling_type;
+
+ ggml_backend_sched_eval_callback cb_eval;
+ void * cb_eval_user_data;
+};
+
+// TODO: separate into "llama_layer_enc" and "llama_layer_dec"
+struct llama_layer {
+ // normalization
+ struct ggml_tensor * attn_norm;
+ struct ggml_tensor * attn_norm_b;
+ struct ggml_tensor * attn_norm_2;
+ struct ggml_tensor * attn_norm_2_b;
+ struct ggml_tensor * attn_q_norm;
+ struct ggml_tensor * attn_q_norm_b;
+ struct ggml_tensor * attn_k_norm;
+ struct ggml_tensor * attn_k_norm_b;
+ struct ggml_tensor * attn_out_norm;
+ struct ggml_tensor * attn_out_norm_b;
+ struct ggml_tensor * attn_q_a_norm;
+ struct ggml_tensor * attn_kv_a_norm;
+ struct ggml_tensor * attn_sub_norm;
+ struct ggml_tensor * attn_post_norm;
+ struct ggml_tensor * ffn_sub_norm;
+ struct ggml_tensor * attn_norm_cross;
+ struct ggml_tensor * attn_norm_enc;
+
+ // attention
+ struct ggml_tensor * wq;
+ struct ggml_tensor * wk;
+ struct ggml_tensor * wv;
+ struct ggml_tensor * wo;
+ struct ggml_tensor * wqkv;
+ struct ggml_tensor * wq_a;
+ struct ggml_tensor * wq_b;
+ struct ggml_tensor * wkv_a_mqa;
+ struct ggml_tensor * wkv_b;
+ struct ggml_tensor * wq_cross;
+ struct ggml_tensor * wk_cross;
+ struct ggml_tensor * wv_cross;
+ struct ggml_tensor * wo_cross;
+ struct ggml_tensor * wq_enc;
+ struct ggml_tensor * wk_enc;
+ struct ggml_tensor * wv_enc;
+ struct ggml_tensor * wo_enc;
+
+ // attention bias
+ struct ggml_tensor * bq;
+ struct ggml_tensor * bk;
+ struct ggml_tensor * bv;
+ struct ggml_tensor * bo;
+ struct ggml_tensor * bqkv;
+
+ // relative position bias
+ struct ggml_tensor * attn_rel_b;
+ struct ggml_tensor * attn_rel_b_enc;
+ struct ggml_tensor * attn_rel_b_cross;
+
+ // normalization
+ struct ggml_tensor * ffn_norm;
+ struct ggml_tensor * ffn_norm_b;
+ struct ggml_tensor * ffn_post_norm;
+ struct ggml_tensor * layer_out_norm;
+ struct ggml_tensor * layer_out_norm_b;
+ struct ggml_tensor * ffn_norm_exps;
+ struct ggml_tensor * ffn_norm_enc;
+
+ // ff
+ struct ggml_tensor * ffn_gate; // w1
+ struct ggml_tensor * ffn_down; // w2
+ struct ggml_tensor * ffn_up; // w3
+ struct ggml_tensor * ffn_gate_enc;
+ struct ggml_tensor * ffn_down_enc;
+ struct ggml_tensor * ffn_up_enc;
+
+ // ff MoE
+ struct ggml_tensor * ffn_gate_inp;
+ struct ggml_tensor * ffn_gate_exps;
+ struct ggml_tensor * ffn_down_exps;
+ struct ggml_tensor * ffn_up_exps ;
+
+ // ff shared expert (shexp)
+ struct ggml_tensor * ffn_gate_inp_shexp;
+ struct ggml_tensor * ffn_gate_shexp;
+ struct ggml_tensor * ffn_down_shexp;
+ struct ggml_tensor * ffn_up_shexp;
+
+ // ff bias
+ struct ggml_tensor * ffn_gate_b = nullptr;
+ struct ggml_tensor * ffn_down_b = nullptr; // b2
+ struct ggml_tensor * ffn_up_b = nullptr; // b3
+ struct ggml_tensor * ffn_act;
+
+ // mamba proj
+ struct ggml_tensor * ssm_in;
+ struct ggml_tensor * ssm_x;
+ struct ggml_tensor * ssm_dt;
+ struct ggml_tensor * ssm_out;
+
+ // mamba
+ struct ggml_tensor * ssm_conv1d;
+ struct ggml_tensor * ssm_a;
+ struct ggml_tensor * ssm_d;
+
+ // mamba bias
+ struct ggml_tensor * ssm_conv1d_b;
+ struct ggml_tensor * ssm_dt_b;
+
+ // long rope factors
+ struct ggml_tensor * rope_long = nullptr;
+ struct ggml_tensor * rope_short = nullptr;
+
+ // bitnet scale
+ struct ggml_tensor * wq_scale;
+ struct ggml_tensor * wk_scale;
+ struct ggml_tensor * wv_scale;
+ struct ggml_tensor * wo_scale;
+ struct ggml_tensor * ffn_gate_scale;
+ struct ggml_tensor * ffn_up_scale;
+ struct ggml_tensor * ffn_down_scale;
+};
+
+struct llama_kv_cell {
+ llama_pos pos = -1;
+ llama_pos delta = 0;
+ int32_t src = 0; // used by recurrent state models to copy states
+
+ std::set<llama_seq_id> seq_id;
+
+ bool has_seq_id(const llama_seq_id & id) const {
+ return seq_id.find(id) != seq_id.end();
+ }
+
+ bool is_empty() const {
+ return seq_id.empty();
+ }
+
+ bool is_same_seq(const llama_kv_cell & other) const {
+ return seq_id == other.seq_id;
+ }
+};
+
+// ring-buffer of cached KV data
+struct llama_kv_cache {
+ bool has_shift = false;
+ bool do_defrag = false;
+ bool do_copy = false;
+ bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
+ bool v_trans = true; // the value tensor is transposed
+
+ // Note: The value of head isn't only used to optimize searching
+ // for a free KV slot. llama_decode_internal also uses it, so it
+ // cannot be freely changed after a slot has been allocated.
+ uint32_t head = 0;
+ uint32_t size = 0;
+ uint32_t used = 0; // used cells (i.e. at least one seq_id)
+
+ // computed before each graph build
+ uint32_t n = 0;
+
+ ggml_type type_k = GGML_TYPE_F16;
+ ggml_type type_v = GGML_TYPE_F16;
+
+ std::vector<llama_kv_cell> cells;
+
+ std::vector<struct ggml_tensor *> k_l; // per layer
+ std::vector<struct ggml_tensor *> v_l;
+
+ std::vector<struct ggml_context *> ctxs;
+ std::vector<ggml_backend_buffer_t> bufs;
+
+ size_t total_size() const {
+ size_t size = 0;
+ for (ggml_backend_buffer_t buf : bufs) {
+ size += ggml_backend_buffer_get_size(buf);
+ }
+ return size;
+ }
+
+ ~llama_kv_cache() {
+ for (struct ggml_context * ctx : ctxs) {
+ ggml_free(ctx);
+ }
+ for (ggml_backend_buffer_t buf : bufs) {
+ ggml_backend_buffer_free(buf);
+ }
+ }
+};
+
+struct llama_control_vector {
+ std::vector<struct ggml_tensor *> tensors; // per layer
+ std::vector<struct ggml_context *> ctxs;
+ std::vector<ggml_backend_buffer_t> bufs;
+
+ int32_t layer_start = -1;
+ int32_t layer_end = -1;
+
+ struct ggml_tensor * tensor_for(int il) const {
+ if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
+ return nullptr;
+ }
+ return tensors[il];
+ }
+
+ struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
+ ggml_tensor * layer_dir = tensor_for(il);
+ if (layer_dir != nullptr) {
+ cur = ggml_add(ctx, cur, layer_dir);
+ }
+ return cur;
+ }
+
+ ~llama_control_vector() {
+ for (struct ggml_context * ctx : ctxs) {
+ ggml_free(ctx);
+ }
+ for (ggml_backend_buffer_t buf : bufs) {
+ ggml_backend_buffer_free(buf);
+ }
+ }
+};
+
+struct llama_model {
+ e_model type = MODEL_UNKNOWN;
+ llm_arch arch = LLM_ARCH_UNKNOWN;
+ llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
+
+ std::string name = "n/a";
+
+ llama_hparams hparams = {};
+ llama_vocab vocab;
+
+ struct ggml_tensor * tok_embd;
+ struct ggml_tensor * type_embd;
+ struct ggml_tensor * pos_embd;
+ struct ggml_tensor * tok_norm;
+ struct ggml_tensor * tok_norm_b;
+
+ struct ggml_tensor * output_norm;
+ struct ggml_tensor * output_norm_b;
+ struct ggml_tensor * output;
+ struct ggml_tensor * output_b;
+ struct ggml_tensor * output_norm_enc;
+
+ std::vector<llama_layer> layers;
+
+ llama_split_mode split_mode;
+ int main_gpu;
+ int n_gpu_layers;
+
+ std::vector<std::string> rpc_servers;
+
+ // gguf metadata
+ std::unordered_map<std::string, std::string> gguf_kv;
+
+ // layer -> buffer type mapping
+ struct layer_buft {
+ layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
+ layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
+ layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
+
+ ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
+ ggml_backend_buffer_type_t buft; // everything else
+ };
+
+ layer_buft buft_input;
+ layer_buft buft_output;
+ std::vector<layer_buft> buft_layer;
+
+ // contexts where the model tensors metadata is stored
+ std::vector<struct ggml_context *> ctxs;
+
+ // the model memory buffers for the tensor data
+ std::vector<ggml_backend_buffer_t> bufs;
+
+ // model memory mapped files
+ llama_mmaps mappings;
+
+ // objects representing data potentially being locked in memory
+ llama_mlocks mlock_bufs;
+ llama_mlocks mlock_mmaps;
+
+ // for quantize-stats only
+ std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
+
+ int64_t t_load_us = 0;
+ int64_t t_start_us = 0;
+
+ // keep track of loaded lora adapters
+ std::set<struct llama_lora_adapter *> lora_adapters;
+
+ ~llama_model() {
+ for (struct ggml_context * ctx : ctxs) {
+ ggml_free(ctx);
+ }
+ for (ggml_backend_buffer_t buf : bufs) {
+#ifdef GGML_USE_CUDA
+ if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
+ ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
+ }
+#endif
+ ggml_backend_buffer_free(buf);
+ }
+ while (!lora_adapters.empty()) {
+ llama_lora_adapter_free(*lora_adapters.begin());
+ }
+ }
+};
+
+struct llama_context {
+ llama_context(const llama_model & model)
+ : model(model)
+ , sampling(llama_n_vocab(&model))
+ , t_start_us(model.t_start_us)
+ , t_load_us(model.t_load_us) {}
+
+ ~llama_context() {
+ ggml_backend_sched_free(sched);
+
+ for (ggml_backend_t backend : backends) {
+ ggml_backend_free(backend);
+ }
+
+ ggml_backend_buffer_free(buf_output);
+ }
+
+ const struct llama_model & model;
+
+ struct llama_cparams cparams;
+ struct llama_sampling sampling;
+ struct llama_kv_cache kv_self;
+ struct llama_control_vector cvec;
+
+ std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
+
+ std::vector<ggml_backend_t> backends;
+#ifdef GGML_USE_METAL
+ ggml_backend_t backend_metal = nullptr;
+#endif
+#ifdef GGML_USE_BLAS
+ ggml_backend_t backend_blas = nullptr;
+#endif
+ ggml_backend_t backend_cpu = nullptr;
+
+ bool has_evaluated_once = false;
+
+ int64_t t_start_us;
+ int64_t t_load_us;
+ int64_t t_p_eval_us = 0;
+ int64_t t_eval_us = 0;
+
+ int64_t t_compute_start_us = 0;
+ int64_t n_queued_tokens = 0;
+
+ int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
+ int32_t n_eval = 0; // number of eval calls
+
+ // host buffer for the model output (logits and embeddings)
+ ggml_backend_buffer_t buf_output = nullptr;
+
+ // decode output (2-dimensional array: [n_outputs][n_vocab])
+ size_t logits_size = 0; // capacity (of floats) for logits
+ float * logits = nullptr;
+
+ std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
+ size_t output_size = 0; // capacity (of tokens positions) for the output buffers
+ int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
+
+ bool logits_all = false;
+
+ // embeddings output (2-dimensional array: [n_outputs][n_embd])
+ // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
+ size_t embd_size = 0; // capacity (of floats) for embeddings
+ float * embd = nullptr;
+
+ // sequence embeddings output (map of [n_embd] vectors)
+ // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
+ std::map<llama_seq_id, std::vector<float>> embd_seq;
+
+ // whether we are computing encoder output or decoder output
+ bool is_encoding = false;
+
+ // output of the encoder part of the encoder-decoder models
+ std::vector<float> embd_enc;
+ std::vector<std::set<llama_seq_id>> seq_ids_enc;
+
+ // memory buffers used to evaluate the model
+ std::vector<uint8_t> buf_compute_meta;
+ ggml_backend_sched_t sched = nullptr;
+
+ ggml_abort_callback abort_callback = nullptr;
+ void * abort_callback_data = nullptr;
+
+ // input tensors
+ struct ggml_tensor * inp_tokens; // I32 [n_batch]
+ struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
+ struct ggml_tensor * inp_pos; // I32 [n_batch]
+ struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
+ struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
+ struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
+ struct ggml_tensor * inp_K_shift; // I32 [kv_size]
+ struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
+ struct ggml_tensor * inp_cls; // I32 [n_batch]
+ struct ggml_tensor * inp_s_copy; // I32 [kv_size]
+ struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
+ struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
+ struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
+ struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
+ struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
+};
+
+struct llama_lora_weight {
+ struct ggml_tensor * a = nullptr;
+ struct ggml_tensor * b = nullptr;
+ llama_lora_weight() = default;
+ llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b): a(a), b(b) {}
+};
+
+struct llama_lora_adapter {
+ struct llama_model * base_model;
+ // map tensor name to lora_a_b
+ std::unordered_map<std::string, struct llama_lora_weight> ab_map;
+ std::vector<struct ggml_context *> ctxs;
+ std::vector<ggml_backend_buffer_t> bufs;
+
+ float alpha;
+
+ llama_lora_adapter(struct llama_model * base_model): base_model(base_model) {
+ base_model->lora_adapters.insert(this);
+ }
+
+ llama_lora_weight * get_weight(struct ggml_tensor * w) {
+ std::string name(w->name);
+ auto pos = ab_map.find(name);
+ if (ab_map.find(name) != ab_map.end()) {
+ return &pos->second;
+ }
+ return nullptr;
+ }
+
+ ~llama_lora_adapter() {
+ for (struct ggml_context * ctx : ctxs) {
+ ggml_free(ctx);
+ }
+ for (ggml_backend_buffer_t buf : bufs) {
+ ggml_backend_buffer_free(buf);
+ }
+ auto pos = base_model->lora_adapters.find(this);
+ if (pos != base_model->lora_adapters.end()) {
+ base_model->lora_adapters.erase(pos);
+ }
+ }
+};
+
+static size_t llama_get_device_count(const llama_model & model) {
+ size_t count = 1;
+#if defined(GGML_USE_CUDA)
+ count = ggml_backend_cuda_get_device_count();
+#elif defined(GGML_USE_SYCL)
+ count = ggml_backend_sycl_get_device_count();
+#elif defined(GGML_USE_VULKAN)
+ count = ggml_backend_vk_get_device_count();
+#elif defined(GGML_USE_CANN)
+ return ggml_backend_cann_get_device_count();
+#endif
+#if defined(GGML_USE_RPC)
+ count += model.rpc_servers.size();
+#endif
+ return count;
+ GGML_UNUSED(model);
+}
+
+static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
+ ggml_backend_buffer_type_t buft = nullptr;
+
+#if defined(GGML_USE_RPC)
+ int dev_count = (int)llama_get_device_count(model);
+ int rpc_count = (int)model.rpc_servers.size();
+ if (gpu >= dev_count - rpc_count) {
+ const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
+ return ggml_backend_rpc_buffer_type(endpoint);
+ }
+#endif
+#if defined(GGML_USE_METAL)
+ buft = ggml_backend_metal_buffer_type();
+#elif defined(GGML_USE_CUDA)
+ buft = ggml_backend_cuda_buffer_type(gpu);
+#elif defined(GGML_USE_VULKAN)
+ buft = ggml_backend_vk_buffer_type(gpu);
+#elif defined(GGML_USE_SYCL)
+ buft = ggml_backend_sycl_buffer_type(gpu);
+#elif defined(GGML_USE_KOMPUTE)
+ buft = ggml_backend_kompute_buffer_type(gpu);
+ if (buft == nullptr) {
+ LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
+ }
+#elif defined(GGML_USE_CANN)
+ buft = ggml_backend_cann_buffer_type(gpu);
+#endif
+
+ if (buft == nullptr) {
+ buft = llama_default_buffer_type_cpu(true);
+ }
+ return buft;
+ GGML_UNUSED(model);
+ GGML_UNUSED(gpu);
+}
+
+static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
+ ggml_backend_buffer_type_t buft = nullptr;
+
+#ifdef GGML_USE_CUDA
+ if (ggml_backend_cuda_get_device_count() > 1) {
+ buft = ggml_backend_cuda_split_buffer_type(tensor_split);
+ }
+#endif
+
+#ifdef GGML_USE_SYCL
+ if (ggml_backend_sycl_get_device_count() > 1) {
+ buft = ggml_backend_sycl_split_buffer_type(tensor_split);
+ }
+#endif
+
+ if (buft == nullptr) {
+ buft = llama_default_buffer_type_offload(model, fallback_gpu);
+ }
+ return buft;
+
+ GGML_UNUSED(tensor_split);
+}
+
+static size_t llama_get_device_memory(const llama_model & model, int device) {
+#if defined(GGML_USE_RPC)
+ int dev_count = (int)llama_get_device_count(model);
+ int rpc_count = (int)model.rpc_servers.size();
+ if (device >= dev_count - rpc_count) {
+ size_t total;
+ size_t free;
+ const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
+ ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
+ return free;
+ }
+#endif
+#if defined(GGML_USE_CUDA)
+ size_t total;
+ size_t free;
+ ggml_backend_cuda_get_device_memory(device, &free, &total);
+ return free;
+#elif defined(GGML_USE_SYCL)
+ size_t total;
+ size_t free;
+ ggml_backend_sycl_get_device_memory(device, &free, &total);
+ return free;
+#elif defined(GGML_USE_VULKAN)
+ size_t total;
+ size_t free;
+ ggml_backend_vk_get_device_memory(device, &free, &total);
+ return free;
+#elif defined(GGML_USE_CANN)
+ size_t total;
+ size_t free;
+ ggml_backend_cann_get_device_memory(device, &free, &total);
+ return free;
+#else
+ return 1;
+#endif
+ GGML_UNUSED(model);
+ GGML_UNUSED(device);
+}
+
+//
+// kv cache helpers
+//
+
+static bool llama_kv_cache_init(
+ struct llama_kv_cache & cache,
+ const llama_context * ctx,
+ ggml_type type_k,
+ ggml_type type_v,
+ uint32_t kv_size,
+ bool offload) {
+ const llama_model & model = ctx->model;
+ const llama_cparams & cparams = ctx->cparams;
+
+ const struct llama_hparams & hparams = model.hparams;
+
+ const int64_t n_layer = hparams.n_layer;
+
+ cache.has_shift = false;
+
+ // TODO: find a nicer way to add other recurrent model architectures
+ cache.recurrent = model.arch == LLM_ARCH_MAMBA;
+ cache.v_trans = !cparams.flash_attn;
+
+ cache.head = 0;
+ cache.size = kv_size;
+ cache.used = 0;
+
+ cache.type_k = type_k;
+ cache.type_v = type_v;
+
+ cache.cells.clear();
+ cache.cells.resize(kv_size);
+
+ if (cache.recurrent) {
+ // init state copy sources
+ for (uint32_t i = 0; i < cache.size; ++i) {
+ cache.cells[i].src = i;
+ }
+ }
+
+ // count used buffer types
+ std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
+ if (offload) {
+ for (int64_t i = 0; i < n_layer; ++i) {
+ buft_layer_count[model.buft_layer[i].buft]++;
+ }
+ } else {
+ buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
+ }
+
+ // create a context for each buffer type
+ std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
+ for (auto & it : buft_layer_count) {
+ int n_layers = it.second;
+ struct ggml_init_params params = {
+ /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+ ggml_context * ctx = ggml_init(params);
+ if (!ctx) {
+ LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
+ return false;
+ }
+ ctx_map[it.first] = ctx;
+ cache.ctxs.push_back(ctx);
+ }
+
+ cache.k_l.reserve(n_layer);
+ cache.v_l.reserve(n_layer);
+
+ for (int i = 0; i < (int) n_layer; i++) {
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
+
+ struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
+ ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
+ ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
+ ggml_format_name(k, "cache_k_l%d", i);
+ ggml_format_name(v, "cache_v_l%d", i);
+ cache.k_l.push_back(k);
+ cache.v_l.push_back(v);
+ }
+
+ // allocate tensors and initialize the buffers to avoid NaNs in the padding
+ for (auto it : ctx_map) {
+ ggml_backend_buffer_type_t buft = it.first;
+ ggml_context * ctx = it.second;
+ ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+ if (!buf) {
+ LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
+ return false;
+ }
+ ggml_backend_buffer_clear(buf, 0);
+ LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
+ cache.bufs.push_back(buf);
+ }
+
+ return true;
+}
+
+// find an empty slot of size "n_tokens" in the cache
+// updates the cache head
+// Note: On success, it's important that cache.head points
+// to the first cell of the slot.
+static bool llama_kv_cache_find_slot(
+ struct llama_kv_cache & cache,
+ const struct llama_batch & batch) {
+ const uint32_t n_tokens = batch.n_tokens;
+
+ if (cache.recurrent) {
+ // For recurrent state architectures (like Mamba),
+ // each KV cache cell can store the state for a whole sequence.
+
+ llama_seq_id min = cache.size - 1;
+ llama_seq_id max = 0;
+
+ for (uint32_t i = 0; i < n_tokens; ++i) {
+ for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
+ llama_seq_id seq_id = batch.seq_id[i][j];
+ // make sure it's a valid seq_id
+ if ((uint32_t) seq_id < cache.size) {
+ if (seq_id > max) {
+ max = seq_id;
+ }
+ if (seq_id < min) {
+ min = seq_id;
+ }
+ // Assuming the tokens are in-order
+ if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
+ // What should happen when the pos backtracks or skips a value?
+ // Clearing the state mid-batch would require special-casing which isn't done.
+ LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
+ __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
+ }
+ if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
+ cache.used += 1;
+ }
+ cache.cells[seq_id].pos = batch.pos[i];
+ // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
+ } else {
+ // too big seq_id
+ // TODO: would it be possible to resize the KV cache size instead?
+ LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
+ return false;
+ }
+ }
+ }
+
+ // allow getting the range of used cells, from head to head + n
+ cache.head = min;
+ cache.n = max - min + 1;
+
+ // sanity check
+ return max >= min;
+ }
+ // otherwise, one cell per token.
+
+ if (n_tokens > cache.size) {
+ LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
+ return false;
+ }
+
+ uint32_t n_tested = 0;
+
+ while (true) {
+ if (cache.head + n_tokens > cache.size) {
+ n_tested += cache.size - cache.head;
+ cache.head = 0;
+ continue;
+ }
+
+ bool found = true;
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ if (cache.cells[cache.head + i].pos >= 0) {
+ found = false;
+ cache.head += i + 1;
+ n_tested += i + 1;
+ break;
+ }
+ }
+
+ if (found) {
+ break;
+ }
+
+ if (n_tested >= cache.size) {
+ //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
+ return false;
+ }
+ }
+
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ cache.cells[cache.head + i].pos = batch.pos[i];
+
+ for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
+ cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
+ }
+ }
+
+ cache.used += n_tokens;
+
+ return true;
+}
+
+// find how many cells are currently in use
+static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
+ for (uint32_t i = cache.size; i > 0; --i) {
+ const llama_kv_cell & cell = cache.cells[i - 1];
+
+ if (cell.pos >= 0 && !cell.is_empty()) {
+ return i;
+ }
+ }
+
+ return 0;
+}
+
+static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
+ for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
+ cache.cells[i].pos = -1;
+ cache.cells[i].seq_id.clear();
+ }
+ cache.head = 0;
+ cache.used = 0;
+
+ for (auto & buf : cache.bufs) {
+ ggml_backend_buffer_clear(buf, 0);
+ }
+}
+
+static bool llama_kv_cache_seq_rm(
+ struct llama_kv_cache & cache,
+ llama_seq_id seq_id,
+ llama_pos p0,
+ llama_pos p1) {
+ uint32_t new_head = cache.size;
+
+ if (p0 < 0) p0 = 0;
+ if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
+
+ // models like Mamba can't have a state partially erased
+ if (cache.recurrent) {
+ if (seq_id >= (int64_t) cache.size) {
+ // could be fatal
+ return false;
+ }
+ if (0 <= seq_id) {
+ // partial intersection is invalid
+ if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
+ return false;
+ }
+ } else {
+ // seq_id is negative, then the range should include everything or nothing
+ if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
+ return false;
+ }
+ }
+ }
+
+ for (uint32_t i = 0; i < cache.size; ++i) {
+ if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
+ if (seq_id < 0) {
+ cache.cells[i].seq_id.clear();
+ } else if (cache.cells[i].has_seq_id(seq_id)) {
+ cache.cells[i].seq_id.erase(seq_id);
+ } else {
+ continue;
+ }
+ if (cache.cells[i].is_empty()) {
+ // keep count of the number of used cells
+ if (cache.cells[i].pos >= 0) cache.used--;
+
+ cache.cells[i].pos = -1;
+ if (new_head == cache.size) new_head = i;
+ }
+ }
+ }
+
+ // If we freed up a slot, set head to it so searching can start there.
+ if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
+
+ return true;
+}
+
+static void llama_kv_cache_seq_cp(
+ struct llama_kv_cache & cache,
+ llama_seq_id seq_id_src,
+ llama_seq_id seq_id_dst,
+ llama_pos p0,
+ llama_pos p1) {
+ if (p0 < 0) p0 = 0;
+ if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
+
+ if (cache.recurrent) {
+ if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
+ seq_id_src = cache.cells[seq_id_src].src;
+ GGML_ASSERT((uint32_t) seq_id_src < cache.size);
+ // intent to "copy from"
+ // supports copy chains thanks to taking the source of the source
+ cache.cells[seq_id_dst].src = seq_id_src;
+
+ // preserve the "keep or clear" status of the copied sequence
+ if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
+ cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
+ } else {
+ cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
+ }
+
+ cache.do_copy = true;
+
+ cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
+ }
+ return;
+ }
+ // otherwise, this is the KV cache of a Transformer-like model
+
+ cache.head = 0;
+
+ for (uint32_t i = 0; i < cache.size; ++i) {
+ if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
+ cache.cells[i].seq_id.insert(seq_id_dst);
+ }
+ }
+}
+
+static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
+ uint32_t new_head = cache.size;
+
+ for (uint32_t i = 0; i < cache.size; ++i) {
+ if (!cache.cells[i].has_seq_id(seq_id)) {
+ if (cache.cells[i].pos >= 0) cache.used--;
+ cache.cells[i].pos = -1;
+ cache.cells[i].seq_id.clear();
+ if (new_head == cache.size) new_head = i;
+ } else {
+ cache.cells[i].seq_id.clear();
+ cache.cells[i].seq_id.insert(seq_id);
+ }
+ }
+
+ // If we freed up a slot, set head to it so searching can start there.
+ if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
+}
+
+static void llama_kv_cache_seq_add(
+ struct llama_kv_cache & cache,
+ llama_seq_id seq_id,
+ llama_pos p0,
+ llama_pos p1,
+ llama_pos delta) {
+ uint32_t new_head = cache.size;
+
+ if (p0 < 0) p0 = 0;
+ if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
+ // If there is no range then return early to avoid looping over the cache.
+ if (p0 == p1) return;
+
+ if (cache.recurrent) {
+ // for Mamba-like models, only the pos needs to be shifted
+ if (0 <= seq_id && seq_id < (int64_t) cache.size) {
+ llama_kv_cell & cell = cache.cells[seq_id];
+ if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
+ cell.pos += delta;
+ }
+ }
+ return;
+ }
+
+ for (uint32_t i = 0; i < cache.size; ++i) {
+ if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
+ cache.has_shift = true;
+ cache.cells[i].pos += delta;
+ cache.cells[i].delta += delta;
+
+ if (cache.cells[i].pos < 0) {
+ if (!cache.cells[i].is_empty()) {
+ cache.used--;
+ }
+ cache.cells[i].pos = -1;
+ cache.cells[i].seq_id.clear();
+ if (new_head == cache.size) {
+ new_head = i;
+ }
+ }
+ }
+ }
+
+ // If we freed up a slot, set head to it so searching can start there.
+ // Otherwise we just start the next search from the beginning.
+ cache.head = new_head != cache.size ? new_head : 0;
+}
+
+static void llama_kv_cache_seq_div(
+ struct llama_kv_cache & cache,
+ llama_seq_id seq_id,
+ llama_pos p0,
+ llama_pos p1,
+ int d) {
+ if (p0 < 0) p0 = 0;
+ if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
+ // If there is no range then return early to avoid looping over the cache.
+ if (p0 == p1) return;
+
+ if (cache.recurrent) {
+ // for Mamba-like models, only the pos needs to be changed
+ if (0 <= seq_id && seq_id < (int64_t) cache.size) {
+ llama_kv_cell & cell = cache.cells[seq_id];
+ if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
+ cell.pos /= d;
+ }
+ }
+ return;
+ }
+
+ for (uint32_t i = 0; i < cache.size; ++i) {
+ if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
+ cache.has_shift = true;
+
+ {
+ llama_pos p_old = cache.cells[i].pos;
+ cache.cells[i].pos /= d;
+ cache.cells[i].delta += cache.cells[i].pos - p_old;
+ }
+ }
+ }
+}
+
+static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
+ llama_pos result = 0;
+
+ for (uint32_t i = 0; i < cache.size; ++i) {
+ if (cache.cells[i].has_seq_id(seq_id)) {
+ result = std::max(result, cache.cells[i].pos);
+ }
+ }
+
+ return result;
+}
+
+static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
+ cache.do_defrag = true;
+}
+
+static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
+ // the FA kernels require padding to avoid extra runtime boundary checks
+ return cparams.flash_attn ? 256u : 32u;
+}
+
+//
+// model loading and saving
+//
+
+enum llama_fver {
+ GGUF_FILE_VERSION_V1 = 1,
+ GGUF_FILE_VERSION_V2 = 2,
+ GGUF_FILE_VERSION_V3 = 3,
+};
+
+static const char * llama_file_version_name(llama_fver version) {
+ switch (version) {
+ case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
+ case GGUF_FILE_VERSION_V2: return "GGUF V2";
+ case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
+ }
+
+ return "unknown";
+}
+
+static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
+ char buf[256];
+ snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
+ for (size_t i = 1; i < ne.size(); i++) {
+ snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
+ }
+ return buf;
+}
+
+static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
+ char buf[256];
+ snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
+ for (int i = 1; i < GGML_MAX_DIMS; i++) {
+ snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
+ }
+ return buf;
+}
+
+namespace GGUFMeta {
+ template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
+ struct GKV_Base_Type {
+ static constexpr gguf_type gt = gt_;
+
+ static T getter(const gguf_context * ctx, const int kid) {
+ return gfun(ctx, kid);
+ }
+ };
+
+ template<typename T> struct GKV_Base;
+
+ template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
+ template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
+ template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
+ template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
+ template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
+ template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
+ template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
+ template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
+ template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
+ template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
+ template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
+ template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
+
+ template<> struct GKV_Base<std::string> {
+ static constexpr gguf_type gt = GGUF_TYPE_STRING;
+
+ static std::string getter(const gguf_context * ctx, const int kid) {
+ return gguf_get_val_str(ctx, kid);
+ }
+ };
+
+ struct ArrayInfo {
+ const gguf_type gt;
+ const size_t length;
+ const void * data;
+ };
+
+ template<> struct GKV_Base<ArrayInfo> {
+ public:
+ static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
+ static ArrayInfo getter(const gguf_context *ctx, const int k) {
+ return ArrayInfo {
+ gguf_get_arr_type(ctx, k),
+ size_t(gguf_get_arr_n(ctx, k)),
+ gguf_get_arr_data(ctx, k),
+ };
+ }
+ };
+
+ template<typename T>
+ class GKV : public GKV_Base<T> {
+ GKV() = delete;
+
+ public:
+ static T get_kv(const gguf_context * ctx, const int k) {
+ const enum gguf_type kt = gguf_get_kv_type(ctx, k);
+
+ if (kt != GKV::gt) {
+ throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
+ gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
+ }
+ return GKV::getter(ctx, k);
+ }
+
+ static const char * override_type_to_str(const llama_model_kv_override_type ty) {
+ switch (ty) {
+ case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
+ case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
+ case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
+ case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
+ }
+ return "unknown";
+ }
+
+ static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
+ if (!ovrd) { return false; }
+ if (ovrd->tag == expected_type) {
+ LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
+ __func__, override_type_to_str(ovrd->tag), ovrd->key);
+ switch (ovrd->tag) {
+ case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
+ LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
+ } break;
+ case LLAMA_KV_OVERRIDE_TYPE_INT: {
+ LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
+ } break;
+ case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
+ LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
+ } break;
+ case LLAMA_KV_OVERRIDE_TYPE_STR: {
+ LLAMA_LOG_INFO("%s\n", ovrd->val_str);
+ } break;
+ default:
+ // Shouldn't be possible to end up here, but just in case...
+ throw std::runtime_error(
+ format("Unsupported attempt to override %s type for metadata key %s\n",
+ override_type_to_str(ovrd->tag), ovrd->key));
+ }
+ return true;
+ }
+ LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
+ __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
+ return false;
+ }
+
+ template<typename OT>
+ static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
+ try_override(OT & target, const struct llama_model_kv_override * ovrd) {
+ if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
+ target = ovrd->val_bool;
+ return true;
+ }
+ return false;
+ }
+
+ template<typename OT>
+ static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
+ try_override(OT & target, const struct llama_model_kv_override * ovrd) {
+ if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
+ target = ovrd->val_i64;
+ return true;
+ }
+ return false;
+ }
+
+ template<typename OT>
+ static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
+ try_override(T & target, const struct llama_model_kv_override * ovrd) {
+ if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
+ target = ovrd->val_f64;
+ return true;
+ }
+ return false;
+ }
+
+ template<typename OT>
+ static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
+ try_override(T & target, const struct llama_model_kv_override * ovrd) {
+ if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
+ target = ovrd->val_str;
+ return true;
+ }
+ return false;
+ }
+
+ static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
+ if (try_override<T>(target, ovrd)) {
+ return true;
+ }
+ if (k < 0) { return false; }
+ target = get_kv(ctx, k);
+ return true;
+ }
+
+ static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
+ return set(ctx, gguf_find_key(ctx, key), target, ovrd);
+ }
+
+ static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
+ return set(ctx, key.c_str(), target, ovrd);
+ }
+ };
+}
+
+using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
+
+struct llama_model_loader {
+ int n_kv = 0;
+ int n_tensors = 0;
+ int n_created = 0;
+
+ int64_t n_elements = 0;
+ size_t n_bytes = 0;
+
+ bool use_mmap = false;
+ bool check_tensors;
+
+ llama_files files;
+ llama_ftype ftype;
+ llama_fver fver;
+
+ llama_mmaps mappings;
+
+ // Holds information on a model weight
+ struct llama_tensor_weight {
+ uint16_t idx; // source file index
+ size_t offs; // tensor data offset in the original file
+
+ ggml_tensor * tensor;
+
+ llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
+ const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
+ offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
+
+ if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
+ throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
+ }
+ }
+ };
+ std::vector<llama_tensor_weight> weights;
+
+ std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
+
+ struct gguf_context * meta = NULL;
+ std::vector<ggml_context *> contexts;
+
+ std::string arch_name;
+ LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
+
+ llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
+ int trace = 0;
+ if (getenv("LLAMA_TRACE")) {
+ trace = atoi(getenv("LLAMA_TRACE"));
+ }
+
+ if (param_overrides_p != nullptr) {
+ for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
+ kv_overrides.insert({std::string(p->key), *p});
+ }
+ }
+
+ struct ggml_context * ctx = NULL;
+ struct gguf_init_params params = {
+ /*.no_alloc = */ true,
+ /*.ctx = */ &ctx,
+ };
+
+ meta = gguf_init_from_file(fname.c_str(), params);
+ if (!meta) {
+ throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
+ }
+
+ get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
+ llm_kv = LLM_KV(llm_arch_from_string(arch_name));
+
+ files.emplace_back(new llama_file(fname.c_str(), "rb"));
+ contexts.emplace_back(ctx);
+
+ // Save tensors data offset of the main file.
+ // For subsidiary files, `meta` tensor data offset must not be used,
+ // so we build a unified tensors index for weights.
+ for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
+ weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
+ }
+ uint16_t n_split = 0;
+ get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
+
+ // Load additional GGML contexts
+ if (n_split > 1) {
+ uint16_t idx = 0;
+ get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
+ if (idx != 0) {
+ throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
+ }
+
+ char split_prefix[PATH_MAX] = {0};
+ if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
+ throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
+ }
+
+ if (trace > 0) {
+ LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
+ }
+
+ char split_path[PATH_MAX] = {0};
+ for (idx = 1; idx < n_split; idx++) {
+ llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
+
+ struct gguf_init_params split_params = {
+ /*.no_alloc = */ true,
+ /*.ctx = */ &ctx,
+ };
+ struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
+ if (!ctx_gguf) {
+ throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
+ }
+
+ files.emplace_back(new llama_file(split_path, "rb"));
+ contexts.emplace_back(ctx);
+
+ // Save tensors data offset info of the shard.
+ for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
+ weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
+ }
+
+ gguf_free(ctx_gguf);
+ }
+
+ get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
+
+ // sanity check
+ {
+ const int n_tensors_loaded = (int) weights.size();
+ if (n_tensors != n_tensors_loaded) {
+ throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
+ }
+ }
+
+ LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
+ }
+
+ n_kv = gguf_get_n_kv(meta);
+ n_tensors = weights.size();
+
+ fver = (enum llama_fver) gguf_get_version(meta);
+
+ std::set<std::string> tensor_names;
+ for (auto & w : weights) {
+ n_elements += ggml_nelements(w.tensor);
+ n_bytes += ggml_nbytes(w.tensor);
+ // make sure there is no duplicated tensor names
+ const std::string name(w.tensor->name);
+ auto found = tensor_names.find(name);
+ if (found != tensor_names.end()) {
+ throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
+ }
+ tensor_names.insert(name);
+ }
+
+ LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
+ __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
+
+ // determine file type based on the number of tensors for each quantization and print meta data
+ // TODO: make optional
+ {
+ std::map<enum ggml_type, uint32_t> n_type;
+
+ uint32_t n_type_max = 0;
+ enum ggml_type type_max = GGML_TYPE_F32;
+
+ for (int i = 0; i < n_tensors; i++) {
+ const ggml_tensor * tensor = weights.at(i).tensor;
+ enum ggml_type type = tensor->type;
+
+ n_type[type]++;
+
+ if (n_type_max < n_type[type]) {
+ n_type_max = n_type[type];
+ type_max = type;
+ }
+
+ if (trace > 0) {
+ const uint16_t sid = weights.at(i).idx;
+ LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
+ }
+ }
+
+ switch (type_max) {
+ case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
+ case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
+ case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
+ case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
+ case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
+ case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
+ case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
+ case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
+ case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
+ case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
+ case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
+ case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
+ case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
+ case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
+ case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
+ case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
+ case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
+ case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
+ case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
+ case GGML_TYPE_IQ1_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ1_BN; break;
+ case GGML_TYPE_IQ2_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ2_BN; break;
+ case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
+ case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
+ case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
+ case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
+ case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
+ case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break;
+ default:
+ {
+ LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
+ ftype = LLAMA_FTYPE_ALL_F32;
+ } break;
+ }
+
+ // this is a way to mark that we have "guessed" the file type
+ ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
+
+ {
+ const int kid = gguf_find_key(meta, "general.file_type"); // TODO: use LLM_KV
+ if (kid >= 0) {
+ ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
+ }
+ }
+
+ LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
+
+ for (int i = 0; i < n_kv; i++) {
+ const char * name = gguf_get_key(meta, i);
+ const enum gguf_type type = gguf_get_kv_type(meta, i);
+ const std::string type_name =
+ type == GGUF_TYPE_ARRAY
+ ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
+ : gguf_type_name(type);
+
+ std::string value = gguf_kv_to_str(meta, i);
+ const size_t MAX_VALUE_LEN = 40;
+ if (value.size() > MAX_VALUE_LEN) {
+ value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
+ }
+ replace_all(value, "\n", "\\n");
+
+ LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
+ }
+
+ // print type counts
+ for (auto & kv : n_type) {
+ if (kv.second == 0) {
+ continue;
+ }
+
+ LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
+ }
+ }
+
+ if (!llama_mmap::SUPPORTED) {
+ LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
+ use_mmap = false;
+ }
+
+ this->use_mmap = use_mmap;
+ this->check_tensors = check_tensors;
+ }
+
+ ~llama_model_loader() {
+ if (meta) {
+ gguf_free(meta);
+ }
+ for (auto * ctx : contexts) {
+ ggml_free(ctx);
+ }
+ }
+
+ template<typename T>
+ typename std::enable_if<std::is_integral<T>::value, bool>::type
+ get_arr_n(const std::string & key, T & result, const bool required = true) {
+ const int kid = gguf_find_key(meta, key.c_str());
+
+ if (kid < 0) {
+ if (required) {
+ throw std::runtime_error(format("key not found in model: %s", key.c_str()));
+ }
+ return false;
+ }
+
+ struct GGUFMeta::ArrayInfo arr_info =
+ GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
+
+
+ result = arr_info.length;
+ return true;
+ }
+
+ template<typename T>
+ typename std::enable_if<std::is_integral<T>::value, bool>::type
+ get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
+ return get_arr_n(llm_kv(kid), result, required);
+ }
+
+ template<typename T>
+ bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
+ const int kid = gguf_find_key(meta, key.c_str());
+
+ if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
+ if (required) {
+ throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
+ }
+ return false;
+ }
+
+ struct GGUFMeta::ArrayInfo arr_info =
+ GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
+
+ switch (arr_info.gt) {
+ case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
+ case GGUF_TYPE_INT32: GGML_ASSERT(
+ (std::is_same<T, int32_t>::value) ||
+ (std::is_same<T, uint32_t>::value)); break;
+ default:
+ throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
+ }
+
+ result.resize(arr_info.length);
+ result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
+
+ return true;
+ }
+
+ template<typename T, size_t N_MAX>
+ bool get_arr(const std::string & key, std::array<T, N_MAX> & result, const bool required = true) {
+ const int kid = gguf_find_key(meta, key.c_str());
+
+ if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
+ if (required) {
+ throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
+ }
+ return false;
+ }
+
+ struct GGUFMeta::ArrayInfo arr_info =
+ GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
+
+ switch (arr_info.gt) {
+ case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
+ case GGUF_TYPE_INT32: GGML_ASSERT(
+ (std::is_same<T, int32_t>::value) ||
+ (std::is_same<T, uint32_t>::value)); break;
+ default:
+ throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
+ }
+
+ if (arr_info.length > N_MAX) {
+ throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX));
+ }
+
+ std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
+
+ return true;
+ }
+
+ template<typename T>
+ bool get_arr(const enum llm_kv kid, T & result, const bool required = true) {
+ return get_arr(llm_kv(kid), result, required);
+ }
+
+ template<typename T>
+ bool get_key(const std::string & key, T & result, const bool required = true) {
+ auto it = kv_overrides.find(key);
+
+ const struct llama_model_kv_override * override =
+ it != kv_overrides.end() ? &it->second : nullptr;
+
+ const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
+
+ if (required && !found) {
+ throw std::runtime_error(format("key not found in model: %s", key.c_str()));
+ }
+
+ return found;
+ }
+
+ template<typename T>
+ bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
+ return get_key(llm_kv(kid), result, required);
+ }
+
+ // get array of n <= N_MAX elements, or a single element repeated n times
+ template<typename T, size_t N_MAX>
+ bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, const bool required = true) {
+ const int kid = gguf_find_key(meta, key.c_str());
+
+ if (kid < 0) {
+ if (required) {
+ throw std::runtime_error(format("key not found in model: %s", key.c_str()));
+ }
+ return false;
+ }
+
+ if (n > N_MAX) {
+ throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str()));
+ }
+
+ if (gguf_get_kv_type(meta, kid) == GGUF_TYPE_ARRAY) {
+ struct GGUFMeta::ArrayInfo arr_info =
+ GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
+
+ if (n != arr_info.length) {
+ throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length));
+ }
+
+ return get_arr(key, result, required);
+ } else {
+ T value;
+
+ bool ok = get_key(key, value, required);
+ if (!ok) {
+ return false;
+ }
+
+ for (uint32_t i = 0; i < n; i++) {
+ result[i] = value;
+ }
+
+ return true;
+ }
+ }
+
+ template<typename T>
+ bool get_key_or_arr(const enum llm_kv kid, T & result, uint32_t n, const bool required = true) {
+ return get_key_or_arr(llm_kv(kid), result, n, required);
+ }
+
+ std::string get_arch_name() const {
+ return arch_name;
+ }
+
+ enum llm_arch get_arch() const {
+ return llm_kv.arch;
+ }
+
+ const char * get_tensor_name(int i) const {
+ return weights.at(i).tensor->name;
+ }
+
+ const llama_tensor_weight * get_weight(const char * name) const {
+ for (const auto & weight : weights) {
+ if (strcmp(name, weight.tensor->name) == 0) {
+ return &weight;
+ }
+ }
+ return nullptr;
+ }
+
+ const llama_tensor_weight * get_weight(int i) const {
+ return get_weight(get_tensor_name(i));
+ }
+
+ const llama_tensor_weight & require_weight(const char * name) const {
+ const llama_tensor_weight * weight = get_weight(name);
+ if (!weight) {
+ throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
+ }
+ return *weight;
+ }
+
+ struct ggml_tensor * get_tensor_meta(const char * name) const {
+ const auto * weight = get_weight(name);
+ if (!weight) {
+ return nullptr;
+ }
+ return weight->tensor;
+ }
+
+ struct ggml_tensor * require_tensor_meta(const char * name) const {
+ struct ggml_tensor * tensor = get_tensor_meta(name);
+ if (!tensor) {
+ throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
+ }
+ return tensor;
+ }
+
+ struct ggml_tensor * get_tensor_meta(int i) const {
+ return get_tensor_meta(get_tensor_name(i));
+ }
+
+ struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
+ struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
+ ggml_set_name(tensor, ggml_get_name(cur));
+
+ if (duplicated) {
+ size_data += ggml_nbytes(cur);
+ } else {
+ n_created++;
+ }
+
+ return tensor;
+ }
+
+ const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
+ const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
+
+ if (cur == NULL) {
+ if (!required) {
+ return NULL;
+ }
+ throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
+ }
+
+ {
+ bool is_ok = true;
+ for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
+ if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
+ is_ok = false;
+ break;
+ }
+ }
+ if (!is_ok) {
+ throw std::runtime_error(
+ format("%s: tensor '%s' has wrong shape; expected %s, got %s",
+ __func__, name.c_str(),
+ llama_format_tensor_shape(ne).c_str(),
+ llama_format_tensor_shape(cur).c_str()));
+ }
+ }
+
+ return cur;
+ }
+
+ static const int TENSOR_NOT_REQUIRED = 1;
+ static const int TENSOR_DUPLICATED = 2;
+
+ struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
+ const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
+
+ if (cur == NULL) {
+ return NULL;
+ }
+
+ return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
+ }
+
+ struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
+ const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
+
+ if (cur == NULL) {
+ return NULL;
+ }
+
+ if (cur->type != base->type) {
+ throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
+ }
+
+ std::array<int64_t, GGML_MAX_DIMS> dims;
+ for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
+ dims[i] = i < ne.size() ? ne[i] : 1;
+ }
+
+ struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
+ dims[0], dims[1], dims[2], dims[3],
+ cur->nb[1], cur->nb[2], cur->nb[3],
+ offset);
+
+ ggml_set_name(tensor, name.c_str());
+
+ n_created++;
+
+ return tensor;
+ }
+
+ void done_getting_tensors() const {
+ if (n_created != n_tensors) {
+ throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
+ }
+ }
+
+ void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
+ if (use_mmap) {
+ mappings.reserve(files.size());
+ mmaps_used.reserve(files.size());
+ for (const auto & file : files) {
+ std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
+ mmaps_used.emplace_back(mapping->size, 0);
+ if (mlock_mmaps) {
+ std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
+ mlock_mmap->init(mapping->addr);
+ mlock_mmaps->emplace_back(std::move(mlock_mmap));
+ }
+ mappings.emplace_back(std::move(mapping));
+ }
+ }
+
+ // compute the total size of all tensors for progress reporting
+ for (auto & w : weights) {
+ size_data += ggml_nbytes(w.tensor);
+ }
+ }
+
+ void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
+ GGML_ASSERT(!mappings.empty());
+ const auto & mapping = mappings.at(idx);
+
+ *first = mapping->size;
+ *last = 0;
+ *addr = mapping->addr;
+ for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
+ try {
+ const auto * weight = get_weight(ggml_get_name(tensor));
+ if (!weight) {
+ continue;
+ }
+ if (weight->idx != idx) {
+ continue;
+ }
+ *first = std::min(*first, weight->offs);
+ *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
+ } catch(...) {
+ // the tensor is not in the model
+ }
+ }
+ }
+
+ // for backwards compatibility, does not support ggml-backend
+ void load_data_for(struct ggml_tensor * cur) const {
+ const auto & w = require_weight(ggml_get_name(cur));
+
+ if (use_mmap) {
+ const auto & mapping = mappings.at(w.idx);
+ if (cur->data == nullptr) {
+ cur->data = (uint8_t *)mapping->addr + w.offs;
+ } else {
+ memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
+ }
+ } else {
+ GGML_ASSERT(cur->data != nullptr);
+ GGML_ASSERT(w.idx < files.size());
+ const auto & file = files.at(w.idx);
+ file->seek(w.offs, SEEK_SET);
+ file->read_raw(cur->data, ggml_nbytes(cur));
+ }
+
+ if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
+ throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
+ }
+ }
+
+ size_t size_done = 0;
+ size_t size_data = 0;
+ std::vector<std::pair<size_t, size_t>> mmaps_used;
+
+ // Returns false if cancelled by progress_callback
+ bool load_all_data(
+ struct ggml_context * ctx,
+ llama_buf_map & bufs_mmap,
+ llama_mlocks * lmlocks,
+ llama_progress_callback progress_callback,
+ void * progress_callback_user_data) {
+ GGML_ASSERT(size_data != 0 && "call init_mappings() first");
+
+ std::vector<no_init<uint8_t>> read_buf;
+ std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
+
+#if defined(GGML_USE_CUDA)
+ // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
+ // NVMe raid configurations might require more / larger buffers.
+ constexpr size_t n_buffers = 4;
+ constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
+
+ std::vector<ggml_backend_buffer_t> host_buffers;
+ std::vector<void*> host_ptrs;
+ std::vector<ggml_backend_event_t> events;
+ size_t buffer_idx = 0; // buffer to use for async loads
+
+ ggml_backend_t cuda_backend = nullptr;
+ if (!use_mmap && !check_tensors) {
+ // When not using mmaped io use async uploads from pinned memory to GPU memory.
+ // First determine if the CUDA backend is active, and if so, determine the device ID.
+ ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
+ if (buf) {
+ ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
+ for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
+ auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
+ if (buffer_type == cuda_buffer_type) {
+ cuda_backend = ggml_backend_cuda_init(i);
+ break;
+ }
+ }
+ }
+
+ // If the cuda backend is active create pinned memory buffers and events for synchronisation.
+ if (cuda_backend) {
+ for (size_t idx = 0; idx < n_buffers; ++idx) {
+ host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
+ host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
+ events.emplace_back(ggml_backend_event_new(cuda_backend));
+ }
+ }
+ }
+#endif
+
+ for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
+ const auto * weight = get_weight(ggml_get_name(cur));
+ if (weight == nullptr) {
+ // this can happen with split experts models
+ continue;
+ }
+
+ if (progress_callback) {
+ if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
+ return false;
+ }
+ }
+
+ size_t n_size = ggml_nbytes(cur);
+
+ if (use_mmap) {
+ const auto & mapping = mappings.at(weight->idx);
+ ggml_backend_buffer_t buf_mmap = nullptr;
+ if (bufs_mmap.count(weight->idx)) {
+ buf_mmap = bufs_mmap.at(weight->idx);
+ }
+ uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
+
+ if (check_tensors) {
+ validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
+ return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
+ }));
+ }
+
+ GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
+ if (buf_mmap && cur->data == nullptr) {
+ ggml_backend_tensor_alloc(buf_mmap, cur, data);
+ if (lmlocks) {
+ const auto & lmlock = lmlocks->at(weight->idx);
+ lmlock->grow_to(weight->offs + n_size);
+ }
+
+ auto & mmap_used = mmaps_used[weight->idx];
+ mmap_used.first = std::min(mmap_used.first, weight->offs);
+ mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
+ } else {
+ ggml_backend_tensor_set(cur, data, 0, n_size);
+ }
+ } else {
+ GGML_ASSERT(weight->idx < files.size());
+ const auto & file = files.at(weight->idx);
+ if (ggml_backend_buffer_is_host(cur->buffer)) {
+ file->seek(weight->offs, SEEK_SET);
+ file->read_raw(cur->data, n_size);
+ if (check_tensors) {
+ validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
+ return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
+ }));
+ }
+ } else {
+#if defined(GGML_USE_CUDA)
+ // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
+ if (cuda_backend) {
+ file->seek(weight->offs, SEEK_SET);
+
+ size_t bytes_read = 0;
+
+ while (bytes_read < n_size) {
+ size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
+
+ ggml_backend_event_synchronize(events[buffer_idx]);
+ file->read_raw(host_ptrs[buffer_idx], read_iteration);
+ ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
+ ggml_backend_event_record(events[buffer_idx]);
+
+ bytes_read += read_iteration;
+ ++buffer_idx;
+ buffer_idx %= n_buffers;
+ }
+ }
+ else
+#endif
+ {
+ read_buf.resize(n_size);
+ file->seek(weight->offs, SEEK_SET);
+ file->read_raw(read_buf.data(), n_size);
+ ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
+ if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
+ throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
+ }
+ }
+ }
+ }
+
+ size_done += n_size;
+ }
+
+#if defined(GGML_USE_CUDA)
+ // free temporary resources used for async cuda uploads
+ if (cuda_backend) {
+ for (size_t idx = 0; idx < n_buffers;++idx) {
+ ggml_backend_event_synchronize(events[idx]);
+ ggml_backend_event_free(events[idx]);
+ ggml_backend_buffer_free(host_buffers[idx]);
+ }
+ ggml_backend_free(cuda_backend);
+ }
+#endif
+
+ // check validation results
+ bool validation_failed = false;
+ for (auto & future : validation_result) {
+ auto result = future.get();
+ if (!result.second) {
+ LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
+ validation_failed = true;
+ }
+ }
+ if (validation_failed) {
+ throw std::runtime_error("found tensors with invalid data");
+ }
+
+ // check if this is the last call and do final cleanup
+ if (size_done >= size_data) {
+ // unmap offloaded tensors and metadata
+ if (use_mmap) {
+ for (uint32_t idx = 0; idx < mappings.size(); idx++) {
+ const auto & mmap_used = mmaps_used.at(idx);
+ auto & mapping = mappings.at(idx);
+ mapping->unmap_fragment(0, mmap_used.first);
+ if (mmap_used.second != 0) {
+ mapping->unmap_fragment(mmap_used.second, mapping->size);
+ }
+ }
+ }
+ if (progress_callback) {
+ // Even though the model is done loading, we still honor
+ // cancellation since we need to free allocations.
+ return progress_callback(1.0f, progress_callback_user_data);
+ }
+ }
+
+ return true;
+ }
+};
+
+template<>
+bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
+ uint32_t tmp;
+ const bool found = get_key(kid, tmp, required);
+ if (found) {
+ result = (enum llama_pooling_type) tmp;
+ } else {
+ result = LLAMA_POOLING_TYPE_UNSPECIFIED;
+ }
+ return found;
+}
+
+
+//
+// load LLaMA models
+//
+
+static const char * llama_model_arch_name(llm_arch arch) {
+ auto it = LLM_ARCH_NAMES.find(arch);
+ if (it == LLM_ARCH_NAMES.end()) {
+ return "unknown";
+ }
+ return it->second;
+}
+
+static std::string llama_model_ftype_name(llama_ftype ftype) {
+ if (ftype & LLAMA_FTYPE_GUESSED) {
+ return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
+ }
+
+ switch (ftype) {
+ case LLAMA_FTYPE_ALL_F32: return "all F32";
+ case LLAMA_FTYPE_MOSTLY_F16: return "F16";
+ case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
+ case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
+ case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
+ case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
+ case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
+ case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
+ case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
+ case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
+ case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
+ case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
+ case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
+ case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
+ case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
+ case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
+ case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
+ case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
+ case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
+ case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
+ case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8";
+ case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8";
+ case LLAMA_FTYPE_MOSTLY_IQ1_BN: return "IQ1_BN - 1.625 bpw Bitnet";
+ case LLAMA_FTYPE_MOSTLY_IQ2_BN: return "IQ2_BN - 2.00 bpw Bitnet";
+
+ default: return "unknown, may not work";
+ }
+}
+
+static const char * llama_model_type_name(e_model type) {
+ switch (type) {
+ case MODEL_14M: return "14M";
+ case MODEL_17M: return "17M";
+ case MODEL_22M: return "22M";
+ case MODEL_33M: return "33M";
+ case MODEL_60M: return "60M";
+ case MODEL_70M: return "70M";
+ case MODEL_80M: return "80M";
+ case MODEL_109M: return "109M";
+ case MODEL_137M: return "137M";
+ case MODEL_160M: return "160M";
+ case MODEL_220M: return "220M";
+ case MODEL_250M: return "250M";
+ case MODEL_270M: return "270M";
+ case MODEL_335M: return "335M";
+ case MODEL_410M: return "410M";
+ case MODEL_450M: return "450M";
+ case MODEL_770M: return "770M";
+ case MODEL_780M: return "780M";
+ case MODEL_0_5B: return "0.5B";
+ case MODEL_1B: return "1B";
+ case MODEL_1_3B: return "1.3B";
+ case MODEL_1_4B: return "1.4B";
+ case MODEL_2B: return "2B";
+ case MODEL_2_8B: return "2.8B";
+ case MODEL_3B: return "3B";
+ case MODEL_4B: return "4B";
+ case MODEL_6B: return "6B";
+ case MODEL_6_9B: return "6.9B";
+ case MODEL_7B: return "7B";
+ case MODEL_8B: return "8B";
+ case MODEL_9B: return "9B";
+ case MODEL_11B: return "11B";
+ case MODEL_12B: return "12B";
+ case MODEL_13B: return "13B";
+ case MODEL_14B: return "14B";
+ case MODEL_15B: return "15B";
+ case MODEL_16B: return "16B";
+ case MODEL_20B: return "20B";
+ case MODEL_30B: return "30B";
+ case MODEL_34B: return "34B";
+ case MODEL_35B: return "35B";
+ case MODEL_40B: return "40B";
+ case MODEL_65B: return "65B";
+ case MODEL_70B: return "70B";
+ case MODEL_236B: return "236B";
+ case MODEL_314B: return "314B";
+ case MODEL_SMALL: return "0.1B";
+ case MODEL_MEDIUM: return "0.4B";
+ case MODEL_LARGE: return "0.8B";
+ case MODEL_XL: return "1.5B";
+ case MODEL_A2_7B: return "A2.7B";
+ case MODEL_8x7B: return "8x7B";
+ case MODEL_8x22B: return "8x22B";
+ case MODEL_16x12B: return "16x12B";
+ case MODEL_10B_128x3_66B: return "10B+128x3.66B";
+ case MODEL_57B_A14B: return "57B.A14B";
+ case MODEL_27B: return "27B";
+ default: return "?B";
+ }
+}
+
+static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
+ switch (type) {
+ case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
+ case LLAMA_VOCAB_TYPE_SPM: return "SPM";
+ case LLAMA_VOCAB_TYPE_BPE: return "BPE";
+ case LLAMA_VOCAB_TYPE_WPM: return "WPM";
+ case LLAMA_VOCAB_TYPE_UGM: return "UGM";
+ default: return "unknown";
+ }
+}
+
+static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
+ model.arch = ml.get_arch();
+ if (model.arch == LLM_ARCH_UNKNOWN) {
+ throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
+ }
+}
+
+static void llm_load_hparams(
+ llama_model_loader & ml,
+ llama_model & model) {
+ auto & hparams = model.hparams;
+ const gguf_context * ctx = ml.meta;
+
+ // get metadata as string
+ for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
+ enum gguf_type type = gguf_get_kv_type(ctx, i);
+ if (type == GGUF_TYPE_ARRAY) {
+ continue;
+ }
+ const char * name = gguf_get_key(ctx, i);
+ const std::string value = gguf_kv_to_str(ctx, i);
+ model.gguf_kv.emplace(name, value);
+ }
+
+ // get general kv
+ ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
+
+ // get hparams kv
+ ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
+
+ // everything past this point is not vocab-related
+ if (hparams.vocab_only) {
+ return;
+ }
+
+ ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
+ ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
+ ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
+ ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
+ ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
+
+ GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
+ GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
+ if (hparams.n_expert > 0) {
+ GGML_ASSERT(hparams.n_expert_used > 0);
+ } else {
+ GGML_ASSERT(hparams.n_expert_used == 0);
+ }
+
+ // zero-out the per-layer hparams
+ std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
+ std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
+ std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
+
+ ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
+ ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
+
+ // n_head_kv is optional, default to n_head
+ hparams.n_head_kv_arr = hparams.n_head_arr;
+
+ ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
+
+ bool rope_finetuned = false;
+ ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
+ hparams.rope_finetuned = rope_finetuned;
+
+ hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
+ ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
+
+ // rope_freq_base (optional)
+ hparams.rope_freq_base_train = 10000.0f;
+ ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
+
+ std::string rope_scaling("linear");
+ ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
+ hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
+ GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
+
+ // rope_freq_scale (inverse of the kv) is optional
+ float ropescale = 0.0f;
+ if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
+ // try the old key name
+ ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
+ }
+ hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
+
+ ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
+
+ // non-transformer models do not have attention heads
+ if (hparams.n_head() > 0) {
+ // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
+ // gpt-j n_rot = rotary_dim
+
+ hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
+ ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
+
+ hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
+ ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
+
+ // sanity check for n_rot (optional)
+ hparams.n_rot = hparams.n_embd_head_k;
+
+ ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
+
+ if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
+ if (hparams.n_rot != hparams.n_embd_head_k) {
+ throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
+ }
+ }
+ } else {
+ hparams.n_rot = 0;
+ hparams.n_embd_head_k = 0;
+ hparams.n_embd_head_v = 0;
+ }
+
+ // arch-specific KVs
+ switch (model.arch) {
+ case LLM_ARCH_LLAMA:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ if (hparams.n_expert == 8) {
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_8x7B; break;
+ case 56: model.type = e_model::MODEL_8x22B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } else {
+ switch (hparams.n_layer) {
+ case 22: model.type = e_model::MODEL_1B; break;
+ case 26: model.type = e_model::MODEL_3B; break;
+ // granite uses a vocab with len 49152
+ case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
+ case 36: model.type = e_model::MODEL_8B; break; // granite
+ case 40: model.type = e_model::MODEL_13B; break;
+ case 48: model.type = e_model::MODEL_34B; break;
+ case 60: model.type = e_model::MODEL_30B; break;
+ case 80: model.type = hparams.n_head() == hparams.n_head_kv() ? e_model::MODEL_65B : e_model::MODEL_70B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ }
+ } break;
+ case LLM_ARCH_MINICPM:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 40: model.type = e_model::MODEL_2B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GROK:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 64: model.type = e_model::MODEL_314B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_FALCON:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 60: model.type = e_model::MODEL_40B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_BAICHUAN:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+
+ if (model.type == e_model::MODEL_13B) {
+ // TODO: become GGUF KV parameter
+ hparams.f_max_alibi_bias = 8.0f;
+ }
+ } break;
+ case LLM_ARCH_STARCODER:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_1B; break;
+ case 36: model.type = e_model::MODEL_3B; break;
+ case 42: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_15B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_REFACT:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_1B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+
+ // TODO: become GGUF KV parameter
+ hparams.f_max_alibi_bias = 8.0f;
+ } break;
+ case LLM_ARCH_BERT:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
+ ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
+ ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
+
+ switch (hparams.n_layer) {
+ case 3:
+ model.type = e_model::MODEL_17M; break; // bge-micro
+ case 6:
+ model.type = e_model::MODEL_22M; break; // MiniLM-L6
+ case 12:
+ switch (hparams.n_embd) {
+ case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
+ case 768: model.type = e_model::MODEL_109M; break; // bge-base
+ } break;
+ case 24:
+ model.type = e_model::MODEL_335M; break; // bge-large
+ }
+ } break;
+ case LLM_ARCH_JINA_BERT_V2:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
+ ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
+ ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
+ hparams.f_max_alibi_bias = 8.0f;
+
+ switch (hparams.n_layer) {
+ case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
+ case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
+ }
+ } break;
+ case LLM_ARCH_NOMIC_BERT:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
+ ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
+ ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
+
+ if (hparams.n_layer == 12 && hparams.n_embd == 768) {
+ model.type = e_model::MODEL_137M;
+ }
+ } break;
+ case LLM_ARCH_BLOOM:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_1B; break;
+ case 30:
+ switch (hparams.n_embd) {
+ case 2560: model.type = e_model::MODEL_3B; break;
+ case 4096: model.type = e_model::MODEL_7B; break;
+ } break;
+ }
+
+ // TODO: become GGUF KV parameter
+ hparams.f_max_alibi_bias = 8.0f;
+ } break;
+ case LLM_ARCH_MPT:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
+ ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
+
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 48: model.type = e_model::MODEL_30B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_STABLELM:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_1B; break;
+ case 32: model.type = e_model::MODEL_3B; break;
+ case 40: model.type = e_model::MODEL_12B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_QWEN:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_QWEN2:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
+ case 80: model.type = e_model::MODEL_70B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_QWEN2MOE:
+ {
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
+
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_A2_7B; break;
+ case 28: model.type = e_model::MODEL_57B_A14B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_PHI2:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_1B; break;
+ case 32: model.type = e_model::MODEL_3B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_PHI3:
+ {
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_1B; break;
+ case 32: model.type = e_model::MODEL_3B; break;
+ case 40: model.type = e_model::MODEL_14B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_PLAMO:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 40: model.type = e_model::MODEL_13B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GPT2:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ switch (hparams.n_layer) {
+ case 12: model.type = e_model::MODEL_SMALL; break;
+ case 24: model.type = e_model::MODEL_MEDIUM; break;
+ case 36: model.type = e_model::MODEL_LARGE; break;
+ case 48: model.type = e_model::MODEL_XL; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_CODESHELL:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ switch (hparams.n_layer) {
+ case 42: model.type = e_model::MODEL_7B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_ORION:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+
+ switch (hparams.n_layer) {
+ case 40: model.type = e_model::MODEL_14B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_INTERNLM2:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 48: model.type = e_model::MODEL_20B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GEMMA:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 18: model.type = e_model::MODEL_2B; break;
+ case 28: model.type = e_model::MODEL_7B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GEMMA2:
+ {
+ hparams.n_swa = 4096; // default value of gemma 2
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
+ ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
+ hparams.attn_soft_cap = true;
+
+ switch (hparams.n_layer) {
+ case 42: model.type = e_model::MODEL_9B; break;
+ case 46: model.type = e_model::MODEL_27B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_STARCODER2:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ switch (hparams.n_layer) {
+ case 30: model.type = e_model::MODEL_3B; break;
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_15B; break;
+ case 52: model.type = e_model::MODEL_20B; break; // granite
+ case 88: model.type = e_model::MODEL_34B; break; // granite
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_MAMBA:
+ {
+ ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
+ ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
+ ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
+ ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
+
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 24:
+ switch (hparams.n_embd) {
+ case 768: model.type = e_model::MODEL_SMALL; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 48:
+ switch (hparams.n_embd) {
+ case 1024: model.type = e_model::MODEL_MEDIUM; break;
+ case 1536: model.type = e_model::MODEL_LARGE; break;
+ case 2048: model.type = e_model::MODEL_XL; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 64:
+ switch (hparams.n_embd) {
+ case 2560: model.type = e_model::MODEL_3B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_XVERSE:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ case 80: model.type = e_model::MODEL_65B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_COMMAND_R:
+ {
+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ switch (hparams.n_layer) {
+ case 40: model.type = e_model::MODEL_35B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_DBRX:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
+
+ switch (hparams.n_layer) {
+ case 40: model.type = e_model::MODEL_16x12B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_OLMO:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
+
+ switch (hparams.n_layer) {
+ case 22: model.type = e_model::MODEL_1B; break;
+ case 32: model.type = e_model::MODEL_7B; break;
+ case 80: model.type = e_model::MODEL_70B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_OPENELM:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 16: model.type = e_model::MODEL_270M; break;
+ case 20: model.type = e_model::MODEL_450M; break;
+ case 28: model.type = e_model::MODEL_1B; break;
+ case 36: model.type = e_model::MODEL_3B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GPTNEOX:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
+ switch (hparams.n_layer) {
+ case 6:
+ switch (hparams.n_ff()) {
+ case 512: model.type = e_model::MODEL_14M; break;
+ case 2048: model.type = e_model::MODEL_70M; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 12:
+ switch (hparams.n_ff()) {
+ case 3072: model.type = e_model::MODEL_160M; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 16:
+ switch (hparams.n_ff()) {
+ case 8192: model.type = e_model::MODEL_1B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 24:
+ switch (hparams.n_ff()) {
+ case 4096: model.type = e_model::MODEL_410M; break;
+ case 8192: model.type = e_model::MODEL_1_4B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 32:
+ switch (hparams.n_ff()) {
+ case 10240: model.type = e_model::MODEL_2_8B; break;
+ case 16384: model.type = e_model::MODEL_6_9B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 36:
+ switch (hparams.n_ff()) {
+ case 20480: model.type = e_model::MODEL_12B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 44:
+ switch (hparams.n_ff()) {
+ case 24576: model.type = e_model::MODEL_20B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_ARCTIC:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ if (hparams.n_expert == 128) {
+ switch (hparams.n_layer) {
+ case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } else {
+ model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_DEEPSEEK2:
+ {
+ bool is_lite = (hparams.n_layer == 27);
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
+ if (!is_lite) {
+ ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
+ }
+ ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
+ ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
+
+ switch (hparams.n_layer) {
+ case 27: model.type = e_model::MODEL_16B; break;
+ case 60: model.type = e_model::MODEL_236B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_CHATGLM:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ switch (hparams.n_layer) {
+ case 28: model.type = e_model::MODEL_6B; break;
+ case 40: model.type = e_model::MODEL_9B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_BITNET:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 26: model.type = e_model::MODEL_3B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_T5:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
+
+ uint32_t dec_start_token_id;
+ if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
+ hparams.dec_start_token_id = dec_start_token_id;
+ }
+
+ switch (hparams.n_layer) {
+ case 6: model.type = e_model::MODEL_60M; break; // t5-small
+ case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small
+ case 12:
+ switch (hparams.n_ff()) {
+ case 3072: model.type = e_model::MODEL_220M; break; // t5-base
+ case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ case 24:
+ switch (hparams.n_ff()) {
+ case 4096: model.type = e_model::MODEL_770M; break; // t5-large
+ case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large
+ case 16384: model.type = e_model::MODEL_3B; break; // t5-3b
+ case 5120: model.type = e_model::MODEL_3B; break; // flan-t5-xl
+ case 65536: model.type = e_model::MODEL_11B; break; // t5-11b
+ case 10240: model.type = e_model::MODEL_11B; break; // flan-t5-xxl
+ default: model.type = e_model::MODEL_UNKNOWN;
+ } break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_JAIS:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
+
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_1_3B; break;
+ case 40: model.type = e_model::MODEL_13B; break;
+ /* TODO: add variants */
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ default: (void)0;
+ }
+
+ model.ftype = ml.ftype;
+
+ if (hparams.f_max_alibi_bias > 0.0f) {
+ hparams.use_alibi = true;
+ }
+
+ hparams.rope_type = llama_rope_type(&model);
+}
+
+static void llm_load_vocab(
+ llama_model_loader & ml,
+ llama_model & model) {
+ auto & vocab = model.vocab;
+
+ struct gguf_context * ctx = ml.meta;
+
+ const auto kv = LLM_KV(model.arch);
+
+ // determine vocab type
+ {
+ std::string tokenizer_model;
+ std::string tokenizer_pre;
+
+ ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
+ ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
+
+ if (tokenizer_model == "no_vocab") {
+ vocab.type = LLAMA_VOCAB_TYPE_NONE;
+
+ // default special tokens
+ vocab.special_bos_id = -1;
+ vocab.special_eos_id = -1;
+ vocab.special_unk_id = -1;
+ vocab.special_sep_id = -1;
+ vocab.special_pad_id = -1;
+ vocab.special_cls_id = -1;
+ vocab.special_mask_id = -1;
+ vocab.linefeed_id = -1;
+
+ return;
+ } else if (tokenizer_model == "llama") {
+ vocab.type = LLAMA_VOCAB_TYPE_SPM;
+
+ // default special tokens
+ vocab.special_bos_id = 1;
+ vocab.special_eos_id = 2;
+ vocab.special_unk_id = 0;
+ vocab.special_sep_id = -1;
+ vocab.special_pad_id = -1;
+ vocab.special_cls_id = -1;
+ vocab.special_mask_id = -1;
+ } else if (tokenizer_model == "bert") {
+ vocab.type = LLAMA_VOCAB_TYPE_WPM;
+
+ // default special tokens
+ vocab.special_bos_id = -1;
+ vocab.special_eos_id = -1;
+ vocab.special_unk_id = 100;
+ vocab.special_sep_id = 102;
+ vocab.special_pad_id = 0;
+ vocab.special_cls_id = 101;
+ vocab.special_mask_id = 103;
+ } else if (tokenizer_model == "gpt2") {
+ vocab.type = LLAMA_VOCAB_TYPE_BPE;
+
+ // read bpe merges and populate bpe ranks
+ const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
+ if (merges_keyidx == -1) {
+ throw std::runtime_error("cannot find tokenizer merges in model file\n");
+ }
+
+ const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
+ for (int i = 0; i < n_merges; i++) {
+ const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
+ GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
+
+ std::string first;
+ std::string second;
+
+ const size_t pos = word.find(' ', 1);
+
+ if (pos != std::string::npos) {
+ first = word.substr(0, pos);
+ second = word.substr(pos + 1);
+ }
+
+ vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
+ }
+
+ // default special tokens
+ vocab.special_bos_id = 11;
+ vocab.special_eos_id = 11;
+ vocab.special_unk_id = -1;
+ vocab.special_sep_id = -1;
+ vocab.special_pad_id = -1;
+ vocab.special_cls_id = -1;
+ vocab.special_mask_id = -1;
+ } else if (tokenizer_model == "t5") {
+ vocab.type = LLAMA_VOCAB_TYPE_UGM;
+
+ // default special tokens
+ vocab.special_bos_id = -1;
+ vocab.special_eos_id = 1;
+ vocab.special_unk_id = 2;
+ vocab.special_sep_id = -1;
+ vocab.special_pad_id = 0;
+ vocab.special_cls_id = -1;
+ vocab.special_mask_id = -1;
+
+ const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
+ if (precompiled_charsmap_keyidx != -1) {
+ size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
+ const char * precompiled_charsmap = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
+ vocab.precompiled_charsmap.assign(precompiled_charsmap, precompiled_charsmap + n_precompiled_charsmap);
+#ifdef IS_BIG_ENDIAN
+ // correct endiannes of data in precompiled_charsmap binary blob
+ uint32_t * xcda_blob_size = (uint32_t *) &vocab.precompiled_charsmap[0];
+ *xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
+ assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
+ size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
+ uint32_t * xcda_array = (uint32_t *) &vocab.precompiled_charsmap[sizeof(uint32_t)];
+ for (size_t i = 0; i < xcda_array_size; ++i) {
+ xcda_array[i] = __builtin_bswap32(xcda_array[i]);
+ }
+#endif
+ }
+ } else {
+ throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
+ }
+
+ // for now, only BPE models have pre-tokenizers
+ if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
+ vocab.tokenizer_add_space_prefix = false;
+ vocab.tokenizer_clean_spaces = true;
+ if (tokenizer_pre.empty()) {
+ //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+ // OK - I don't feel like recreati8ng the LLaMA-v3 models. Considering that, at least for now,
+ // LLaMA-v3 is the only model wehere we end up here, let's just force the pre-tokanizer to be
+ // llama3.
+ tokenizer_pre = "llama3";
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
+ LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'llama3'\n", __func__);
+ LLAMA_LOG_WARN("%s: \n", __func__);
+ LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
+ LLAMA_LOG_WARN("%s: GENERATION QUALITY MAY BE DEGRADED! \n", __func__);
+ LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
+ LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
+ LLAMA_LOG_WARN("%s: \n", __func__);
+ //vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+ //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+ } else if (tokenizer_pre == "default") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+ } else if (
+ tokenizer_pre == "llama3" ||
+ tokenizer_pre == "llama-v3" ||
+ tokenizer_pre == "llama-bpe") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
+ vocab.tokenizer_ignore_merges = true;
+ vocab.tokenizer_add_bos = true;
+ } else if (
+ tokenizer_pre == "deepseek-llm") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
+ vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "deepseek-coder") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
+ vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "falcon") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
+ } else if (
+ tokenizer_pre == "mpt") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
+ } else if (
+ tokenizer_pre == "starcoder") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
+ } else if (
+ tokenizer_pre == "gpt-2" ||
+ tokenizer_pre == "phi-2" ||
+ tokenizer_pre == "jina-es" ||
+ tokenizer_pre == "jina-de" ||
+ tokenizer_pre == "jina-v2-es" ||
+ tokenizer_pre == "jina-v2-de" ||
+ tokenizer_pre == "jina-v2-code") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
+ } else if (
+ tokenizer_pre == "refact") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
+ } else if (
+ tokenizer_pre == "command-r") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
+ vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "qwen2") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
+ vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "stablelm2") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
+ } else if (
+ tokenizer_pre == "olmo") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
+ } else if (
+ tokenizer_pre == "dbrx") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
+ } else if (
+ tokenizer_pre == "smaug-bpe") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
+ } else if (
+ tokenizer_pre == "poro-chat") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
+ vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "chatglm-bpe") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
+ vocab.special_bos_id = -1;
+ } else if (
+ tokenizer_pre == "viking") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
+ vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "jais") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
+ } else if (
+ tokenizer_pre == "tekken") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
+ vocab.tokenizer_clean_spaces = false;
+ vocab.tokenizer_ignore_merges = true;
+ vocab.tokenizer_add_bos = true;
+ } else if (
+ tokenizer_pre == "smollm") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
+ vocab.tokenizer_clean_spaces = false;
+ } else if (
+ tokenizer_pre == "codeshell") {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
+ } else {
+ throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ }
+ } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+ vocab.tokenizer_add_space_prefix = true;
+ vocab.tokenizer_clean_spaces = false;
+ vocab.tokenizer_add_bos = true;
+ vocab.tokenizer_add_eos = false;
+ } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+ vocab.tokenizer_add_space_prefix = false;
+ vocab.tokenizer_clean_spaces = true;
+ vocab.tokenizer_add_bos = true;
+ vocab.tokenizer_add_eos = false;
+ } else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+ vocab.tokenizer_add_bos = false;
+ vocab.tokenizer_add_eos = true;
+ } else {
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
+ }
+
+ ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.tokenizer_add_space_prefix, false);
+ ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.tokenizer_remove_extra_whitespaces, false);
+ }
+
+ const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
+ if (token_idx == -1) {
+ throw std::runtime_error("cannot find tokenizer vocab in model file\n");
+ }
+
+ const float * scores = nullptr;
+ const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
+ if (score_idx != -1) {
+ scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
+ }
+
+ const int * toktypes = nullptr;
+ const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
+ if (toktype_idx != -1) {
+ toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
+ }
+
+ const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
+
+ vocab.id_to_token.resize(n_vocab);
+
+ for (uint32_t i = 0; i < n_vocab; i++) {
+ std::string word = gguf_get_arr_str(ctx, token_idx, i);
+ GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
+
+ vocab.token_to_id[word] = i;
+ vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
+
+ auto & token_data = vocab.id_to_token[i];
+ token_data.text = std::move(word);
+ token_data.score = scores ? scores[i] : 0.0f;
+ token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
+
+ if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
+ switch(toktypes[i]) {
+ case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
+ case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
+ case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
+ case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
+ case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
+ case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
+ case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
+ default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
+ }
+ }
+ }
+ GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
+
+ // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
+ if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
+ // For Fill-In-the-Middle (FIM)/infill models which where converted
+ // prior to support of FIM special tokens in GGUF, the following
+ // will allow those models to continue to work. The general names
+ // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
+ // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
+ // new versions of these models have been published.
+ std::string gen_name;
+ ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
+
+ std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
+ [](unsigned char c){ return std::tolower(c); });
+
+ if (gen_name.find("code") != std::string::npos) {
+ if (model.arch == LLM_ARCH_LLAMA
+ && 32010 < vocab.id_to_token.size()
+ && vocab.id_to_token[32007].text.find("<PRE>") != std::string::npos
+ && vocab.id_to_token[32008].text.find("<SUF>") != std::string::npos
+ && vocab.id_to_token[32009].text.find("<MID>") != std::string::npos
+ && vocab.id_to_token[32010].text.find("<EOT>") != std::string::npos) {
+ vocab.special_prefix_id = 32007;
+ vocab.special_suffix_id = 32008;
+ vocab.special_middle_id = 32009;
+ vocab.special_eot_id = 32010;
+ } else if (model.arch == LLM_ARCH_GEMMA
+ && 107 < vocab.id_to_token.size()
+ && vocab.id_to_token[67].text == "<|fim_prefix|>"
+ && vocab.id_to_token[69].text == "<|fim_suffix|>"
+ && vocab.id_to_token[68].text == "<|fim_middle|>"
+ && vocab.id_to_token[107].text == "<end_of_turn>") {
+ vocab.special_prefix_id = 67;
+ vocab.special_suffix_id = 69;
+ vocab.special_middle_id = 68;
+ // TODO: this is not EOT, it is "file separator" token, needs fix
+ // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
+ //vocab.special_eot_id = 70;
+ vocab.special_eot_id = 107;
+ }
+ }
+ try {
+ vocab.linefeed_id = llama_byte_to_token_impl(vocab, '\n');
+ } catch (const std::exception & e) {
+ LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
+ vocab.linefeed_id = vocab.special_pad_id;
+ }
+ } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
+ vocab.linefeed_id = vocab.special_pad_id;
+ } else {
+ const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
+ GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
+ vocab.linefeed_id = ids[0];
+ }
+
+ // special tokens
+ {
+ const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
+ { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
+ { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
+ { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
+ { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
+ { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
+ { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
+ { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
+ { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
+ { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
+ { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
+ { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
+ };
+
+ for (const auto & it : special_token_types) {
+ const std::string & key = kv(std::get<0>(it));
+ int32_t & id = std::get<1>(it);
+
+ uint32_t new_id;
+ if (!ml.get_key(std::get<0>(it), new_id, false)) {
+ continue;
+ }
+ if (new_id >= vocab.id_to_token.size()) {
+ LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
+ __func__, key.c_str(), new_id, id);
+ } else {
+ id = new_id;
+ }
+ }
+
+ // Handle add_bos_token and add_eos_token
+ {
+ bool temp = true;
+
+ if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
+ vocab.tokenizer_add_bos = temp;
+ }
+ if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
+ vocab.tokenizer_add_eos = temp;
+ }
+ }
+
+ // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
+ //
+ // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
+ // for now, we apply this workaround to find the EOT token based on its text
+ if (vocab.special_eot_id == -1) {
+ for (const auto & t : vocab.token_to_id) {
+ if (
+ // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
+ // need to fix convert script
+ //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
+ (t.first == "<|eot_id|>" ||
+ t.first == "<|im_end|>" ||
+ t.first == "<|end|>" ||
+ t.first == "<end_of_turn>" ||
+ t.first == "<|endoftext|>"
+ )
+ ) {
+ vocab.special_eot_id = t.second;
+ break;
+ }
+ }
+ }
+ }
+
+ // build special tokens cache
+ {
+ for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
+ if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
+ vocab.cache_special_tokens.push_back(id);
+ }
+ }
+
+ std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
+ [&] (const llama_vocab::id a, const llama_vocab::id b) {
+ return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
+ }
+ );
+
+ LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
+ }
+
+ // build token to piece cache
+ {
+ size_t size_cache = 0;
+
+ std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
+
+ for (uint32_t id = 0; id < n_vocab; ++id) {
+ cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
+
+ size_cache += cache_token_to_piece[id].size();
+ }
+
+ std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
+
+ LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
+ }
+
+ // Handle per token attributes
+ //NOTE: Each model customizes per token attributes.
+ //NOTE: Per token attributes are missing from the GGUF file.
+ //TODO: Extract attributes from GGUF file.
+ {
+ auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
+ for (auto substr : substrs) {
+ if (str.find(substr) < std::string::npos) {
+ return true;
+ }
+ }
+ return false;
+ };
+
+ auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
+ uint32_t current = vocab.id_to_token.at(id).attr;
+ current = value ? (current | attr) : (current & ~attr);
+ vocab.id_to_token[id].attr = (llama_token_attr) current;
+ };
+
+ auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
+ _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
+ };
+
+ std::string model_name;
+ std::string tokenizer_pre;
+
+ ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
+ ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
+
+ // model name to lowercase
+ std::transform(model_name.begin(), model_name.end(), model_name.begin(),
+ [] (const std::string::value_type x) {
+ return std::tolower(x);
+ }
+ );
+
+ // set attributes by model/tokenizer name
+ if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
+ _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
+ } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
+ for (auto id : vocab.cache_special_tokens) {
+ _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
+ }
+ for (auto token : {"</s>"}) {
+ _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
+ }
+ for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
+ _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
+ }
+ }
+ }
+}
+
+static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
+ const auto & hparams = model.hparams;
+ const auto & vocab = model.vocab;
+
+ const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
+
+ auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
+ bool is_var = false;
+
+ std::vector<uint32_t> v;
+ for (uint32_t i = 0; i < n; ++i) {
+ v.push_back(f(i));
+ if (v[i] != v[0]) {
+ is_var = true;
+ }
+ }
+
+ std::stringstream ss;
+
+ if (is_var) {
+ ss << "[";
+ for (uint32_t i = 0; i < n; ++i) {
+ ss << v[i];
+ if (i < n - 1) {
+ ss << ", ";
+ }
+ }
+ ss << "]";
+ } else {
+ ss << v[0];
+ }
+
+ return ss.str();
+ };
+
+ // hparams
+ LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
+ LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
+ LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
+ LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
+ LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
+ LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
+
+ if (!hparams.vocab_only) {
+ LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
+ LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
+ LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
+ LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
+ LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
+ LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
+ LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
+ LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
+ LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
+ LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
+ LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
+ LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
+ LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
+ LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
+ LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
+ LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
+ LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
+ LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
+ LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
+ LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
+ LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
+ LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
+ LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
+ LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
+ LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
+ LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
+ LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
+ LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
+ LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
+ LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
+ LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
+ LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
+ }
+
+ LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
+ LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
+ if (ml.n_elements >= 1e12) {
+ LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
+ } else if (ml.n_elements >= 1e9) {
+ LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
+ } else if (ml.n_elements >= 1e6) {
+ LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
+ } else {
+ LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
+ }
+ if (ml.n_bytes < GiB) {
+ LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
+ } else {
+ LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
+ }
+
+ // general kv
+ LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
+
+ // special tokens
+ if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
+ if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
+ if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
+ if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
+ if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
+ if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
+ if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
+
+ if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
+ if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
+ if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
+ if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
+ if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
+
+ LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
+
+ if (model.arch == LLM_ARCH_DEEPSEEK2) {
+ LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
+ LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
+ LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
+ LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
+ LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
+ LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
+ LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
+ }
+
+ if (model.arch == LLM_ARCH_QWEN2MOE) {
+ LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
+ LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
+ }
+}
+
+// Returns false if cancelled by progress_callback
+static bool llm_load_tensors(
+ llama_model_loader & ml,
+ llama_model & model,
+ int n_gpu_layers,
+ enum llama_split_mode split_mode,
+ int main_gpu,
+ const float * tensor_split,
+ bool use_mlock,
+ llama_progress_callback progress_callback,
+ void * progress_callback_user_data) {
+ model.t_start_us = ggml_time_us();
+
+ auto & hparams = model.hparams;
+
+ model.split_mode = split_mode;
+ model.main_gpu = main_gpu;
+ model.n_gpu_layers = n_gpu_layers;
+
+ const int n_layer = hparams.n_layer;
+ const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
+ bool use_mmap_buffer = true;
+
+ // there is very little benefit to offloading the input layer, so always keep it on the CPU
+ model.buft_input = llama_default_buffer_type_cpu(true);
+
+ model.buft_layer.resize(n_layer);
+
+ // assign cpu layers
+ for (int i = 0; i < i_gpu_start; ++i) {
+ model.buft_layer[i] = llama_default_buffer_type_cpu(true);
+ }
+
+ if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
+ // calculate the split points
+ int device_count = llama_get_device_count(model);
+ bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
+ std::vector<float> splits(device_count);
+ if (all_zero) {
+ // default split, by free memory
+ for (int i = 0; i < device_count; ++i) {
+ splits[i] = llama_get_device_memory(model, i);
+ }
+ } else {
+ std::copy(tensor_split, tensor_split + device_count, splits.begin());
+ }
+
+ // sum and normalize the splits to get the split points
+ float split_sum = 0.0f;
+ for (int i = 0; i < device_count; ++i) {
+ split_sum += splits[i];
+ splits[i] = split_sum;
+ }
+ for (int i = 0; i < device_count; ++i) {
+ splits[i] /= split_sum;
+ }
+
+ // assign the repeating layers to the devices according to the splits
+ int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
+ for (int i = i_gpu_start; i < n_layer; ++i) {
+ int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
+ model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
+ }
+ // assign the output layer
+ if (n_gpu_layers > n_layer) {
+ int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
+ model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
+ } else {
+ model.buft_output = llama_default_buffer_type_cpu(true);
+ }
+ } else {
+ ggml_backend_buffer_type_t split_buft;
+ if (split_mode == LLAMA_SPLIT_MODE_ROW) {
+ split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
+ } else {
+ // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
+ split_buft = llama_default_buffer_type_offload(model, main_gpu);
+ }
+ // assign the repeating layers
+ for (int i = i_gpu_start; i < n_layer; ++i) {
+ model.buft_layer[i] = {
+ split_buft,
+ llama_default_buffer_type_offload(model, main_gpu)
+ };
+ }
+ // assign the output layer
+ if (n_gpu_layers > n_layer) {
+ model.buft_output = {
+ split_buft,
+ llama_default_buffer_type_offload(model, main_gpu)
+ };
+ } else {
+ model.buft_output = llama_default_buffer_type_cpu(true);
+ }
+ }
+
+ // count used buffer types
+ std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
+ buft_layer_count[model.buft_input.buft]++;
+ buft_layer_count[model.buft_input.buft_matrix]++;
+ buft_layer_count[model.buft_output.buft]++;
+ buft_layer_count[model.buft_output.buft_matrix]++;
+ for (int i = 0; i < n_layer; ++i) {
+ buft_layer_count[model.buft_layer[i].buft]++;
+ buft_layer_count[model.buft_layer[i].buft_matrix]++;
+ }
+
+ // create one context per buffer type
+ size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
+
+ // for moe merged tensors
+ ctx_size += ggml_tensor_overhead()*n_layer*3;
+
+ std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
+ for (auto & it : buft_layer_count) {
+ struct ggml_init_params params = {
+ /*.mem_size =*/ ctx_size,
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+ ggml_context * ctx = ggml_init(params);
+ if (!ctx) {
+ throw std::runtime_error(format("failed to create context"));
+ }
+ ctx_map[it.first] = ctx;
+ model.ctxs.push_back(ctx);
+ }
+
+ LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
+
+ // create tensors for the weights
+ {
+ // note: cast to int64_t since we will use these for the tensor dimensions
+ const int64_t n_head = hparams.n_head();
+ const int64_t n_head_kv = hparams.n_head_kv();
+ const int64_t n_embd = hparams.n_embd;
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+ const int64_t n_embd_head_v = hparams.n_embd_head_v;
+ const int64_t n_ff = hparams.n_ff();
+ const int64_t n_embd_gqa = n_embd_v_gqa;
+ const int64_t n_vocab = hparams.n_vocab;
+ const int64_t n_vocab_type = hparams.n_vocab_type;
+ const int64_t n_expert = hparams.n_expert;
+ const int64_t n_expert_used = hparams.n_expert_used;
+ const int64_t n_ctx_train = hparams.n_ctx_train;
+
+ if (n_expert > 0 && hparams.n_expert_used == 0) {
+ throw std::runtime_error("model has expert layers but no expert layers are used");
+ }
+
+ ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
+ ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
+ ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
+
+ auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
+ auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
+
+ model.layers.resize(n_layer);
+
+ const auto tn = LLM_TN(model.arch);
+ switch (model.arch) {
+ case LLM_ARCH_LLAMA:
+ case LLM_ARCH_REFACT:
+ case LLM_ARCH_MINICPM:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+ // optional bias tensors
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ if (n_expert == 0) {
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+
+ // optional MLP bias
+ layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ } else {
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ if (layer.ffn_gate_exps) {
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
+ } else {
+ // merge split expert into a single tensor for compatibility with older models
+ // requires disabling mmap
+ use_mmap_buffer = false;
+
+ ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
+
+ layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
+ layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
+ layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
+
+ ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
+
+ for (uint32_t x = 0; x < n_expert; ++x) {
+ // the individual experts are loaded into a view of the merged tensor
+ ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
+ }
+ }
+ }
+ }
+ } break;
+ case LLM_ARCH_GROK:
+ {
+ if (n_expert == 0) {
+ throw std::runtime_error("Grok model cannot have zero experts");
+ }
+
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ if (layer.ffn_gate_exps) {
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
+ } else {
+ // merge split expert into a single tensor for compatibility with older models
+ // requires disabling mmap
+ use_mmap_buffer = false;
+
+ ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
+ ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
+
+ layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
+ layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
+ layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
+
+ ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
+ ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
+
+ for (uint32_t x = 0; x < n_expert; ++x) {
+ // the individual experts are loaded into a view of the merged tensor
+ ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
+ ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
+ }
+ }
+
+ layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
+ }
+ } break;
+ case LLM_ARCH_DBRX:
+ {
+ if (n_expert == 0) {
+ throw std::runtime_error("DBRX model cannot have zero experts");
+ }
+
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
+
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
+ }
+ } break;
+ case LLM_ARCH_BAICHUAN:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_FALCON:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ if (!model.output) {
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_STARCODER:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ if (!model.output) {
+ // needs to be on GPU
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
+ }
+ } break;
+ case LLM_ARCH_BERT:
+ case LLM_ARCH_NOMIC_BERT:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
+
+ if (model.arch == LLM_ARCH_BERT) {
+ model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
+ }
+
+ model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
+ model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ if (model.arch == LLM_ARCH_BERT) {
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
+
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
+
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
+ } else {
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ }
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
+ layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+
+ if (model.arch == LLM_ARCH_BERT) {
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+ } else {
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ }
+
+ layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
+ layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
+ }
+ } break;
+ case LLM_ARCH_JINA_BERT_V2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
+ model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); // token_type_embeddings
+
+ model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
+ model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i]; // JinaBertLayer
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
+
+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
+
+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
+ layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
+
+ layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
+ layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
+
+ layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+
+ layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
+ layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
+ }
+ } break;
+ case LLM_ARCH_BLOOM:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
+ model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
+ }
+ } break;
+ case LLM_ARCH_MPT:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ if (!model.output) {
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // AWQ ScaleActivation layer
+ layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ }
+ } break;
+ case LLM_ARCH_STABLELM:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ // optional bias tensors, present in Stable LM 2 1.6B
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // optional q and k layernorms, present in StableLM 2 12B
+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_QWEN:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
+ }
+ } break;
+ case LLM_ARCH_QWEN2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ // optional bias tensors
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_QWEN2MOE:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ // optional bias tensors
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+ GGML_ASSERT(n_expert > 0);
+ GGML_ASSERT(n_expert_used > 0);
+
+ // MoE branch
+ const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
+
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
+
+ // Shared expert branch
+ const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
+
+ layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
+ layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp});
+ layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
+ layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp});
+ }
+ } break;
+ case LLM_ARCH_PHI2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ if (layer.wqkv == nullptr) {
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
+
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
+
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
+ }
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
+ }
+ } break;
+ case LLM_ARCH_PHI3:
+ {
+ const int64_t n_embd_head = n_embd / n_head;
+
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
+
+ layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+ }
+ } break;
+ case LLM_ARCH_PLAMO:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_GPT2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
+ }
+ } break;
+ case LLM_ARCH_CODESHELL:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
+ }
+ } break;
+ case LLM_ARCH_ORION:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_INTERNLM2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_GEMMA:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ }
+ } break;
+ case LLM_ARCH_GEMMA2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+ layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
+ }
+ } break;
+ case LLM_ARCH_STARCODER2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ // optional bias tensors
+ layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
+ layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
+ layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+
+ // optional bias tensors
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
+ }
+ } break;
+ case LLM_ARCH_MAMBA:
+ {
+ const int64_t d_conv = hparams.ssm_d_conv;
+ const int64_t d_inner = hparams.ssm_d_inner;
+ const int64_t d_state = hparams.ssm_d_state;
+ const int64_t dt_rank = hparams.ssm_dt_rank;
+
+ // only an expansion factor of 2 is supported for now
+ GGML_ASSERT(2 * n_embd == d_inner);
+
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ // if output is NULL, init from the input tok embed, duplicated to allow offloading
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ // norm
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
+
+ layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
+ layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
+
+ layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
+
+ layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
+ layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
+
+ // no "weight" suffix for these
+ layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
+ layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
+
+ // out_proj
+ layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
+ }
+ } break;
+ case LLM_ARCH_XVERSE:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_COMMAND_R:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ // init output from the input tok embed
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ if (n_layer >= 64){
+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
+ }
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_OPENELM:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ // init output from the input tok embed
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ const int64_t n_head = hparams.n_head(i);
+ const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
+ const int64_t n_ff = hparams.n_ff(i);
+
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k});
+ layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
+ layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_GPTNEOX:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
+ }
+ } break;
+ case LLM_ARCH_ARCTIC:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+ layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
+ }
+ } break;
+ case LLM_ARCH_DEEPSEEK2:
+ {
+ const bool is_lite = (hparams.n_layer == 27);
+
+ const int64_t n_embd_head_qk_rope = hparams.n_rot;
+ const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
+
+ const int64_t q_lora_rank = hparams.n_lora_q;
+ const int64_t kv_lora_rank = hparams.n_lora_kv;
+
+ const int64_t n_ff_exp = hparams.n_ff_exp;
+ const int64_t n_expert_shared = hparams.n_expert_shared;
+
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ if (!is_lite) {
+ layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
+ }
+
+ layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
+
+ if (!is_lite) {
+ layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
+ layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k});
+ } else {
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
+ }
+
+ layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)});
+ layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ if (i < (int) hparams.n_layer_dense_lead) {
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ } else {
+ layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
+
+ GGML_ASSERT(n_expert > 0);
+ GGML_ASSERT(n_expert_used > 0);
+
+ // MoE branch
+ layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
+ layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
+ layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
+
+ // Shared expert branch
+ layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
+ layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd});
+ layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
+ }
+ }
+ } break;
+ case LLM_ARCH_BITNET:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+ }
+
+ const uint32_t n_ff = hparams.n_ff();
+ model.layers.resize(n_layer);
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wq_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wk_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.wo_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_gate_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_scale = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
+ }
+ } break;
+ case LLM_ARCH_T5:
+ {
+ const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
+
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd});
+
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ // if output is NULL, init from the input tok embed
+ if (model.output == NULL) {
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+ }
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
+
+ layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
+
+ layer.attn_norm_cross = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd});
+ // this tensor seems to be unused in HF transformers implementation
+ layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+ layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_JAIS:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // Output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
+ }
+ } break;
+ case LLM_ARCH_CHATGLM:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + (hparams.n_embd_head_k << 2)});
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + (hparams.n_embd_head_k << 2)});
+
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2});
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+ }
+ } break;
+ default:
+ throw std::runtime_error("unknown architecture");
+ }
+ }
+
+ ml.done_getting_tensors();
+
+ ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
+ model.mappings.reserve(ml.mappings.size());
+
+ // create the backend buffers
+ std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
+ ctx_bufs.reserve(ctx_map.size());
+
+ // Ensure we have enough capacity for the maximum backend buffer we will potentially create
+ size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
+ model.bufs.reserve(n_max_backend_buffer);
+
+ for (auto & it : ctx_map) {
+ ggml_backend_buffer_type_t buft = it.first;
+ ggml_context * ctx = it.second;
+
+ llama_buf_map bufs;
+ bufs.reserve(n_max_backend_buffer);
+
+ // only the mmap region containing the tensors in the model is mapped to the backend buffer
+ // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
+ // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
+ if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
+ for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+ void * addr = nullptr;
+ size_t first, last;
+ ml.get_mapping_range(&first, &last, &addr, idx, ctx);
+ if (first >= last) {
+ continue;
+ }
+ ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
+ if (buf == nullptr) {
+ throw std::runtime_error("unable to allocate backend CPU buffer");
+ }
+ model.bufs.push_back(buf);
+ bufs.emplace(idx, buf);
+#ifdef GGML_USE_CUDA
+ if (n_layer >= n_gpu_layers) {
+ ggml_backend_cuda_register_host_buffer(
+ ggml_backend_buffer_get_base(buf),
+ ggml_backend_buffer_get_size(buf));
+ }
+#endif
+ }
+ }
+#ifdef GGML_USE_METAL
+ else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
+ for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+ const size_t max_size = ggml_get_max_tensor_size(ctx);
+ void * addr = nullptr;
+ size_t first, last;
+ ml.get_mapping_range(&first, &last, &addr, idx, ctx);
+ if (first >= last) {
+ continue;
+ }
+ ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
+ if (buf == nullptr) {
+ throw std::runtime_error("unable to allocate backend metal buffer");
+ }
+ model.bufs.push_back(buf);
+ bufs.emplace(idx, buf);
+ }
+ }
+#endif
+ else {
+ ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+ if (buf == nullptr) {
+ throw std::runtime_error("unable to allocate backend buffer");
+ }
+ model.bufs.push_back(buf);
+ if (use_mlock && ggml_backend_buffer_is_host(buf)) {
+ model.mlock_bufs.emplace_back(new llama_mlock);
+ auto & mlock_buf = model.mlock_bufs.back();
+ mlock_buf->init (ggml_backend_buffer_get_base(buf));
+ mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
+ }
+ for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
+ bufs.emplace(idx, buf);
+ }
+ }
+
+ if (bufs.empty()) {
+ throw std::runtime_error("failed to allocate buffer");
+ }
+
+ for (auto & buf : bufs) {
+ // indicate that this buffer contains weights
+ // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
+ ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
+ }
+
+ ctx_bufs.emplace_back(ctx, bufs);
+ }
+
+ if (llama_supports_gpu_offload()) {
+ const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
+
+ LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
+ if (n_gpu_layers > (int) hparams.n_layer) {
+ LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
+ }
+
+ const int max_backend_supported_layers = hparams.n_layer + 1;
+ const int max_offloadable_layers = hparams.n_layer + 1;
+
+ LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
+ }
+
+ // print memory requirements
+ for (ggml_backend_buffer_t buf : model.bufs) {
+ LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
+ }
+
+ // populate tensors_by_name
+ for (ggml_context * ctx : model.ctxs) {
+ for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
+ model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
+ }
+ }
+
+ // load tensor data
+ for (auto & it : ctx_bufs) {
+ ggml_context * ctx = it.first;
+ auto & bufs = it.second;
+ if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
+ return false;
+ }
+ }
+
+ if (use_mmap_buffer) {
+ for (auto & mapping : ml.mappings) {
+ model.mappings.emplace_back(std::move(mapping));
+ }
+ }
+
+ if (model.arch == LLM_ARCH_BITNET) {
+ auto set_scale = [] (ggml_tensor * w, ggml_tensor * s) {
+ float scale = 1;
+ if (ggml_backend_buffer_is_host(s->buffer)) {
+ scale = *(const float *)s->data;
+ } else {
+ ggml_backend_tensor_get(s, &scale, 0, sizeof(float));
+ }
+ std::memcpy(w->op_params, &scale, sizeof(scale));
+ };
+ for (auto& l : model.layers) {
+ set_scale(l.ffn_up, l.ffn_up_scale);
+ set_scale(l.ffn_gate, l.ffn_gate_scale);
+ set_scale(l.ffn_down, l.ffn_down_scale);
+ set_scale(l.wq, l.wq_scale);
+ set_scale(l.wk, l.wk_scale);
+ set_scale(l.wv, l.wv_scale);
+ set_scale(l.wo, l.wo_scale);
+ }
+ }
+
+ // loading time will be recalculate after the first eval, so
+ // we take page faults deferred by mmap() into consideration
+ model.t_load_us = ggml_time_us() - model.t_start_us;
+ return true;
+}
+
+// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
+static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
+ try {
+ llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
+
+ model.hparams.vocab_only = params.vocab_only;
+
+ try {
+ llm_load_arch(ml, model);
+ } catch(const std::exception & e) {
+ throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
+ }
+ try {
+ llm_load_hparams(ml, model);
+ } catch(const std::exception & e) {
+ throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
+ }
+ try {
+ llm_load_vocab(ml, model);
+ } catch(const std::exception & e) {
+ throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
+ }
+
+ llm_load_print_meta(ml, model);
+
+ if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
+ model.hparams.n_vocab != model.vocab.id_to_token.size()) {
+ throw std::runtime_error("vocab size mismatch");
+ }
+
+ if (params.vocab_only) {
+ LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
+ return 0;
+ }
+
+#ifdef GGML_USE_KOMPUTE
+ if (params.n_gpu_layers > 0 && (
+ !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
+ || !(
+ model.ftype == LLAMA_FTYPE_ALL_F32 ||
+ model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
+ model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
+ model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
+ model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
+ )
+ )) {
+ // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
+ LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
+ params.n_gpu_layers = 0;
+ }
+#endif
+
+ if (!llm_load_tensors(
+ ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
+ params.progress_callback, params.progress_callback_user_data
+ )) {
+ return -2;
+ }
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
+ return -1;
+ }
+
+ return 0;
+}
+
+//
+// llm_build
+//
+
+using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
+
+enum llm_ffn_op_type {
+ LLM_FFN_SILU,
+ LLM_FFN_GELU,
+ LLM_FFN_RELU,
+ LLM_FFN_RELU_SQR,
+ LLM_FFN_SWIGLU,
+};
+
+enum llm_ffn_gate_type {
+ LLM_FFN_SEQ,
+ LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
+};
+
+enum llm_norm_type {
+ LLM_NORM,
+ LLM_NORM_RMS,
+};
+
+static struct ggml_tensor * llm_build_inp_embd(
+ struct ggml_context * ctx,
+ struct llama_context & lctx,
+ const llama_hparams & hparams,
+ const llama_batch & batch,
+ struct ggml_tensor * tok_embd,
+ const llm_build_cb & cb) {
+ const int64_t n_embd = hparams.n_embd;
+
+ struct ggml_tensor * inpL;
+
+ if (batch.token) {
+ lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
+ cb(lctx.inp_tokens, "inp_tokens", -1);
+ ggml_set_input(lctx.inp_tokens);
+
+ inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
+ } else {
+ lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
+ inpL = lctx.inp_embd;
+ ggml_set_input(lctx.inp_embd);
+ }
+
+ cb(inpL, "inp_embd", -1);
+
+ return inpL;
+}
+
+static void llm_build_kv_store(
+ struct ggml_context * ctx,
+ const llama_hparams & hparams,
+ const llama_cparams & cparams,
+ const llama_kv_cache & kv,
+ struct ggml_cgraph * graph,
+ struct ggml_tensor * k_cur,
+ struct ggml_tensor * v_cur,
+ int32_t n_tokens,
+ int32_t kv_head,
+ const llm_build_cb & cb,
+ int64_t il) {
+ const int64_t n_ctx = cparams.n_ctx;
+
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
+
+ GGML_ASSERT(kv.size == n_ctx);
+
+ struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
+ (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
+ cb(k_cache_view, "k_cache_view", il);
+
+ // note: storing RoPE-ed version of K in the KV cache
+ ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
+
+ assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
+
+ struct ggml_tensor * v_cache_view = nullptr;
+
+ if (cparams.flash_attn) {
+ v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
+ (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
+ } else {
+ // note: the V cache is transposed when not using flash attention
+ v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
+ ( n_ctx)*ggml_element_size(kv.v_l[il]),
+ (kv_head)*ggml_element_size(kv.v_l[il]));
+
+ v_cur = ggml_transpose(ctx, v_cur);
+ }
+ cb(v_cache_view, "v_cache_view", il);
+
+ ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
+}
+
+// do mat_mul, while optionally apply lora
+static struct ggml_tensor * llm_build_lora_mm(
+ struct llama_context & lctx,
+ struct ggml_context * ctx0,
+ struct ggml_tensor * w,
+ struct ggml_tensor * cur) {
+ struct ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
+ for (auto & it : lctx.lora_adapters) {
+ struct llama_lora_weight * lora = it.first->get_weight(w);
+ if (lora == nullptr) {
+ continue;
+ }
+ const float alpha = it.first->alpha;
+ const float rank = (float) lora->b->ne[0];
+ const float scale = alpha ? it.second * alpha / rank : it.second;
+ struct ggml_tensor * ab_cur = ggml_mul_mat(
+ ctx0, lora->b,
+ ggml_mul_mat(ctx0, lora->a, cur)
+ );
+ ab_cur = ggml_scale(ctx0, ab_cur, scale);
+ res = ggml_add(ctx0, res, ab_cur);
+ }
+ return res;
+}
+
+// do mat_mul_id, while optionally apply lora
+static struct ggml_tensor * llm_build_lora_mm_id(
+ struct llama_context & lctx,
+ struct ggml_context * ctx0,
+ struct ggml_tensor * w, // struct ggml_tensor * as
+ struct ggml_tensor * cur, // struct ggml_tensor * b
+ struct ggml_tensor * ids) {
+ struct ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
+ for (auto & it : lctx.lora_adapters) {
+ struct llama_lora_weight * lora = it.first->get_weight(w);
+ if (lora == nullptr) {
+ continue;
+ }
+ const float alpha = it.first->alpha;
+ const float rank = (float) lora->b->ne[0];
+ const float scale = alpha ? it.second * alpha / rank : it.second;
+ struct ggml_tensor * ab_cur = ggml_mul_mat_id(
+ ctx0, lora->b,
+ ggml_mul_mat_id(ctx0, lora->a, cur, ids),
+ ids
+ );
+ ab_cur = ggml_scale(ctx0, ab_cur, scale);
+ res = ggml_add(ctx0, res, ab_cur);
+ }
+ return res;
+}
+
+static struct ggml_tensor * llm_build_norm(
+ struct ggml_context * ctx,
+ struct ggml_tensor * cur,
+ const llama_hparams & hparams,
+ struct ggml_tensor * mw,
+ struct ggml_tensor * mb,
+ llm_norm_type type,
+ const llm_build_cb & cb,
+ int il, float scale_eps = 1) {
+ switch (type) {
+ case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
+ case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, scale_eps * hparams.f_norm_rms_eps); break;
+ }
+
+ if (mw || mb) {
+ cb(cur, "norm", il);
+ }
+
+ if (mw) {
+ cur = ggml_mul(ctx, cur, mw);
+ if (mb) {
+ cb(cur, "norm_w", il);
+ }
+ }
+
+ if (mb) {
+ cur = ggml_add(ctx, cur, mb);
+ }
+
+ return cur;
+}
+
+static struct ggml_tensor * llm_build_ffn(
+ struct ggml_context * ctx,
+ struct llama_context & lctx,
+ struct ggml_tensor * cur,
+ struct ggml_tensor * up,
+ struct ggml_tensor * up_b,
+ struct ggml_tensor * up_s,
+ struct ggml_tensor * gate,
+ struct ggml_tensor * gate_b,
+ struct ggml_tensor * gate_s,
+ struct ggml_tensor * down,
+ struct ggml_tensor * down_b,
+ struct ggml_tensor * down_s,
+ struct ggml_tensor * act_scales,
+ llm_ffn_op_type type_op,
+ llm_ffn_gate_type type_gate,
+ const llm_build_cb & cb,
+ int il) {
+ struct ggml_tensor * tmp = up ? llm_build_lora_mm(lctx, ctx, up, cur) : cur;
+ cb(tmp, "ffn_up", il);
+
+ if (up_b) {
+ tmp = ggml_add(ctx, tmp, up_b);
+ cb(tmp, "ffn_up_b", il);
+ }
+
+ if (up_s) {
+ tmp = ggml_mul(ctx, tmp, up_s);
+ cb(tmp, "ffn_up_s", il);
+ }
+
+ if (gate) {
+ switch (type_gate) {
+ case LLM_FFN_SEQ:
+ {
+ cur = llm_build_lora_mm(lctx, ctx, gate, tmp);
+ cb(cur, "ffn_gate", il);
+ } break;
+ case LLM_FFN_PAR:
+ {
+ cur = llm_build_lora_mm(lctx, ctx, gate, cur);
+ cb(cur, "ffn_gate", il);
+ } break;
+ }
+
+ if (gate_b) {
+ cur = ggml_add(ctx, cur, gate_b);
+ cb(cur, "ffn_gate_b", il);
+ }
+
+ if (gate_s) {
+ cur = ggml_mul(ctx, cur, gate_s);
+ cb(cur, "ffn_gate_s", il);
+ }
+
+ } else {
+ cur = tmp;
+ }
+
+ switch (type_op) {
+ case LLM_FFN_SILU:
+ {
+ cur = ggml_silu(ctx, cur);
+ cb(cur, "ffn_silu", il);
+ } break;
+ case LLM_FFN_GELU:
+ {
+ cur = ggml_gelu(ctx, cur);
+ cb(cur, "ffn_gelu", il);
+ if (act_scales != NULL) {
+ cur = ggml_div(ctx, cur, act_scales);
+ cb(cur, "ffn_act", il);
+ }
+ } break;
+ case LLM_FFN_RELU:
+ {
+ cur = ggml_relu(ctx, cur);
+ cb(cur, "ffn_relu", il);
+ } break;
+ case LLM_FFN_RELU_SQR:
+ {
+ cur = ggml_relu(ctx, cur);
+ cb(cur, "ffn_relu", il);
+
+ cur = ggml_sqr(ctx, cur);
+ cb(cur, "ffn_sqr(relu)", il);
+ } break;
+ case LLM_FFN_SWIGLU:
+ {
+ // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
+ int64_t split_point = cur->ne[0] / 2;
+ struct ggml_tensor * x0 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], 0));
+ struct ggml_tensor * x1 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
+
+ x0 = ggml_silu(ctx, x0);
+ cb(cur, "ffn_silu", il);
+
+ cur = ggml_mul(ctx, x0, x1);
+ cb(cur, "ffn_mul", il);
+ } break;
+ }
+
+ if (type_gate == LLM_FFN_PAR) {
+ cur = ggml_mul(ctx, cur, tmp);
+ cb(cur, "ffn_gate_par", il);
+ }
+
+ if (down) {
+ cur = llm_build_lora_mm(lctx, ctx, down, cur);
+ }
+
+ if (down_b) {
+ cb(cur, "ffn_down", il);
+ }
+
+ if (down_b) {
+ cur = ggml_add(ctx, cur, down_b);
+ }
+
+ if (down_s) {
+ cur = ggml_mul(ctx, cur, down_s);
+ cb(cur, "ffn_down_s", il);
+ }
+
+ return cur;
+}
+
+static struct ggml_tensor * llm_build_moe_ffn(
+ struct ggml_context * ctx,
+ struct llama_context & lctx,
+ struct ggml_tensor * cur,
+ struct ggml_tensor * gate_inp,
+ struct ggml_tensor * up_exps,
+ struct ggml_tensor * gate_exps,
+ struct ggml_tensor * down_exps,
+ int64_t n_expert,
+ int64_t n_expert_used,
+ llm_ffn_op_type type_op,
+ bool norm_w,
+ bool scale_w,
+ float w_scale,
+ const llm_build_cb & cb,
+ int il) {
+ int64_t n_embd = cur->ne[0];
+ int64_t n_tokens = cur->ne[1];
+
+ ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
+ cb(logits, "ffn_moe_logits", il);
+
+ ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
+ cb(probs, "ffn_moe_probs", il);
+
+ // select experts
+ ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
+ cb(selected_experts->src[0], "ffn_moe_argsort", il);
+ cb(selected_experts, "ffn_moe_topk", il);
+
+ ggml_tensor * weights = ggml_get_rows(ctx,
+ ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
+ cb(weights, "ffn_moe_weights", il);
+
+ if (norm_w) {
+ weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
+
+ ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
+ cb(weights_sum, "ffn_moe_weights_sum", il);
+
+ weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
+ cb(weights, "ffn_moe_weights_norm", il);
+
+ weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
+ }
+ if (scale_w) {
+ weights = ggml_scale(ctx, weights, w_scale);
+ cb(weights, "ffn_moe_weights_scaled", il);
+ }
+
+ cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
+ ggml_tensor * up = llm_build_lora_mm_id(lctx, ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
+ cb(up, "ffn_moe_up", il);
+
+ ggml_tensor * gate = llm_build_lora_mm_id(lctx, ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
+ cb(gate, "ffn_moe_gate", il);
+
+ switch (type_op) {
+ case LLM_FFN_SILU:
+ {
+ gate = ggml_silu(ctx, gate);
+ cb(gate, "ffn_moe_silu", il);
+ } break;
+ case LLM_FFN_GELU:
+ {
+ gate = ggml_gelu(ctx, gate);
+ cb(gate, "ffn_moe_gelu", il);
+ } break;
+ default:
+ GGML_ASSERT(false);
+ }
+
+ ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
+ cb(par, "ffn_moe_gate_par", il);
+
+ ggml_tensor * experts = llm_build_lora_mm_id(lctx, ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
+ cb(experts, "ffn_moe_down", il);
+
+ experts = ggml_mul(ctx, experts, weights);
+
+ // aggregate experts
+ ggml_tensor * moe_out = nullptr;
+ for (int i = 0; i < n_expert_used; ++i) {
+ ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
+ experts->nb[2], i*experts->nb[1]);
+
+ if (i == 0) {
+ moe_out = cur_expert;
+ } else {
+ moe_out = ggml_add(ctx, moe_out, cur_expert);
+ }
+ }
+
+ if (n_expert_used == 1) {
+ // avoid returning a non-contiguous tensor
+ moe_out = ggml_cont(ctx, moe_out);
+ }
+
+ return moe_out;
+}
+
+static struct ggml_tensor * llm_build_kqv(
+ struct ggml_context * ctx,
+ struct llama_context & lctx,
+ const llama_kv_cache & kv,
+ struct ggml_cgraph * graph,
+ struct ggml_tensor * wo,
+ struct ggml_tensor * wo_b,
+ struct ggml_tensor * q_cur,
+ struct ggml_tensor * kq_mask,
+ int32_t n_tokens,
+ int32_t n_kv,
+ float kq_scale,
+ const llm_build_cb & cb,
+ int il) {
+ const llama_model & model = lctx.model;
+ const llama_hparams & hparams = lctx.model.hparams;
+ const llama_cparams & cparams = lctx.cparams;
+
+ const int64_t n_ctx = cparams.n_ctx;
+ const int64_t n_head = hparams.n_head(il);
+ const int64_t n_head_kv = hparams.n_head_kv(il);
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
+ const int64_t n_embd_head_v = hparams.n_embd_head_v;
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
+
+ struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
+ cb(q, "q", il);
+
+ struct ggml_tensor * k =
+ ggml_view_3d(ctx, kv.k_l[il],
+ n_embd_head_k, n_kv, n_head_kv,
+ ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
+ ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
+ 0);
+ cb(k, "k", il);
+
+ struct ggml_tensor * cur;
+
+ if (cparams.flash_attn) {
+ GGML_UNUSED(model);
+ GGML_UNUSED(n_ctx);
+
+ // split cached v into n_head heads (not transposed)
+ struct ggml_tensor * v =
+ ggml_view_3d(ctx, kv.v_l[il],
+ n_embd_head_v, n_kv, n_head_kv,
+ ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
+ ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
+ 0);
+ cb(v, "v", il);
+
+ cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
+
+ if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
+ ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
+ }
+
+ cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
+ } else {
+ struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
+ cb(kq, "kq", il);
+
+ if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2) {
+ // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
+ // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
+ ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
+ }
+
+ if (model.arch == LLM_ARCH_GROK) {
+ // need to do the following:
+ // multiply by attn_output_multiplyer of 0.08838834764831845
+ // and then :
+ // kq = 30 * tanh(kq / 30)
+ // before the softmax below
+
+ //try from phi2
+ //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
+
+ kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
+ kq = ggml_scale(ctx, kq, 30);
+ }
+
+ if (hparams.attn_soft_cap) {
+ kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
+ kq = ggml_tanh(ctx, kq);
+ kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
+ }
+
+ kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
+ cb(kq, "kq_soft_max_ext", il);
+
+ GGML_ASSERT(kv.size == n_ctx);
+
+ // split cached v into n_head heads
+ struct ggml_tensor * v =
+ ggml_view_3d(ctx, kv.v_l[il],
+ n_kv, n_embd_head_v, n_head_kv,
+ ggml_element_size(kv.v_l[il])*n_ctx,
+ ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
+ 0);
+ cb(v, "v", il);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
+ cb(kqv, "kqv", il);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
+ cb(kqv_merged, "kqv_merged", il);
+
+ cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
+ cb(cur, "kqv_merged_cont", il);
+ }
+
+ ggml_build_forward_expand(graph, cur);
+
+ if (wo) {
+ cur = llm_build_lora_mm(lctx, ctx, wo, cur);
+ }
+
+ if (wo_b) {
+ cb(cur, "kqv_wo", il);
+ }
+
+ if (wo_b) {
+ cur = ggml_add(ctx, cur, wo_b);
+ }
+
+ return cur;
+}
+
+static struct ggml_tensor * llm_build_kv(
+ struct ggml_context * ctx,
+ struct llama_context & lctx,
+ const llama_kv_cache & kv,
+ struct ggml_cgraph * graph,
+ struct ggml_tensor * wo,
+ struct ggml_tensor * wo_b,
+ struct ggml_tensor * k_cur,
+ struct ggml_tensor * v_cur,
+ struct ggml_tensor * q_cur,
+ struct ggml_tensor * kq_mask,
+ int32_t n_tokens,
+ int32_t kv_head,
+ int32_t n_kv,
+ float kq_scale,
+ const llm_build_cb & cb,
+ int il) {
+ const llama_hparams & hparams = lctx.model.hparams;
+ const llama_cparams & cparams = lctx.cparams;
+
+ // these nodes are added to the graph together so that they are not reordered
+ // by doing so, the number of splits in the graph is reduced
+ ggml_build_forward_expand(graph, q_cur);
+ ggml_build_forward_expand(graph, k_cur);
+ ggml_build_forward_expand(graph, v_cur);
+
+ llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
+
+ struct ggml_tensor * cur;
+
+ cur = llm_build_kqv(ctx, lctx, kv, graph, wo, wo_b,
+ q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
+ cb(cur, "kqv_out", il);
+
+ return cur;
+}
+
+struct llm_build_context {
+ const llama_model & model;
+ llama_context & lctx;
+ const llama_hparams & hparams;
+ const llama_cparams & cparams;
+ const llama_batch & batch;
+ const llama_kv_cache & kv_self;
+
+ const int64_t n_embd;
+ const int64_t n_layer;
+ const int64_t n_rot;
+ const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
+ const int64_t n_head;
+ const int64_t n_head_kv;
+ const int64_t n_embd_head_k;
+ const int64_t n_embd_k_gqa;
+ const int64_t n_embd_head_v;
+ const int64_t n_embd_v_gqa;
+ const int64_t n_expert;
+ const int64_t n_expert_used;
+
+ const float freq_base;
+ const float freq_scale;
+ const float ext_factor;
+ const float attn_factor;
+ const float beta_fast;
+ const float beta_slow;
+ const float norm_eps;
+ const float norm_rms_eps;
+
+ const int32_t n_tokens;
+ const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
+ const int32_t n_outputs;
+ const int32_t n_outputs_enc;
+ const int32_t kv_head; // index of where we store new KV data in the cache
+ const int32_t n_ctx_orig;
+
+ const bool flash_attn;
+
+ const enum llama_pooling_type pooling_type;
+ const enum llama_rope_type rope_type;
+
+ const llm_build_cb & cb;
+
+ std::vector<uint8_t> & buf_compute_meta;
+
+ struct ggml_context * ctx0 = nullptr;
+
+ // TODO: consider making the entire interface noexcept
+ llm_build_context(
+ llama_context & lctx,
+ const llama_batch & batch,
+ const llm_build_cb & cb,
+ bool worst_case) :
+ model (lctx.model),
+ lctx (lctx),
+ hparams (model.hparams),
+ cparams (lctx.cparams),
+ batch (batch),
+ kv_self (lctx.kv_self),
+ n_embd (hparams.n_embd),
+ n_layer (hparams.n_layer),
+ n_rot (hparams.n_rot),
+ n_ctx (cparams.n_ctx),
+ n_head (hparams.n_head()),
+ n_head_kv (hparams.n_head_kv()),
+ n_embd_head_k (hparams.n_embd_head_k),
+ n_embd_k_gqa (hparams.n_embd_k_gqa()),
+ n_embd_head_v (hparams.n_embd_head_v),
+ n_embd_v_gqa (hparams.n_embd_v_gqa()),
+ n_expert (hparams.n_expert),
+ n_expert_used (hparams.n_expert_used),
+ freq_base (cparams.rope_freq_base),
+ freq_scale (cparams.rope_freq_scale),
+ ext_factor (cparams.yarn_ext_factor),
+ attn_factor (cparams.yarn_attn_factor),
+ beta_fast (cparams.yarn_beta_fast),
+ beta_slow (cparams.yarn_beta_slow),
+ norm_eps (hparams.f_norm_eps),
+ norm_rms_eps (hparams.f_norm_rms_eps),
+ n_tokens (batch.n_tokens),
+ n_kv (worst_case ? kv_self.size : kv_self.n),
+ n_outputs (worst_case ? n_tokens : lctx.n_outputs),
+ n_outputs_enc (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
+ kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
+ n_ctx_orig (cparams.n_ctx_orig_yarn),
+ flash_attn (cparams.flash_attn),
+ pooling_type (cparams.pooling_type),
+ rope_type (hparams.rope_type),
+ cb (cb),
+ buf_compute_meta (lctx.buf_compute_meta) {
+ // all initializations should be done in init()
+ }
+
+ void init() {
+ struct ggml_init_params params = {
+ /*.mem_size =*/ buf_compute_meta.size(),
+ /*.mem_buffer =*/ buf_compute_meta.data(),
+ /*.no_alloc =*/ true,
+ };
+
+ ctx0 = ggml_init(params);
+
+ lctx.inp_tokens = nullptr;
+ lctx.inp_embd = nullptr;
+ lctx.inp_pos = nullptr;
+ lctx.inp_out_ids = nullptr;
+ lctx.inp_KQ_mask = nullptr;
+ lctx.inp_KQ_mask_swa = nullptr;
+ lctx.inp_K_shift = nullptr;
+ lctx.inp_mean = nullptr;
+ lctx.inp_cls = nullptr;
+ lctx.inp_s_copy = nullptr;
+ lctx.inp_s_mask = nullptr;
+ lctx.inp_s_seq = nullptr;
+ lctx.inp_pos_bucket = nullptr;
+ lctx.inp_embd_enc = nullptr;
+ lctx.inp_KQ_mask_cross = nullptr;
+ }
+
+ void free() {
+ if (ctx0) {
+ ggml_free(ctx0);
+ ctx0 = nullptr;
+ }
+ }
+
+ struct ggml_cgraph * build_k_shift() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ GGML_ASSERT(kv_self.size == n_ctx);
+
+ lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
+ cb(lctx.inp_K_shift, "K_shift", -1);
+ ggml_set_input(lctx.inp_K_shift);
+
+ for (int il = 0; il < n_layer; ++il) {
+ const int64_t n_head_kv = hparams.n_head_kv(il);
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+ struct ggml_tensor * tmp =
+ // we rotate only the first n_rot dimensions
+ ggml_rope_ext_inplace(ctx0,
+ ggml_view_3d(ctx0, kv_self.k_l[il],
+ n_embd_head_k, n_head_kv, n_ctx,
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+ 0),
+ lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+
+ cb(tmp, "K_shifted", il);
+ ggml_build_forward_expand(gf, tmp);
+ }
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_s_copy() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ GGML_ASSERT(kv_self.recurrent);
+
+ struct ggml_tensor * state_copy = build_inp_s_copy();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
+ struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
+
+ conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
+ ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
+
+ // TODO: name the intermediate tensors with cb()
+
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
+ }
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ for (uint32_t i = 0; i < ids.size(); ++i) {
+ const uint32_t id = ids[i];
+
+ if (i == id || id == ids.size()) {
+ continue;
+ }
+
+ uint32_t nm = 1;
+
+ while (i + nm < ids.size() && ids[i + nm] == id + nm) {
+ nm++;
+ }
+
+ for (int il = 0; il < n_layer; ++il) {
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
+
+ ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
+ n_embd_k_gqa, nm,
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
+
+ ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
+ n_embd_k_gqa, nm,
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
+
+ ggml_tensor * view_v_src;
+ ggml_tensor * view_v_dst;
+
+ if (flash_attn) {
+ // NOTE: the V cache is not transposed when using flash attention
+ view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
+ n_embd_v_gqa, nm,
+ ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
+ ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
+
+ view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
+ n_embd_v_gqa, nm,
+ ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
+ ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
+ } else {
+ view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
+ nm, n_embd_v_gqa,
+ ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
+ ggml_row_size(kv_self.v_l[il]->type, i));
+
+ view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
+ nm, n_embd_v_gqa,
+ ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
+ ggml_row_size(kv_self.v_l[il]->type, id));
+ }
+
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
+ }
+
+ i += nm - 1;
+ }
+
+ //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
+
+ return gf;
+ }
+
+ struct ggml_tensor * build_inp_pos() {
+ lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+ cb(lctx.inp_pos, "inp_pos", -1);
+ ggml_set_input(lctx.inp_pos);
+ return lctx.inp_pos;
+ }
+
+ struct ggml_tensor * build_rope_factors(int il) {
+ // choose long/short freq factors based on the context size
+ const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
+
+ if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
+ return model.layers[il].rope_long;
+ }
+
+ return model.layers[il].rope_short;
+ }
+
+ struct ggml_tensor * build_inp_out_ids() {
+ lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
+ cb(lctx.inp_out_ids, "inp_out_ids", -1);
+ ggml_set_input(lctx.inp_out_ids);
+ return lctx.inp_out_ids;
+ }
+
+ struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
+ lctx.inp_KQ_mask = causal
+ ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
+ : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
+ cb(lctx.inp_KQ_mask, "KQ_mask", -1);
+ ggml_set_input(lctx.inp_KQ_mask);
+
+ return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
+ }
+
+ struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) {
+ GGML_ASSERT(hparams.n_swa > 0);
+
+ lctx.inp_KQ_mask_swa = causal
+ ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
+ : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
+ cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1);
+ ggml_set_input(lctx.inp_KQ_mask_swa);
+
+ return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa;
+ }
+
+ struct ggml_tensor * build_inp_mean() {
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
+ cb(lctx.inp_mean, "inp_mean", -1);
+ ggml_set_input(lctx.inp_mean);
+ return lctx.inp_mean;
+ }
+
+ struct ggml_tensor * build_inp_cls() {
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+ cb(lctx.inp_cls, "inp_cls", -1);
+ ggml_set_input(lctx.inp_cls);
+ return lctx.inp_cls;
+ }
+
+ struct ggml_tensor * build_inp_s_copy() {
+ lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
+ cb(lctx.inp_s_copy, "inp_s_copy", -1);
+ ggml_set_input(lctx.inp_s_copy);
+ return lctx.inp_s_copy;
+ }
+
+ struct ggml_tensor * build_inp_s_mask() {
+ lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
+ cb(lctx.inp_s_mask, "inp_s_mask", -1);
+ ggml_set_input(lctx.inp_s_mask);
+ return lctx.inp_s_mask;
+ }
+
+ struct ggml_tensor * build_inp_s_seq() {
+ lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
+ cb(lctx.inp_s_seq, "inp_s_seq", -1);
+ ggml_set_input(lctx.inp_s_seq);
+ return lctx.inp_s_seq;
+ }
+
+ struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
+ // find result_norm tensor for input
+ struct ggml_tensor * inp = nullptr;
+ for (int i = gf->n_nodes - 1; i >= 0; --i) {
+ inp = gf->nodes[i];
+ if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
+ break;
+ } else {
+ inp = nullptr;
+ }
+ }
+ GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
+
+ struct ggml_tensor * cur;
+
+ switch (pooling_type) {
+ case LLAMA_POOLING_TYPE_MEAN:
+ {
+ struct ggml_tensor * inp_mean = build_inp_mean();
+ cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
+ } break;
+ case LLAMA_POOLING_TYPE_CLS:
+ case LLAMA_POOLING_TYPE_LAST:
+ {
+ struct ggml_tensor * inp_cls = build_inp_cls();
+ cur = ggml_get_rows(ctx0, inp, inp_cls);
+ } break;
+ case LLAMA_POOLING_TYPE_NONE:
+ {
+ cur = inp;
+ } break;
+ default:
+ {
+ GGML_ASSERT(false && "unknown pooling type");
+ } break;
+ }
+
+ cb(cur, "result_embd_pooled", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_tensor * llm_build_pos_bucket(bool causal) {
+ if (causal) {
+ lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
+ } else {
+ lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
+ }
+
+ ggml_set_input(lctx.inp_pos_bucket);
+ cb(lctx.inp_pos_bucket, "pos_bucket", -1);
+
+ return lctx.inp_pos_bucket;
+ }
+
+ struct ggml_tensor * llm_build_pos_bias(struct ggml_tensor * pos_bucket, struct ggml_tensor * attn_rel_b) {
+ struct ggml_tensor * pos_bucket_1d = ggml_view_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1], 0);
+ cb(pos_bucket_1d, "pos_bucket_1d", -1);
+
+ struct ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
+ cb(pos_bias, "pos_bias", -1);
+
+ pos_bias = ggml_view_3d(ctx0, pos_bias, pos_bias->ne[0], lctx.inp_pos_bucket->ne[0], lctx.inp_pos_bucket->ne[1], ggml_element_size(pos_bias) * pos_bias->ne[0], ggml_element_size(pos_bias) * pos_bias->ne[0] * lctx.inp_pos_bucket->ne[0], 0);
+ cb(pos_bias, "pos_bias", -1);
+
+ pos_bias = ggml_permute(ctx0, pos_bias, 2, 0, 1, 3);
+ cb(pos_bias, "pos_bias", -1);
+
+ pos_bias = ggml_cont(ctx0, pos_bias);
+ cb(pos_bias, "pos_bias", -1);
+
+ return pos_bias;
+ }
+
+ struct ggml_tensor * llm_build_inp_embd_enc() {
+ const int64_t n_embd = hparams.n_embd;
+ lctx.inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc);
+ ggml_set_input(lctx.inp_embd_enc);
+ cb(lctx.inp_embd_enc, "embd_enc", -1);
+ return lctx.inp_embd_enc;
+ }
+
+ struct ggml_tensor * llm_build_inp_KQ_mask_cross() {
+ lctx.inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
+ ggml_set_input(lctx.inp_KQ_mask_cross);
+ cb(lctx.inp_KQ_mask_cross, "KQ_mask_cross", -1);
+ return lctx.inp_KQ_mask_cross;
+ }
+
+ struct ggml_cgraph * build_llama() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ if (model.layers[il].ffn_gate_inp == nullptr) {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ } else {
+ // MoE branch
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_moe_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, true,
+ false, 0.0,
+ cb, il);
+ cb(cur, "ffn_moe_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_baichuan() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ switch (model.type) {
+ case MODEL_7B:
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ break;
+ case MODEL_13B:
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
+ break;
+ default:
+ GGML_ASSERT(false);
+ }
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_xverse() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_falcon() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * attn_norm;
+
+ attn_norm = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(attn_norm, "attn_norm", il);
+
+ // self-attention
+ {
+ if (model.layers[il].attn_norm_2) {
+ // Falcon-40B
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm_2,
+ model.layers[il].attn_norm_2_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm_2", il);
+ } else {
+ cur = attn_norm;
+ }
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ // using mode = 2 for neox mode
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = cur;
+
+ // feed forward
+ {
+ cur = llm_build_ffn(ctx0, lctx, attn_norm, // !! use the attn norm, not the result
+ model.layers[il].ffn_up, NULL, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = ggml_add(ctx0, cur, inpL);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_grok() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // multiply by embedding_multiplier_scale of 78.38367176906169
+ inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ // Grok
+ // if attn_out_norm is present then apply it before adding the input
+ if (model.layers[il].attn_out_norm) {
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_out_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_out_norm", il);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ // MoE branch
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_moe_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ n_expert, n_expert_used,
+ LLM_FFN_GELU, true,
+ false, 0.0,
+ cb, il);
+ cb(cur, "ffn_moe_out", il);
+
+ // Grok
+ // if layer_out_norm is present then apply it before adding the input
+ // Idea: maybe ffn_out_norm is a better name
+ if (model.layers[il].layer_out_norm) {
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].layer_out_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "layer_out_norm", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+ // Grok
+ // multiply logits by output_multiplier_scale of 0.5773502691896257
+
+ cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_dbrx() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = nullptr;
+ struct ggml_tensor * Kcur = nullptr;
+ struct ggml_tensor * Vcur = nullptr;
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+ cb(cur, "wqkv_clamped", il);
+
+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ // MoE branch
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].attn_out_norm, NULL,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_out_norm", il);
+
+ cur = llm_build_moe_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, true,
+ false, 0.0,
+ cb, il);
+ cb(cur, "ffn_moe_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_starcoder() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
+ cb(pos, "pos_embd", -1);
+
+ inpL = ggml_add(ctx0, inpL, pos);
+ cb(inpL, "inpL", -1);
+
+ for (int il = 0; il < n_layer; ++il) {
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // add the input
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // FF
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_refact() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+ cb(Kcur, "Kcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ cb(Qcur, "Qcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_bert() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+ struct ggml_tensor * inp_pos = nullptr;
+
+ if (model.arch != LLM_ARCH_JINA_BERT_V2) {
+ inp_pos = build_inp_pos();
+ }
+
+ // construct input embeddings (token, type, position)
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // token types are hardcoded to zero ("Sentence A")
+ struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
+ inpL = ggml_add(ctx0, inpL, type_row0);
+ if (model.arch == LLM_ARCH_BERT) {
+ inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
+ }
+ cb(inpL, "inp_embd", -1);
+
+ // embed layer norm
+ inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
+ cb(inpL, "inp_norm", -1);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
+
+ // iterate layers
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * cur = inpL;
+
+ struct ggml_tensor * Qcur;
+ struct ggml_tensor * Kcur;
+ struct ggml_tensor * Vcur;
+
+ // self-attention
+ if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
+ Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur), model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+
+ if (model.layers[il].attn_q_norm) {
+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
+ model.layers[il].attn_q_norm,
+ model.layers[il].attn_q_norm_b,
+ LLM_NORM, cb, il);
+ }
+
+ Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur), model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+
+ if (model.layers[il].attn_k_norm) {
+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
+ model.layers[il].attn_k_norm,
+ model.layers[il].attn_k_norm_b,
+ LLM_NORM, cb, il);
+ }
+ Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur), model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+ } else {
+ // compute Q and K and RoPE them
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+ struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
+
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+ cb(kq, "kq", il);
+
+ kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
+ cb(kq, "kq_soft_max_ext", il);
+
+ struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
+ cb(v, "v", il);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
+ cb(kqv, "kqv", il);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+ cb(kqv_merged, "kqv_merged", il);
+
+ cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
+ cb(cur, "kqv_merged_cont", il);
+
+ ggml_build_forward_expand(gf, cur);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
+ if (model.layers[il].bo) {
+ cb(cur, "kqv_wo", il);
+ }
+
+ if (model.layers[il].bo) {
+ cur = ggml_add(ctx0, cur, model.layers[il].bo);
+ }
+ cb(cur, "kqv_out", il);
+
+ if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // re-add the layer input
+ cur = ggml_add(ctx0, cur, inpL);
+
+ // attention layer norm
+ cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
+
+ if (model.layers[il].attn_norm_2 != nullptr) {
+ cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
+ cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
+ }
+
+ struct ggml_tensor * ffn_inp = cur;
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ if (model.arch == LLM_ARCH_BERT) {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+ } else {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ }
+ cb(cur, "ffn_out", il);
+
+ // attentions bypass the intermediate layer
+ cur = ggml_add(ctx0, cur, ffn_inp);
+
+ // output layer norm
+ cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ // final output
+ cur = inpL;
+ cb(cur, "result_embd", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_bloom() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ inpL = llm_build_norm(ctx0, inpL, hparams,
+ model.tok_norm,
+ model.tok_norm_b,
+ LLM_NORM, cb, -1);
+ cb(inpL, "inp_norm", -1);
+
+ for (int il = 0; il < n_layer; ++il) {
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // Add the input
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // FF
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_mpt() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * pos;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ if (model.pos_embd) {
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+ pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
+ cb(pos, "pos_embd", -1);
+
+ inpL = ggml_add(ctx0, inpL, pos);
+ cb(inpL, "inpL", -1);
+ }
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * attn_norm;
+
+ attn_norm = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(attn_norm, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = attn_norm;
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ if (model.layers[il].bqkv){
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+ }
+
+ if (hparams.f_clamp_kqv > 0.0f) {
+ cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+ cb(cur, "wqkv_clamped", il);
+ }
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ // Q/K Layernorm
+ if (model.layers[il].attn_q_norm) {
+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
+ model.layers[il].attn_q_norm,
+ model.layers[il].attn_q_norm_b,
+ LLM_NORM, cb, il);
+ cb(Qcur, "Qcur", il);
+
+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
+ model.layers[il].attn_k_norm,
+ model.layers[il].attn_k_norm_b,
+ LLM_NORM, cb, il);
+ cb(Kcur, "Kcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ } else {
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // Add the input
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed forward
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ model.layers[il].ffn_act,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_stablelm() {
+ struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ struct ggml_tensor * inpSA = cur;
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ cb(Qcur, "Qcur", il);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+ cb(Kcur, "Kcur", il);
+
+ if (model.layers[il].attn_q_norm) {
+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
+ model.layers[il].attn_q_norm,
+ NULL,
+ LLM_NORM, cb, il);
+ cb(Qcur, "Qcur", il);
+ }
+ if (model.layers[il].attn_k_norm) {
+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
+ model.layers[il].attn_k_norm,
+ NULL,
+ LLM_NORM, cb, il);
+ cb(Kcur, "Kcur", il);
+ }
+
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ if (model.layers[il].ffn_norm) {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+ } else {
+ // parallel residual
+ cur = inpSA;
+ }
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_qwen() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ // using mode = 2 for neox mode
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward forward
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_qwen2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_qwen2moe() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self_attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // MoE branch
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ ggml_tensor * moe_out =
+ llm_build_moe_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, false,
+ false, 0.0,
+ cb, il);
+ cb(cur, "ffn_moe_out", il);
+
+ // FFN shared expert
+ {
+ ggml_tensor * cur_gate_inp = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
+ cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
+
+ // sigmoid
+ ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
+ cb(cur_gate, "ffn_shexp_gate", il);
+
+ ggml_tensor * cur_ffn = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up_shexp, NULL, NULL,
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
+ model.layers[il].ffn_down_shexp, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur_ffn, "ffn_shexp", il);
+
+ ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
+ cb(ffn_shexp_out, "ffn_shexp_out", il);
+
+ moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
+ cb(moe_out, "ffn_out", il);
+
+ cur = moe_out;
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_phi2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * attn_norm_output;
+ struct ggml_tensor * ffn_output;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(attn_norm_output, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = nullptr;
+ struct ggml_tensor * Kcur = nullptr;
+ struct ggml_tensor * Vcur = nullptr;
+
+ if (model.layers[il].wqkv) {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+ } else {
+ Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
+ Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
+ Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
+ }
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ // with phi2, we scale the Q to avoid precision issues
+ // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
+ }
+
+ // FF
+ {
+ ffn_output = llm_build_ffn(ctx0, lctx, attn_norm_output,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(ffn_output, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_output);
+ cur = ggml_add(ctx0, cur, inpL);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output_no_bias", -1);
+
+ cur = ggml_add(ctx0, cur, model.output_b);
+ cb(cur, "result_output", -1);
+ ggml_build_forward_expand(gf, cur);
+ return gf;
+ }
+
+ struct ggml_cgraph * build_phi3() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
+
+ for (int il = 0; il < n_layer; ++il) {
+ auto residual = inpL;
+
+ // self-attention
+ {
+ // rope freq factors for 128k context
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+ struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(attn_norm_output, "attn_norm", il);
+
+ struct ggml_tensor * Qcur = nullptr;
+ struct ggml_tensor * Kcur = nullptr;
+ struct ggml_tensor * Vcur = nullptr;
+
+ if (model.layers[il].wqkv) {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
+ cb(cur, "wqkv", il);
+
+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
+ }
+ else {
+ Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
+ Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
+ Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
+ }
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor* inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ residual = ggml_get_rows(ctx0, residual, inp_out_ids);
+ }
+
+ cur = ggml_add(ctx0, cur, residual);
+ residual = cur;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // FF
+ // special-case: the up and gate tensors are merged into a single tensor
+ // TOOD: support into llm_build_ffn
+ {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, residual, cur);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+
+ struct ggml_cgraph * build_plamo() {
+ struct ggml_cgraph * gf = ggml_new_graph(ctx0);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ struct ggml_tensor * attention_norm = cur;
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
+ n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+ struct ggml_tensor * sa_out = cur;
+
+ cur = attention_norm;
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, sa_out);
+ cur = ggml_add(ctx0, cur, inpL);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_gpt2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * pos;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
+ cb(pos, "pos_embd", -1);
+
+ inpL = ggml_add(ctx0, inpL, pos);
+ cb(inpL, "inpL", -1);
+
+ for (int il = 0; il < n_layer; ++il) {
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // add the input
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // FF
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_codeshell() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(tmpq, "tmpq", il);
+ cb(tmpk, "tmpk", il);
+ cb(Vcur, "Vcur", il);
+
+ struct ggml_tensor * Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // add the input
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // FF
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_orion() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ // if (model.layers[il].bq) {
+ // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ // cb(Qcur, "Qcur", il);
+ // }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ // if (model.layers[il].bk) {
+ // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ // cb(Kcur, "Kcur", il);
+ // }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ // if (model.layers[il].bv) {
+ // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ // cb(Vcur, "Vcur", il);
+ // }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_internlm2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ // ref: https://arxiv.org/abs/2203.03466
+ // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
+ // based on the original build_llama() function
+ struct ggml_cgraph * build_minicpm() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ const int64_t n_embd = hparams.n_embd;
+ //TODO: if the model varies, these parameters need to be read from the model
+ const int64_t n_embd_base = 256;
+ const float scale_embd = 12.0f;
+ const float scale_depth = 1.4f;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // scale the input embeddings
+ inpL = ggml_scale(ctx0, inpL, scale_embd);
+ cb(inpL, "inp_scaled", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ // scale_res - scale the hidden states for residual connection
+ const float scale_res = scale_depth/sqrtf(float(n_layer));
+ cur = ggml_scale(ctx0, cur, scale_res);
+ cb(cur, "hidden_scaled", -1);
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ // scale the hidden states for residual connection
+ cur = ggml_scale(ctx0, cur, scale_res);
+ cb(cur, "hidden_scaled_ffn", -1);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head scaling
+ const float scale_lmhead = float(n_embd_base)/float(n_embd);
+ cur = ggml_scale(ctx0, cur, scale_lmhead);
+ cb(cur, "lmhead_scaling", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_gemma() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+ cb(inpL, "inp_scaled", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
+ cb(Qcur, "Qcur_scaled", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+ cb(sa_out, "sa_out", il);
+
+ cur = llm_build_norm(ctx0, sa_out, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, sa_out);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_gemma2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+ cb(inpL, "inp_scaled", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ // gemma 2 requires different mask for layers using sliding window (SWA)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true);
+ struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
+
+ for (int il = 0; il < n_layer; ++il) {
+ // (il % 2) layers use SWA
+ struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Qcur, "Qcur", il);
+
+ // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
+ switch (model.type) {
+ case e_model::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
+ case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
+ default: GGML_ASSERT(false);
+ };
+ cb(Qcur, "Qcur_scaled", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_post_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_post_norm", il);
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+ cb(sa_out, "sa_out", il);
+
+ cur = llm_build_norm(ctx0, sa_out, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_post_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "ffn_post_norm", -1);
+
+ cur = ggml_add(ctx0, cur, sa_out);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+ // final logit soft-capping
+ cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
+ cur = ggml_tanh(ctx0, cur);
+ cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+
+ struct ggml_cgraph * build_starcoder2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_mamba() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t d_model = n_embd;
+ const int64_t d_conv = hparams.ssm_d_conv;
+ const int64_t d_inner = hparams.ssm_d_inner;
+ GGML_ASSERT(2 * d_model == d_inner);
+ const int64_t d_state = hparams.ssm_d_state;
+ const int64_t dt_rank = hparams.ssm_dt_rank;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ // {n_embd, n_tokens}
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ struct ggml_tensor * state_mask = build_inp_s_mask();
+ struct ggml_tensor * state_seq = build_inp_s_seq();
+
+ for (int il = 0; il < n_layer; ++il) {
+ // (ab)using the KV cache to store the states
+ struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
+ struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
+
+ // clear states of sequences which are starting at the beginning of this batch
+ {
+ conv_states = ggml_mul(ctx0,
+ ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
+ state_mask);
+ ssm_states = ggml_mul(ctx0,
+ ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
+ state_mask);
+ }
+
+ conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
+ ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
+ struct ggml_tensor * xz = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_in, cur);
+ // split the above in two
+ // => {d_inner, n_tokens}
+ struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
+ struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
+
+ // conv
+ {
+ // Custom operator which is needed only to ease simultaneous sequence processing.
+ // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
+ // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
+ // then element-wise multiply that with the conv1d weigth,
+ // then sum the elements of each row,
+ // (the last two steps are a dot product over rows (also doable with mul_mat))
+ // then permute away the ne[0] dimension,
+ // and then you're left with the resulting x tensor.
+ // The new conv_states is the last (d_conv - 1) columns
+ // of the last 3rd dimensional "layer" of the self-overlapping view.
+ // For simultaneous sequences, it's more complicated.
+ struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
+
+ // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
+ ggml_build_forward_expand(gf,
+ ggml_cpy(ctx0,
+ ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
+ ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
+
+ // extract x from x_conv
+ x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
+
+ // bias
+ x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
+
+ x = ggml_silu(ctx0, x);
+ }
+
+ // ssm
+ {
+ // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
+ struct ggml_tensor * x_db = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_x, x);
+ // split
+ struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
+ struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
+ struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
+
+ // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
+ dt = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_dt, dt);
+ dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
+
+ // Custom operator to optimize the parallel associative scan
+ // as described in the Annex D of the Mamba paper.
+ // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
+ // because only a single tensor can be returned.
+ struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
+
+ // store last states (the second part of y_ssm_states)
+ ggml_build_forward_expand(gf,
+ ggml_cpy(ctx0,
+ ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
+ ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
+
+ struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ x = ggml_get_rows(ctx0, x, inp_out_ids);
+ y = ggml_get_rows(ctx0, y, inp_out_ids);
+ z = ggml_get_rows(ctx0, z, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
+ y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
+ y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
+
+ // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ssm_out, y);
+ }
+
+ // residual
+ cur = ggml_add(ctx0, cur, inpL);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ // final rmsnorm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_command_r() {
+
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ const float f_logit_scale = hparams.f_logit_scale;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+ struct ggml_tensor * ffn_inp = cur;
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ if (model.layers[il].attn_q_norm) {
+ Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
+ ggml_element_size(Qcur) * n_embd_head,
+ ggml_element_size(Qcur) * n_embd_head * n_head,
+ 0);
+ cb(Qcur, "Qcur", il);
+ Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
+ ggml_element_size(Kcur) * n_embd_head,
+ ggml_element_size(Kcur) * n_embd_head * n_head_kv,
+ 0);
+ cb(Kcur, "Kcur", il);
+
+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
+ model.layers[il].attn_q_norm,
+ NULL,
+ LLM_NORM, cb, il);
+ cb(Qcur, "Qcur", il);
+
+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
+ model.layers[il].attn_k_norm,
+ NULL,
+ LLM_NORM, cb, il);
+ cb(Kcur, "Kcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
+ }
+
+ struct ggml_tensor * attn_out = cur;
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, lctx, ffn_inp,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ // add together residual + FFN + self-attention
+ cur = ggml_add(ctx0, cur, inpL);
+ cur = ggml_add(ctx0, cur, attn_out);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+ if (f_logit_scale) {
+ cur = ggml_scale(ctx0, cur, f_logit_scale);
+ }
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+
+ }
+
+ // ref: https://allenai.org/olmo
+ // based on the original build_llama() function, changes:
+ // * non-parametric layer norm
+ // * clamp qkv
+ // * removed bias
+ // * removed MoE
+ struct ggml_cgraph * build_olmo() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ NULL, NULL,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (hparams.f_clamp_kqv > 0.0f) {
+ Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (hparams.f_clamp_kqv > 0.0f) {
+ Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (hparams.f_clamp_kqv > 0.0f) {
+ Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, nullptr,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ NULL, NULL,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ NULL, NULL,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_openelm() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ const int64_t n_head = hparams.n_head(il);
+ const int64_t n_head_kv = hparams.n_head_kv(il);
+ const int64_t n_head_qkv = 2*n_head_kv + n_head;
+
+ cur = inpL;
+ struct ggml_tensor * residual = cur;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
+ cb(Vcur, "Vcur", il);
+
+ Qcur = llm_build_norm(ctx0, Qcur, hparams,
+ model.layers[il].attn_q_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(Qcur, "Qcur", il);
+
+ Kcur = llm_build_norm(ctx0, Kcur, hparams,
+ model.layers[il].attn_k_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(Kcur, "Kcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, Qcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, Kcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ Vcur = ggml_reshape_2d(ctx0, Vcur, n_embd_head * n_head_kv, n_tokens);
+ cb(Qcur, "Vcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ residual = ggml_get_rows(ctx0, residual, inp_out_ids);
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_gptneox() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // ffn
+ if (hparams.use_par_res) {
+ // attention and ffn are computed in parallel
+ // x = x + attn(ln1(x)) + ffn(ln2(x))
+
+ struct ggml_tensor * attn_out = cur;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, inpL);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, attn_out);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ } else {
+ // attention and ffn are computed sequentially
+ // x = x + attn(ln1(x))
+ // x = x + ffn(ln2(x))
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+ cb(ffn_inp, "ffn_inp", il);
+
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_arctic() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
+ cb(ffn_out, "ffn_out", il);
+
+ // MoE
+ cur = llm_build_norm(ctx0, inpSA, hparams,
+ model.layers[il].ffn_norm_exps, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm_exps", il);
+
+ cur = llm_build_moe_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, true,
+ false, 0.0,
+ cb, il);
+ cb(cur, "ffn_moe_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_out);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_deepseek2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ bool is_lite = (hparams.n_layer == 27);
+
+ // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
+ // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
+ const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
+ const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
+ const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
+
+ const uint32_t n_embd_head_qk_rope = hparams.n_rot;
+ const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
+ const uint32_t kv_lora_rank = hparams.n_lora_kv;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ // {n_embd, n_tokens}
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self_attention
+ {
+ struct ggml_tensor * q = NULL;
+ if (!is_lite) {
+ // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
+ q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
+ cb(q, "q", il);
+
+ q = llm_build_norm(ctx0, q, hparams,
+ model.layers[il].attn_q_a_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(q, "q", il);
+
+ // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
+ q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
+ cb(q, "q", il);
+ } else {
+ q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(q, "q", il);
+ }
+
+ // split into {n_head * n_embd_head_qk_nope, n_tokens}
+ struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
+ ggml_row_size(q->type, hparams.n_embd_head_k),
+ ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
+ 0);
+ cb(q_nope, "q_nope", il);
+
+ // and {n_head * n_embd_head_qk_rope, n_tokens}
+ struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
+ ggml_row_size(q->type, hparams.n_embd_head_k),
+ ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
+ ggml_row_size(q->type, n_embd_head_qk_nope));
+ cb(q_pe, "q_pe", il);
+
+ // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
+ struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
+ cb(kv_pe_compresseed, "kv_pe_compresseed", il);
+
+ // split into {kv_lora_rank, n_tokens}
+ struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
+ kv_pe_compresseed->nb[1],
+ 0);
+ cb(kv_compressed, "kv_compressed", il);
+
+ // and {n_embd_head_qk_rope, n_tokens}
+ struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
+ kv_pe_compresseed->nb[1],
+ kv_pe_compresseed->nb[1],
+ ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
+ cb(k_pe, "k_pe", il);
+
+ kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
+ kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
+ model.layers[il].attn_kv_a_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(kv_compressed, "kv_compressed", il);
+
+ // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
+ struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
+ cb(kv, "kv", il);
+
+ // split into {n_head * n_embd_head_qk_nope, n_tokens}
+ struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
+ ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
+ ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
+ 0);
+ cb(k_nope, "k_nope", il);
+
+ // and {n_head * n_embd_head_v, n_tokens}
+ struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
+ ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
+ ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
+ ggml_row_size(kv->type, (n_embd_head_qk_nope)));
+ cb(v_states, "v_states", il);
+
+ v_states = ggml_cont(ctx0, v_states);
+ cb(v_states, "v_states", il);
+
+ v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
+ ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
+ 0);
+ cb(v_states, "v_states", il);
+
+ q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
+ q_pe = ggml_rope_ext(
+ ctx0, q_pe, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor_scaled, beta_fast, beta_slow
+ );
+ cb(q_pe, "q_pe", il);
+
+ // shared RoPE key
+ k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
+ k_pe = ggml_rope_ext(
+ ctx0, k_pe, inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor_scaled, beta_fast, beta_slow
+ );
+ cb(k_pe, "k_pe", il);
+
+ struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
+ cb(q_states, "q_states", il);
+
+ struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
+ cb(k_states, "k_states", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ if ((uint32_t) il < hparams.n_layer_dense_lead) {
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ } else {
+ // MoE branch
+ ggml_tensor * moe_out =
+ llm_build_moe_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, false,
+ true, hparams.expert_weights_scale,
+ cb, il);
+ cb(moe_out, "ffn_moe_out", il);
+
+ // FFN shared expert
+ {
+ ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up_shexp, NULL, NULL,
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
+ model.layers[il].ffn_down_shexp, NULL, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(ffn_shexp, "ffn_shexp", il);
+
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
+ cb(cur, "ffn_out", il);
+ }
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_bitnet() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ float q_scale; std::memcpy(&q_scale, model.layers[il].wq->op_params, sizeof(float));
+ // Note: we could save this scale operation by applying the Q scale on the K * Q product further down
+ // (which also uses a scale). This works on the CPU and Metal backends, but produces NaNs on CUDA.
+ Qcur = ggml_scale(ctx0, Qcur, q_scale);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ // B1.K
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ float k_scale; std::memcpy(&k_scale, model.layers[il].wk->op_params, sizeof(float));
+ Kcur = ggml_scale(ctx0, Kcur, k_scale);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ // B1.V
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ float v_scale; std::memcpy(&v_scale, model.layers[il].wv->op_params, sizeof(float));
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_scale(ctx0, Vcur, v_scale);
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ v_scale = 1;
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
+
+ const int64_t n_ctx = cparams.n_ctx;
+ const int64_t n_head = hparams.n_head();
+ const int64_t n_head_kv = hparams.n_head_kv();
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
+ const int64_t n_embd_head_v = hparams.n_embd_head_v;
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
+
+ float kq_scale = 1.0f/sqrtf(float(n_embd_head));
+ // We would use this if we did not apply the Q scale above. Sadly, this fails on CUDA.
+ //float kq_scale = q_scale/sqrtf(float(n_embd_head));
+ struct ggml_tensor * cur_attn;
+ struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+ cb(q, "q", il);
+
+ struct ggml_tensor * k =
+ ggml_view_3d(ctx0, kv_self.k_l[il],
+ n_embd_head_k, n_kv, n_head_kv,
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
+ 0);
+ cb(k, "k", il);
+
+ if (cparams.flash_attn) {
+
+ // split cached v into n_head heads (not transposed)
+ struct ggml_tensor * v =
+ ggml_view_3d(ctx0, kv_self.v_l[il],
+ n_embd_head_v, n_kv, n_head_kv,
+ ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
+ ggml_row_size(kv_self.v_l[il]->type, n_embd_head_v),
+ 0);
+ cb(v, "v", il);
+
+ cur_attn = ggml_flash_attn_ext(ctx0, q, k, v, KQ_mask, kq_scale, hparams.f_max_alibi_bias);
+
+ cur_attn = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens);
+ } else {
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+ cb(kq, "kq", il);
+
+ kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, kq_scale, hparams.f_max_alibi_bias);
+ cb(kq, "kq_soft_max_ext", il);
+
+ GGML_ASSERT(kv_self.size == n_ctx);
+
+ // split cached v into n_head heads
+ struct ggml_tensor * v =
+ ggml_view_3d(ctx0, kv_self.v_l[il],
+ n_kv, n_embd_head_v, n_head_kv,
+ ggml_element_size(kv_self.v_l[il])*n_ctx,
+ ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
+ 0);
+ cb(v, "v", il);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
+ cb(kqv, "kqv", il);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+ cb(kqv_merged, "kqv_merged", il);
+
+ cur_attn = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
+ cb(cur_attn, "kqv_merged_cont", il);
+ }
+
+ cur_attn = llm_build_norm(ctx0, cur_attn, hparams,
+ model.layers[il].attn_sub_norm, NULL,
+ LLM_NORM_RMS, cb, il, 1/(v_scale*v_scale));
+ cb(cur_attn, "attn_sub_norm", il);
+
+ ggml_build_forward_expand(gf, cur_attn);
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur_attn);
+ float wo_scale; std::memcpy(&wo_scale, model.layers[il].wo->op_params, sizeof(float));
+ cur = ggml_scale(ctx0, cur, wo_scale);
+
+ cb(cur, "kqv_out", il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward forward
+ if (model.layers[il].ffn_gate_inp == nullptr) {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
+ float ffn_up_scale; std::memcpy(&ffn_up_scale, model.layers[il].ffn_up->op_params, sizeof(float));
+
+ cb(tmp, "ffn_up", il);
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].ffn_gate, cur);
+ float ffn_gate_scale; std::memcpy(&ffn_gate_scale, model.layers[il].ffn_gate->op_params, sizeof(float));
+ cur = ggml_scale(ctx0, cur, ffn_gate_scale);
+
+ cb(cur, "ffn_gate", il);
+
+
+ // combine this with the above scale into ggml_scaled_silu
+ cur = ggml_silu(ctx0, cur);
+ cb(cur, "ffn_silu", il);
+
+ cur = ggml_mul(ctx0, cur, tmp);
+ cb(cur, "ffn_gate_par", il);
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_sub_norm, NULL,
+ LLM_NORM_RMS, cb, il, 1/(ffn_up_scale*ffn_up_scale));
+ cb(cur, "ffn_sub_norm", il);
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
+ float ffn_down_scale; std::memcpy(&ffn_down_scale, model.layers[il].ffn_down->op_params, sizeof(float));
+ cur = ggml_scale(ctx0, cur, ffn_down_scale);
+ cb(cur, "ffn_down", il);
+ }
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+ return gf;
+ }
+
+ struct ggml_cgraph * build_t5() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ if (lctx.is_encoding) {
+ struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm_enc, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq_enc, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk_enc, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv_enc, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+ struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
+
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+ cb(kq, "kq", il);
+
+ struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
+ struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
+ struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
+ cb(kq_b, "kq_b", il);
+
+ kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
+ cb(kq, "kq_soft_max_ext", il);
+
+ struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
+ cb(v, "v", il);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
+ cb(kqv, "kqv", il);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+ cb(kqv_merged, "kqv_merged", il);
+
+ cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
+ cb(cur, "kqv_merged_cont", il);
+
+ ggml_build_forward_expand(gf, cur);
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].wo_enc, cur);
+ cb(cur, "kqv_out", il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm_enc, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // T5 uses relu, flan-T5 uses gelu-gated
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up_enc, NULL, NULL,
+ model.layers[il].ffn_gate_enc, NULL, NULL,
+ model.layers[il].ffn_down_enc, NULL, NULL,
+ NULL,
+ model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
+ model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
+ cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
+ if (layer_dir != nullptr) {
+ cur = ggml_add(ctx0, cur, layer_dir);
+ }
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+ cb(cur, "result_embd", -1);
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm_enc, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+ } else {
+ GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
+
+ struct ggml_tensor * embd_enc = llm_build_inp_embd_enc();
+ struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
+
+ struct ggml_tensor * KQ_mask_dec = build_inp_KQ_mask();
+ struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
+
+ struct ggml_tensor * k =
+ ggml_view_3d(ctx0, kv_self.k_l[il],
+ n_embd_head_k, n_kv, n_head_kv,
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
+ ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
+ 0);
+ cb(k, "k", il);
+
+ struct ggml_tensor * v =
+ ggml_view_3d(ctx0, kv_self.v_l[il],
+ n_kv, n_embd_head_v, n_head_kv,
+ ggml_element_size(kv_self.v_l[il])*n_ctx,
+ ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
+ 0);
+ cb(v, "v", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+ struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+ cb(kq, "kq", il);
+
+ struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
+ struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
+ struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
+ cb(kq_b, "kq_b", il);
+
+ kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
+ cb(kq, "kq_soft_max_ext", il);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
+ cb(kqv, "kqv", il);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+ cb(kqv_merged, "kqv_merged", il);
+
+ cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
+ cb(cur, "kqv_merged_cont", il);
+
+ ggml_build_forward_expand(gf, cur);
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
+ cb(cur, "kqv_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, inpSA);
+ cb(cur, "cross_inp", il);
+
+ struct ggml_tensor * inpCA = cur;
+
+ // norm
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_norm_cross, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm_cross", il);
+
+ // cross-attention
+ {
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq_cross, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk_cross, embd_enc);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv_cross, embd_enc);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
+
+ struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
+ struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
+
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
+ cb(kq, "kq", il);
+
+ kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
+ cb(kq, "kq_soft_max_ext", il);
+
+ struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
+ cb(v, "v", il);
+
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
+ cb(kqv, "kqv", il);
+
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+ cb(kqv_merged, "kqv_merged", il);
+
+ cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
+ cb(cur, "kqv_merged_cont", il);
+
+ ggml_build_forward_expand(gf, cur);
+
+ cur = ggml_mul_mat(ctx0, model.layers[il].wo_cross, cur);
+ cb(cur, "kqv_out", il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // T5 uses relu, flan-T5 uses gelu-gated
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
+ model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
+ cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
+ if (layer_dir != nullptr) {
+ cur = ggml_add(ctx0, cur, layer_dir);
+ }
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+ cb(cur, "result_embd", -1);
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+ }
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_jais() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ model.layers[il].attn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ // add the input
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // FF
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ model.layers[il].ffn_norm_b,
+ LLM_NORM, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ inpL = ggml_add(ctx0, cur, ffn_inp);
+ cb(inpL, "l_out", il);
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ model.output_norm_b,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
+ struct ggml_cgraph * build_chatglm() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ struct ggml_tensor * Qcur = nullptr;
+ struct ggml_tensor * Kcur = nullptr;
+ struct ggml_tensor * Vcur = nullptr;
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
+ cb(cur, "wqkv", il);
+
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
+ cb(cur, "bqkv", il);
+
+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+ //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur_rope", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur_rope", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ // Add the input
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // FF
+ {
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm,
+ NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
+ cb(cur, "ffn_out", il);
+
+ }
+
+ inpL = ggml_add(ctx0, cur, ffn_inp);
+ cb(inpL, "l_out", il);
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+};
+
+static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
+ llama_batch dummy;
+ dummy.n_tokens = 0;
+
+ llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
+
+ struct llm_build_context llm(lctx, dummy, cb, false);
+
+ llm.init();
+
+ struct ggml_cgraph * result = llm.build_defrag(ids);
+
+ llm.free();
+
+ return result;
+}
+
+static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
+ llama_batch dummy;
+ dummy.n_tokens = 0;
+
+ llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
+
+ struct llm_build_context llm(lctx, dummy, cb, false);
+
+ llm.init();
+
+ struct ggml_cgraph * result = llm.build_k_shift();
+
+ llm.free();
+
+ return result;
+}
+
+static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
+ llama_batch dummy;
+ dummy.n_tokens = 0;
+
+ llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
+
+ struct llm_build_context llm(lctx, dummy, cb, false);
+
+ llm.init();
+
+ struct ggml_cgraph * result = llm.build_s_copy();
+
+ llm.free();
+
+ return result;
+}
+
+static struct ggml_cgraph * llama_build_graph(
+ llama_context & lctx,
+ const llama_batch & batch,
+ bool worst_case) {
+ const auto & model = lctx.model;
+
+ // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
+ llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
+ if (il >= 0) {
+ ggml_format_name(cur, "%s-%d", name, il);
+ } else {
+ ggml_set_name(cur, name);
+ }
+
+ if (!lctx.cparams.offload_kqv) {
+ if (strcmp(name, "kqv_merged_cont") == 0) {
+ // all nodes between the KV store and the attention output are run on the CPU
+ ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
+ }
+ }
+
+ // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
+ // FIXME: fix in ggml_backend_sched
+ const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
+ if (batch.n_tokens < 32 || full_offload) {
+ if (il != -1 && strcmp(name, "norm") == 0) {
+ for (auto * backend : lctx.backends) {
+ if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
+ (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
+ ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
+ break;
+ }
+ }
+ }
+ }
+ };
+
+ struct ggml_cgraph * result = NULL;
+
+ struct llm_build_context llm(lctx, batch, cb, worst_case);
+
+ llm.init();
+
+ switch (model.arch) {
+ case LLM_ARCH_LLAMA:
+ {
+ result = llm.build_llama();
+ } break;
+ case LLM_ARCH_BAICHUAN:
+ {
+ result = llm.build_baichuan();
+ } break;
+ case LLM_ARCH_FALCON:
+ {
+ result = llm.build_falcon();
+ } break;
+ case LLM_ARCH_GROK:
+ {
+ result = llm.build_grok();
+ } break;
+ case LLM_ARCH_STARCODER:
+ {
+ result = llm.build_starcoder();
+ } break;
+ case LLM_ARCH_REFACT:
+ {
+ result = llm.build_refact();
+ } break;
+ case LLM_ARCH_BERT:
+ case LLM_ARCH_JINA_BERT_V2:
+ case LLM_ARCH_NOMIC_BERT:
+ {
+ result = llm.build_bert();
+ } break;
+ case LLM_ARCH_BLOOM:
+ {
+ result = llm.build_bloom();
+ } break;
+ case LLM_ARCH_MPT:
+ {
+ result = llm.build_mpt();
+ } break;
+ case LLM_ARCH_STABLELM:
+ {
+ result = llm.build_stablelm();
+ } break;
+ case LLM_ARCH_QWEN:
+ {
+ result = llm.build_qwen();
+ } break;
+ case LLM_ARCH_QWEN2:
+ {
+ result = llm.build_qwen2();
+ } break;
+ case LLM_ARCH_QWEN2MOE:
+ {
+ result = llm.build_qwen2moe();
+ } break;
+ case LLM_ARCH_PHI2:
+ {
+ result = llm.build_phi2();
+ } break;
+ case LLM_ARCH_PHI3:
+ {
+ result = llm.build_phi3();
+ } break;
+ case LLM_ARCH_PLAMO:
+ {
+ result = llm.build_plamo();
+ } break;
+ case LLM_ARCH_GPT2:
+ {
+ result = llm.build_gpt2();
+ } break;
+ case LLM_ARCH_CODESHELL:
+ {
+ result = llm.build_codeshell();
+ } break;
+ case LLM_ARCH_ORION:
+ {
+ result = llm.build_orion();
+ } break;
+ case LLM_ARCH_INTERNLM2:
+ {
+ result = llm.build_internlm2();
+ } break;
+ case LLM_ARCH_MINICPM:
+ {
+ result = llm.build_minicpm();
+ } break;
+ case LLM_ARCH_GEMMA:
+ {
+ result = llm.build_gemma();
+ } break;
+ case LLM_ARCH_GEMMA2:
+ {
+ result = llm.build_gemma2();
+ } break;
+ case LLM_ARCH_STARCODER2:
+ {
+ result = llm.build_starcoder2();
+ } break;
+ case LLM_ARCH_MAMBA:
+ {
+ result = llm.build_mamba();
+ } break;
+ case LLM_ARCH_XVERSE:
+ {
+ result = llm.build_xverse();
+ } break;
+ case LLM_ARCH_COMMAND_R:
+ {
+ result = llm.build_command_r();
+ } break;
+ case LLM_ARCH_DBRX:
+ {
+ result = llm.build_dbrx();
+ } break;
+ case LLM_ARCH_OLMO:
+ {
+ result = llm.build_olmo();
+ } break;
+ case LLM_ARCH_OPENELM:
+ {
+ result = llm.build_openelm();
+ } break;
+ case LLM_ARCH_GPTNEOX:
+ {
+ result = llm.build_gptneox();
+ } break;
+ case LLM_ARCH_ARCTIC:
+ {
+ result = llm.build_arctic();
+ } break;
+ case LLM_ARCH_DEEPSEEK2:
+ {
+ result = llm.build_deepseek2();
+ } break;
+ case LLM_ARCH_CHATGLM:
+ {
+ result = llm.build_chatglm();
+ } break;
+ case LLM_ARCH_BITNET:
+ {
+ result = llm.build_bitnet();
+ } break;
+ case LLM_ARCH_T5:
+ {
+ result = llm.build_t5();
+ } break;
+ case LLM_ARCH_JAIS:
+ {
+ result = llm.build_jais();
+ } break;
+ default:
+ GGML_ASSERT(false);
+ }
+
+ // add on pooling layer
+ if (lctx.cparams.embeddings) {
+ result = llm.append_pooling(result);
+ }
+
+ llm.free();
+
+ return result;
+}
+
+static void llama_set_k_shift(llama_context & lctx) {
+ const int64_t kv_size = lctx.kv_self.size;
+
+ assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
+
+ int32_t * data = (int32_t *) lctx.inp_K_shift->data;
+
+ for (int i = 0; i < kv_size; ++i) {
+ data[i] = lctx.kv_self.cells[i].delta;
+ }
+}
+
+static void llama_set_s_copy(llama_context & lctx) {
+ const int64_t kv_size = lctx.kv_self.size;
+
+ assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
+
+ int32_t * data = (int32_t *) lctx.inp_s_copy->data;
+
+ for (int i = 0; i < kv_size; ++i) {
+ data[i] = lctx.kv_self.cells[i].src;
+ }
+}
+
+static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
+ // TODO move to hparams if a T5 variant appears that uses a different value
+ const int64_t max_distance = 128;
+
+ if (bidirectional) {
+ n_buckets >>= 1;
+ }
+
+ const int64_t max_exact = n_buckets >> 1;
+
+ int32_t relative_position = x - y;
+ int32_t relative_bucket = 0;
+ if (bidirectional) {
+ relative_bucket += (relative_position > 0) * n_buckets;
+ relative_position = abs(relative_position);
+ } else {
+ relative_position = -std::min<int32_t>(relative_position, 0);
+ }
+ int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
+ relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
+ relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
+ return relative_bucket;
+}
+
+static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
+ //
+ // set input data
+ //
+
+ const auto & hparams = lctx.model.hparams;
+ const auto & cparams = lctx.cparams;
+ const auto & kv_self = lctx.kv_self;
+
+ if (batch.token) {
+ const int64_t n_tokens = batch.n_tokens;
+
+ ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
+ }
+
+ if (batch.embd) {
+ const int64_t n_embd = hparams.n_embd;
+ const int64_t n_tokens = batch.n_tokens;
+
+ ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
+ }
+
+ if (batch.pos && lctx.inp_pos) {
+ const int64_t n_tokens = batch.n_tokens;
+
+ ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
+ }
+
+ if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
+ GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
+ const int64_t n_tokens = batch.n_tokens;
+
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
+ int32_t * data = (int32_t *) lctx.inp_out_ids->data;
+
+ if (lctx.n_outputs == n_tokens) {
+ for (int i = 0; i < n_tokens; ++i) {
+ data[i] = i;
+ }
+ } else if (batch.logits) {
+ int32_t n_outputs = 0;
+ for (int i = 0; i < n_tokens; ++i) {
+ if (batch.logits[i]) {
+ data[n_outputs++] = i;
+ }
+ }
+ // the graph needs to have been passed the correct number of outputs
+ GGML_ASSERT(lctx.n_outputs == n_outputs);
+ } else if (lctx.n_outputs == 1) {
+ // only keep last output
+ data[0] = n_tokens - 1;
+ } else {
+ GGML_ASSERT(lctx.n_outputs == 0);
+ }
+ }
+
+ GGML_ASSERT(
+ // (!a || b) is a logical implication (a -> b)
+ // !hparams.causal_attn -> !cparams.causal_attn
+ (hparams.causal_attn || !cparams.causal_attn) &&
+ "causal attention is not supported by this model"
+ );
+
+ if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) {
+ // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
+ if (cparams.causal_attn && !lctx.is_encoding) {
+ const int64_t n_kv = kv_self.n;
+ const int64_t n_tokens = batch.n_tokens;
+
+
+ float * data = nullptr;
+ float * data_swa = nullptr;
+
+ if (lctx.inp_KQ_mask) {
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
+ data = (float *) lctx.inp_KQ_mask->data;
+ }
+
+ if (lctx.inp_KQ_mask_swa) {
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
+ data_swa = (float *) lctx.inp_KQ_mask_swa->data;
+ }
+
+ // For causal attention, use only the previous KV cells
+ // of the correct sequence for each token of the batch.
+ // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
+ for (int h = 0; h < 1; ++h) {
+ for (int j = 0; j < n_tokens; ++j) {
+ const llama_pos pos = batch.pos[j];
+ const llama_seq_id seq_id = batch.seq_id[j][0];
+
+ for (int i = 0; i < n_kv; ++i) {
+ float f;
+ if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
+ f = -INFINITY;
+ } else {
+ if (hparams.use_alibi) {
+ f = -std::abs(lctx.kv_self.cells[i].pos - pos);
+ } else {
+ f = 0.0f;
+ }
+ }
+
+ if (data) {
+ data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
+ }
+
+ // may need to cut off old tokens for sliding window
+ if (data_swa) {
+ if (pos - lctx.kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
+ f = -INFINITY;
+ }
+ data_swa[h*(n_kv*n_tokens) + j*n_kv + i] = f;
+ }
+ }
+ }
+
+ if (data) {
+ for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
+ for (int j = 0; j < n_kv; ++j) {
+ data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
+ }
+ }
+ }
+
+ if (data_swa) {
+ for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
+ for (int j = 0; j < n_kv; ++j) {
+ data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
+ }
+ }
+ }
+ }
+ } else {
+ // when using kv cache, the mask needs to match the kv cache size
+ const int64_t n_tokens = batch.n_tokens;
+ const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;
+
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
+
+ float * data = (float *) lctx.inp_KQ_mask->data;
+
+ for (int h = 0; h < 1; ++h) {
+ for (int j = 0; j < n_tokens; ++j) {
+ const llama_seq_id seq_id = batch.seq_id[j][0];
+
+ for (int i = 0; i < n_tokens; ++i) {
+ float f = -INFINITY;
+ for (int s = 0; s < batch.n_seq_id[i]; ++s) {
+ if (batch.seq_id[i][s] == seq_id) {
+ if (hparams.use_alibi) {
+ f = -std::abs(batch.pos[i] - batch.pos[j]);
+ } else {
+ f = 0.0f;
+ }
+ break;
+ }
+ }
+
+ data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
+ }
+
+ for (int i = n_tokens; i < n_stride; ++i) {
+ data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
+ }
+ }
+ }
+ }
+ }
+
+ if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
+ const int64_t n_tokens = batch.n_tokens;
+
+ GGML_ASSERT(lctx.inp_mean);
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
+
+ float * data = (float *) lctx.inp_mean->data;
+ memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
+
+ std::vector<uint64_t> sum(n_tokens, 0);
+ for (int i = 0; i < n_tokens; ++i) {
+ const llama_seq_id seq_id = batch.seq_id[i][0];
+
+ GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
+
+ sum[seq_id] += 1;
+ }
+
+ std::vector<float> div(n_tokens, 0.0f);
+ for (int i = 0; i < n_tokens; ++i) {
+ const uint64_t s = sum[i];
+ if (s > 0) {
+ div[i] = 1.0f/float(s);
+ }
+ }
+
+ for (int i = 0; i < n_tokens; ++i) {
+ const llama_seq_id seq_id = batch.seq_id[i][0];
+ data[seq_id*n_tokens + i] = div[seq_id];
+ }
+ }
+
+ if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
+ const int64_t n_tokens = batch.n_tokens;
+
+ GGML_ASSERT(lctx.inp_cls);
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
+
+ uint32_t * data = (uint32_t *) lctx.inp_cls->data;
+ memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
+
+ for (int i = 0; i < n_tokens; ++i) {
+ const llama_seq_id seq_id = batch.seq_id[i][0];
+ const llama_pos pos = batch.pos[i];
+
+ GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
+
+ if (pos == 0) {
+ data[seq_id] = i;
+ }
+ }
+ }
+
+ if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
+ const int64_t n_tokens = batch.n_tokens;
+
+ GGML_ASSERT(lctx.inp_cls);
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
+
+ uint32_t * data = (uint32_t *) lctx.inp_cls->data;
+ memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
+
+ std::vector<int> last_pos(n_tokens, -1);
+ std::vector<int> last_row(n_tokens, -1);
+
+ for (int i = 0; i < n_tokens; ++i) {
+ const llama_seq_id seq_id = batch.seq_id[i][0];
+ const llama_pos pos = batch.pos[i];
+
+ GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
+
+ if (pos >= last_pos[seq_id]) {
+ last_pos[seq_id] = pos;
+ last_row[seq_id] = i;
+ }
+ }
+
+ for (int i = 0; i < n_tokens; ++i) {
+ if (last_row[i] >= 0) {
+ data[i] = last_row[i];
+ }
+ }
+ }
+
+ if (kv_self.recurrent) {
+ const int64_t n_kv = kv_self.n;
+
+ if (lctx.inp_s_mask) {
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
+ float * data = (float *) lctx.inp_s_mask->data;
+
+ // states which are not affected by the current batch are left untouched
+ for (int i = 0; i < n_kv; ++i) {
+ llama_seq_id seq_id = i + lctx.kv_self.head;
+ llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
+ bool has_self_seq = kv_cell.has_seq_id(seq_id);
+
+ data[i] = (float) has_self_seq;
+
+ // ensure current sequences will be kept
+ if (!has_self_seq && kv_cell.pos >= 0) {
+ kv_cell.seq_id.insert(seq_id);
+ }
+ }
+ }
+ // For Mamba (and other recurrent architectures),
+ // update the correct state(s)/sequence(s) for each token of the batch.
+ // Like with the KQ_mask, if a token in the batch has multiple sequences,
+ // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
+ if (lctx.inp_s_seq) {
+ const int64_t n_tokens = batch.n_tokens;
+
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
+ int32_t * data = (int32_t *) lctx.inp_s_seq->data;
+
+ for (int j = 0; j < n_tokens; ++j) {
+ const int32_t n_seq = batch.n_seq_id[j];
+ GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
+
+ for (int i = 0; i < n_kv; ++i) {
+ if (i < n_seq) {
+ // for this type of model, the head is the minimum seq_id of the batch
+ data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
+ } else {
+ data[j*n_kv + i] = -1;
+ }
+ }
+ }
+ }
+ }
+
+ if (lctx.inp_pos_bucket) {
+ const int64_t n_tokens = batch.n_tokens;
+
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
+
+ int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;
+
+ if (!lctx.is_encoding) {
+ const int64_t n_kv = kv_self.n;
+ for (int h = 0; h < 1; ++h) {
+ for (int j = 0; j < n_tokens; ++j) {
+ for (int i = 0; i < n_kv; ++i) {
+ data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
+ }
+ }
+ }
+ } else {
+ for (int h = 0; h < 1; ++h) {
+ for (int j = 0; j < n_tokens; ++j) {
+ for (int i = 0; i < n_tokens; ++i) {
+ data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(batch.pos[i], batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
+ }
+ }
+ }
+ }
+ }
+
+ if (!lctx.is_encoding && lctx.inp_embd_enc) {
+ assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
+ assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());
+
+ ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
+ }
+
+ if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
+ const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
+ const int64_t n_tokens = batch.n_tokens;
+
+ GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
+
+ float * data = (float *) lctx.inp_KQ_mask_cross->data;
+
+ for (int h = 0; h < 1; ++h) {
+ for (int j = 0; j < n_tokens; ++j) {
+ for (int i = 0; i < n_output_enc; ++i) {
+ float f = -INFINITY;
+ for (int s = 0; s < batch.n_seq_id[j]; ++s) {
+ const llama_seq_id seq_id = batch.seq_id[j][s];
+ if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
+ f = 0.0f;
+ }
+ }
+ data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
+ }
+ }
+
+ for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
+ for (int j = 0; j < n_output_enc; ++j) {
+ data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
+ }
+ }
+ }
+ }
+}
+
+// Make sure enough space is available for outputs.
+// Returns max number of outputs for which space was reserved.
+static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
+ const auto & cparams = lctx.cparams;
+ const auto & hparams = lctx.model.hparams;
+
+ const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
+
+ const auto n_batch = cparams.n_batch;
+ const auto n_vocab = hparams.n_vocab;
+ const auto n_embd = hparams.n_embd;
+
+ // TODO: use a per-batch flag for logits presence instead
+ const bool has_logits = !cparams.embeddings;
+ const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
+
+ const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
+ const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
+
+ if (lctx.output_ids.empty()) {
+ // init, never resized afterwards
+ lctx.output_ids.resize(n_batch);
+ }
+
+ const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
+ const size_t new_size = (logits_size + embd_size) * sizeof(float);
+
+ // alloc only when more than the current capacity is required
+ // TODO: also consider shrinking the buffer
+ if (!lctx.buf_output || prev_size < new_size) {
+ if (lctx.buf_output) {
+#ifndef NDEBUG
+ // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
+ LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
+#endif
+ ggml_backend_buffer_free(lctx.buf_output);
+ lctx.buf_output = nullptr;
+ lctx.logits = nullptr;
+ lctx.embd = nullptr;
+ }
+
+ lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
+ if (lctx.buf_output == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
+ return 0;
+ }
+ }
+
+ float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
+
+ lctx.logits = has_logits ? output_base : nullptr;
+ lctx.embd = has_embd ? output_base + logits_size : nullptr;
+
+ lctx.output_size = n_outputs_max;
+ lctx.logits_size = logits_size;
+ lctx.embd_size = embd_size;
+
+ // set all ids as invalid (negative)
+ std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
+
+ ggml_backend_buffer_clear(lctx.buf_output, 0);
+
+ lctx.n_outputs = 0;
+
+ return n_outputs_max;
+}
+
+
+static void llama_graph_compute(
+ llama_context & lctx,
+ ggml_cgraph * gf,
+ int n_threads) {
+#ifdef GGML_USE_METAL
+ if (ggml_backend_is_metal(lctx.backend_metal)) {
+ ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
+ }
+#endif
+
+ if (lctx.backend_cpu != nullptr) {
+ ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
+ ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
+ }
+#ifdef GGML_USE_BLAS
+ if (lctx.backend_blas != nullptr) {
+ ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
+ }
+#endif
+
+ ggml_backend_sched_graph_compute_async(lctx.sched, gf);
+
+ // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
+}
+
+// decode a batch of tokens by evaluating the transformer
+//
+// - lctx: llama context
+// - batch: batch to evaluate
+//
+// return 0 on success
+// return positive int on warning
+// return negative int on error
+//
+static int llama_decode_internal(
+ llama_context & lctx,
+ llama_batch batch_all) { // TODO: rename back to batch
+
+ lctx.is_encoding = false;
+ const uint32_t n_tokens_all = batch_all.n_tokens;
+
+ if (n_tokens_all == 0) {
+ LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
+ return -1;
+ }
+
+ const auto & model = lctx.model;
+ const auto & hparams = model.hparams;
+ const auto & cparams = lctx.cparams;
+
+ GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
+
+ GGML_ASSERT(n_tokens_all <= cparams.n_batch);
+
+ GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
+
+ if (lctx.t_compute_start_us == 0) {
+ lctx.t_compute_start_us = ggml_time_us();
+ }
+ lctx.n_queued_tokens += n_tokens_all;
+
+ auto & kv_self = lctx.kv_self;
+
+ const int64_t n_embd = hparams.n_embd;
+ const int64_t n_vocab = hparams.n_vocab;
+
+ uint32_t n_outputs = 0;
+ uint32_t n_outputs_prev = 0;
+
+ const auto n_ubatch = cparams.n_ubatch;
+
+ // TODO: simplify or deprecate
+ std::vector<llama_pos> pos;
+ std::vector<int32_t> n_seq_id;
+ std::vector<llama_seq_id *> seq_id_arr;
+ std::vector<std::vector<llama_seq_id>> seq_id;
+
+ // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
+ const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
+
+ // count outputs
+ if (batch_all.logits && !embd_pooled) {
+ for (uint32_t i = 0; i < n_tokens_all; ++i) {
+ n_outputs += batch_all.logits[i] != 0;
+ }
+ } else if (lctx.logits_all || embd_pooled) {
+ n_outputs = n_tokens_all;
+ } else {
+ // keep last output only
+ n_outputs = 1;
+ }
+
+ // reserve output buffer
+ if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
+ LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
+ return -2;
+ };
+
+ // set output mappings
+ if (batch_all.logits) {
+ int32_t i_logits = 0;
+ for (uint32_t i = 0; i < n_tokens_all; ++i) {
+ if (batch_all.logits[i]) {
+ lctx.output_ids[i] = i_logits++;
+ }
+ }
+ } else {
+ for (uint32_t i = 0; i < n_outputs; ++i) {
+ lctx.output_ids[i] = i;
+ }
+ }
+
+ for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
+ const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
+ llama_batch u_batch = {
+ /* .n_tokens = */ (int32_t) n_tokens,
+ /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
+ /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
+ /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
+ /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
+ /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
+ /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
+ /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
+ /* .all_pos_1 = */ batch_all.all_pos_1,
+ /* .all_seq_id = */ batch_all.all_seq_id,
+ };
+
+ // count the outputs in this u_batch
+ {
+ int32_t n_outputs_new = 0;
+
+ if (u_batch.logits && !embd_pooled) {
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ n_outputs_new += u_batch.logits[i] != 0;
+ }
+ } else if (n_outputs == n_tokens_all) {
+ n_outputs_new = n_tokens;
+ } else {
+ // keep last output only
+ if (cur_token + n_tokens >= n_tokens_all) {
+ n_outputs_new = 1;
+ }
+ }
+
+ // needs to happen before the graph is built
+ lctx.n_outputs = n_outputs_new;
+ }
+
+ int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
+ GGML_ASSERT(n_threads > 0);
+
+ // helpers for smoother batch API transition
+ // after deprecating the llama_eval calls, these will be removed
+ if (u_batch.pos == nullptr) {
+ pos.resize(n_tokens);
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
+ }
+
+ u_batch.pos = pos.data();
+ }
+
+ if (u_batch.seq_id == nullptr) {
+ n_seq_id.resize(n_tokens);
+ seq_id.resize(n_tokens);
+ seq_id_arr.resize(n_tokens);
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ n_seq_id[i] = 1;
+ seq_id[i].resize(1);
+ seq_id[i][0] = u_batch.all_seq_id;
+ seq_id_arr[i] = seq_id[i].data();
+ }
+
+ u_batch.n_seq_id = n_seq_id.data();
+ u_batch.seq_id = seq_id_arr.data();
+ }
+
+ // non-causal masks do not use the KV cache
+ if (hparams.causal_attn) {
+ llama_kv_cache_update(&lctx);
+
+ // if we have enough unused cells before the current head ->
+ // better to start searching from the beginning of the cache, hoping to fill it
+ if (kv_self.head > kv_self.used + 2*n_tokens) {
+ kv_self.head = 0;
+ }
+
+ if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
+ return 1;
+ }
+
+ if (!kv_self.recurrent) {
+ // a heuristic, to avoid attending the full cache if it is not yet utilized
+ // after enough generations, the benefit from this heuristic disappears
+ // if we start defragmenting the cache, the benefit from this will be more important
+ const uint32_t pad = llama_kv_cache_get_padding(cparams);
+ kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
+ //kv_self.n = llama_kv_cache_cell_max(kv_self);
+ }
+ }
+
+ //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
+
+ ggml_backend_sched_reset(lctx.sched);
+ ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
+
+ ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
+
+ // the output is always the last tensor in the graph
+ struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
+ struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
+
+ if (lctx.n_outputs == 0) {
+ // no output
+ res = nullptr;
+ embd = nullptr;
+ } else if (cparams.embeddings) {
+ res = nullptr; // do not extract logits for embedding case
+ embd = gf->nodes[gf->n_nodes - 1];
+ if (strcmp(embd->name, "result_embd_pooled") != 0) {
+ embd = gf->nodes[gf->n_nodes - 2];
+ }
+ GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
+ } else {
+ embd = nullptr; // do not extract embeddings when not needed
+ GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
+ }
+ // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
+
+ ggml_backend_sched_alloc_graph(lctx.sched, gf);
+
+ llama_set_inputs(lctx, u_batch);
+
+ llama_graph_compute(lctx, gf, n_threads);
+
+ // update the kv ring buffer
+ {
+ kv_self.head += n_tokens;
+
+ // Ensure kv cache head points to a valid index.
+ if (kv_self.head >= kv_self.size) {
+ kv_self.head = 0;
+ }
+ }
+
+ // plot the computation graph in dot format (for debugging purposes)
+ //if (n_past%100 == 0) {
+ // ggml_graph_dump_dot(gf, NULL, "llama.dot");
+ //}
+
+ // extract logits
+ if (res) {
+ ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
+ GGML_ASSERT(backend_res != nullptr);
+ GGML_ASSERT(lctx.logits != nullptr);
+
+ float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
+ const int32_t n_outputs_new = lctx.n_outputs;
+
+ if (n_outputs_new) {
+ GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
+ GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
+ ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
+ }
+ }
+
+ // extract embeddings
+ if (embd) {
+ ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
+ GGML_ASSERT(backend_embd != nullptr);
+
+ switch (cparams.pooling_type) {
+ case LLAMA_POOLING_TYPE_NONE:
+ {
+ // extract token embeddings
+ GGML_ASSERT(lctx.embd != nullptr);
+ float * embd_out = lctx.embd + n_outputs_prev*n_embd;
+ const int32_t n_outputs_new = lctx.n_outputs;
+
+ if (n_outputs_new) {
+ GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
+ GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
+ ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
+ }
+ } break;
+ case LLAMA_POOLING_TYPE_MEAN:
+ case LLAMA_POOLING_TYPE_CLS:
+ case LLAMA_POOLING_TYPE_LAST:
+ {
+ // extract sequence embeddings
+ auto & embd_seq_out = lctx.embd_seq;
+ embd_seq_out.clear();
+
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ const llama_seq_id seq_id = u_batch.seq_id[i][0];
+ if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
+ continue;
+ }
+ embd_seq_out[seq_id].resize(n_embd);
+ ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
+ }
+ } break;
+ case LLAMA_POOLING_TYPE_UNSPECIFIED:
+ {
+ GGML_ASSERT(false && "unknown pooling type");
+ } break;
+ }
+ }
+ n_outputs_prev += lctx.n_outputs;
+ }
+
+ // set to total number of outputs in the batch, for use in llama_get_logits_ith
+ lctx.n_outputs = n_outputs;
+
+ // wait for the computation to finish (automatically done when obtaining the model output)
+ //llama_synchronize(&lctx);
+
+ // decide if we need to defrag the kv cache
+ if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
+ const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
+
+ // queue defragmentation for next llama_kv_cache_update
+ if (fragmentation > cparams.defrag_thold) {
+ //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
+
+ llama_kv_cache_defrag(kv_self);
+ }
+ }
+
+ // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
+ // overlap with device computation.
+ ggml_backend_sched_reset(lctx.sched);
+
+ return 0;
+}
+
+// encode a batch of tokens by evaluating the encoder part of the transformer
+//
+// - lctx: llama context
+// - batch: batch to evaluate
+//
+// return 0 on success
+// return positive int on warning
+// return negative int on error
+//
+static int llama_encode_internal(
+ llama_context & lctx,
+ llama_batch batch) {
+
+ lctx.is_encoding = true;
+
+ const uint32_t n_tokens = batch.n_tokens;
+
+ if (n_tokens == 0) {
+ LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
+ return -1;
+ }
+
+ const auto & model = lctx.model;
+ const auto & hparams = model.hparams;
+ const auto & cparams = lctx.cparams;
+
+ GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
+
+ // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
+ GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
+
+ if (lctx.t_compute_start_us == 0) {
+ lctx.t_compute_start_us = ggml_time_us();
+ }
+
+ lctx.n_queued_tokens += n_tokens;
+
+ const int64_t n_embd = hparams.n_embd;
+
+ // TODO: simplify or deprecate
+ std::vector<llama_pos> pos;
+ std::vector<int32_t> n_seq_id;
+ std::vector<llama_seq_id *> seq_id_arr;
+ std::vector<std::vector<llama_seq_id>> seq_id;
+
+ // reserve output buffer
+ if (llama_output_reserve(lctx, n_tokens) < n_tokens) {
+ LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
+ return -2;
+ };
+
+ for (uint32_t i = 0; i < n_tokens; ++i) {
+ lctx.output_ids[i] = i;
+ }
+
+ lctx.inp_embd_enc = NULL;
+ lctx.n_outputs = n_tokens;
+
+ const int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
+ GGML_ASSERT(n_threads > 0);
+
+ // helpers for smoother batch API transition
+ // after deprecating the llama_eval calls, these will be removed
+ if (batch.pos == nullptr) {
+ pos.resize(n_tokens);
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
+ }
+
+ batch.pos = pos.data();
+ }
+
+ if (batch.seq_id == nullptr) {
+ n_seq_id.resize(n_tokens);
+ seq_id.resize(n_tokens);
+ seq_id_arr.resize(n_tokens);
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ n_seq_id[i] = 1;
+ seq_id[i].resize(1);
+ seq_id[i][0] = batch.all_seq_id;
+ seq_id_arr[i] = seq_id[i].data();
+ }
+
+ batch.n_seq_id = n_seq_id.data();
+ batch.seq_id = seq_id_arr.data();
+ }
+
+ ggml_backend_sched_reset(lctx.sched);
+ ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
+
+ ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
+
+ // the output embeddings after the final encoder normalization
+ struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 1];
+
+ GGML_ASSERT(strcmp(embd->name, "result_norm") == 0);
+
+ ggml_backend_sched_alloc_graph(lctx.sched, gf);
+
+ llama_set_inputs(lctx, batch);
+
+ llama_graph_compute(lctx, gf, n_threads);
+
+ // extract embeddings
+ if (embd) {
+ ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
+ GGML_ASSERT(backend_embd != nullptr);
+
+ // extract token embeddings
+ GGML_ASSERT(lctx.embd != nullptr);
+
+ lctx.embd_enc.resize(n_tokens*n_embd);
+ float * embd_out = lctx.embd_enc.data();
+
+ ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
+
+ // remember the sequence ids used during the encoding - needed for cross attention later
+ lctx.seq_ids_enc.resize(n_tokens);
+ for (uint32_t i = 0; i < n_tokens; i++) {
+ for (int s = 0; s < batch.n_seq_id[i]; s++) {
+ llama_seq_id seq_id = batch.seq_id[i][s];
+ lctx.seq_ids_enc[i].insert(seq_id);
+ }
+ }
+ }
+
+ // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
+ // overlap with device computation.
+ ggml_backend_sched_reset(lctx.sched);
+
+ return 0;
+}
+
+// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
+static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
+ auto & kv_self = lctx.kv_self;
+
+ const auto & hparams = lctx.model.hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
+ const uint32_t n_used = kv_self.used;
+
+ assert(n_used <= n_kv);
+
+ //const int64_t t_start = ggml_time_us();
+
+ // number of cells moved
+ uint32_t n_moves = 0;
+
+ // each move requires 6*n_layer tensors (see build_defrag)
+ // - source view, destination view, copy operation
+ // - x2 for keys and values
+ //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
+ // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
+ const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
+
+ // determine which KV cells to move where
+ //
+ // cell i moves to ids[i]
+ //
+ // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
+ //
+ std::vector<uint32_t> ids(n_kv, n_kv);
+
+ for (uint32_t i0 = 0; i0 < n_used; ++i0) {
+ const auto & cell0 = kv_self.cells[i0];
+
+ if (!cell0.is_empty()) {
+ ids[i0] = i0;
+
+ continue;
+ }
+
+ // found a hole - fill it with data from the end of the cache
+
+ uint32_t nh = 1;
+
+ // determine the size of the hole
+ while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
+ nh++;
+ }
+
+ uint32_t nf = 0;
+ uint32_t is = n_kv - 1;
+
+ // starting from the end, find nh non-empty cells
+ for (; is > i0; --is) {
+ const auto & cell1 = kv_self.cells[is];
+
+ if (cell1.is_empty() || ids[is] != n_kv) {
+ continue;
+ }
+
+ // non-empty cell which is not yet moved
+ nf++;
+
+ if (nf == nh) {
+ break;
+ }
+ }
+
+ // this can only happen if `n_used` is not accurate, which would be a bug
+ GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
+
+ nf = 0;
+
+ uint32_t i1 = is;
+
+ // are we moving a continuous block of memory?
+ bool cont = false;
+
+ // should we stop searching for the next move?
+ bool stop = false;
+
+ // go back and move the nf cells to the hole
+ for (; i1 < n_kv; ++i1) {
+ auto & cell1 = kv_self.cells[i1];
+
+ if (cell1.is_empty() || ids[i1] != n_kv) {
+ if (n_moves == max_moves) {
+ stop = true;
+ break;
+ }
+
+ cont = false;
+ continue;
+ }
+
+ // this cell goes to (i0 + nf)
+ ids[i1] = i0 + nf;
+
+ // move the cell meta data
+ kv_self.cells[i0 + nf] = cell1;
+
+ // clear the old cell and move the head there
+ cell1 = llama_kv_cell();
+ kv_self.head = n_used;
+
+ if (!cont) {
+ n_moves++;
+ cont = true;
+ }
+
+ nf++;
+
+ if (nf == nh) {
+ break;
+ }
+ }
+
+ if (stop || n_moves == max_moves) {
+ break;
+ }
+
+ //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
+
+ i0 += nh - 1;
+ }
+
+ if (n_moves == 0) {
+ return;
+ }
+
+ //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
+
+ //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
+
+#if 0
+ // CPU defrag
+ //
+ // TODO: optimizations are possible:
+ // - multiple threads
+ // - avoid copying to the host memory when already there
+ //
+ // likely not worth the effort, as we have ggml_graph based defrag
+ //
+
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
+
+ const uint32_t kv_size = kv_self.size;
+
+ std::vector<uint8_t> buf_k;
+ std::vector<uint8_t> buf_v;
+
+ for (uint32_t il = 0; il < n_layer; ++il) {
+ const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+ const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
+
+ const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+ const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
+
+ buf_k.resize(k_size);
+ buf_v.resize(v_size);
+
+ ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
+ ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
+
+ // batch move [i, i+nm) to [id, id+nm)
+ // note: cells can move only to a lower index
+ for (uint32_t i = 0; i < n_kv; ++i) {
+ const uint32_t id = ids[i];
+
+ if (i == id || id == n_kv) {
+ continue;
+ }
+
+ uint32_t nm = 1;
+
+ while (i + nm < n_kv && ids[i + nm] == id + nm) {
+ nm++;
+ }
+
+ // move keys
+ {
+ const int64_t os = i*k_size_row;
+ const int64_t od = id*k_size_row;
+
+ memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
+ }
+
+ // move values (note: they are transposed)
+ {
+ const int64_t os = i;
+ const int64_t od = id;
+
+ for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
+ memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
+ }
+ }
+
+ i += nm - 1;
+ }
+
+ ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
+ ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
+ }
+#else
+ // ggml_graph defrag
+
+ ggml_backend_sched_reset(lctx.sched);
+
+ ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
+
+ llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
+#endif
+
+ //const int64_t t_end = ggml_time_us();
+
+ //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
+}
+
+static void llama_kv_cache_update_internal(struct llama_context & lctx) {
+ bool need_reserve = false;
+
+ // apply K-shift if needed
+ if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
+ if (lctx.model.arch == LLM_ARCH_DEEPSEEK2) { // not supported due to MLA
+ GGML_ASSERT(false && "Deepseek2 does not support K-shift");
+ }
+
+ {
+ ggml_backend_sched_reset(lctx.sched);
+
+ ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
+
+ ggml_backend_sched_alloc_graph(lctx.sched, gf);
+
+ llama_set_k_shift(lctx);
+
+ llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
+
+ need_reserve = true;
+ }
+
+ {
+ auto & kv_self = lctx.kv_self;
+
+ kv_self.has_shift = false;
+
+ for (uint32_t i = 0; i < kv_self.size; ++i) {
+ kv_self.cells[i].delta = 0;
+ }
+ }
+ }
+
+ if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
+ {
+ ggml_backend_sched_reset(lctx.sched);
+
+ ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
+
+ ggml_backend_sched_alloc_graph(lctx.sched, gf);
+
+ llama_set_s_copy(lctx);
+
+ llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
+
+ need_reserve = true;
+ }
+
+ {
+ auto & kv_self = lctx.kv_self;
+
+ kv_self.do_copy = false;
+
+ for (uint32_t i = 0; i < kv_self.size; ++i) {
+ kv_self.cells[i].src = i;
+ }
+ }
+ }
+
+ // defragment the KV cache if needed
+ if (lctx.kv_self.do_defrag) {
+ llama_kv_cache_defrag_internal(lctx);
+
+ need_reserve = true;
+
+ lctx.kv_self.do_defrag = false;
+ }
+
+ // reserve a worst case graph again
+ if (need_reserve) {
+ // TODO: extract to a function
+ // build worst-case graph
+ int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
+ int n_past = lctx.cparams.n_ctx - n_tokens;
+ llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
+ ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
+
+ // initialize scheduler with the worst-case graph
+ ggml_backend_sched_reset(lctx.sched);
+ if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
+ LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
+ }
+ }
+}
+
+//
+// quantization
+//
+
+struct quantize_state_internal {
+ const llama_model & model;
+ const llama_model_quantize_params * params;
+
+ int n_attention_wv = 0;
+ int n_ffn_down = 0;
+ int n_ffn_gate = 0;
+ int n_ffn_up = 0;
+ int i_attention_wv = 0;
+ int i_ffn_down = 0;
+ int i_ffn_gate = 0;
+ int i_ffn_up = 0;
+
+ int n_k_quantized = 0;
+ int n_fallback = 0;
+
+ bool has_imatrix = false;
+
+ // used to figure out if a model shares tok_embd with the output weight
+ bool has_output = false;
+
+ quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
+ : model(model)
+ , params(params)
+ {}
+};
+
+static void llama_tensor_dequantize_internal(
+ struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
+ const size_t nelements, const int nthread
+) {
+ if (output.size() < nelements) {
+ output.resize(nelements);
+ }
+ float * f32_output = (float *) output.data();
+
+ ggml_type_traits_t qtype;
+ if (ggml_is_quantized(tensor->type)) {
+ qtype = ggml_internal_get_type_traits(tensor->type);
+ if (qtype.to_float == NULL) {
+ throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
+ }
+ } else if (tensor->type != GGML_TYPE_F16 &&
+ tensor->type != GGML_TYPE_BF16) {
+ throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
+ }
+
+ if (nthread < 2) {
+ if (tensor->type == GGML_TYPE_F16) {
+ ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
+ } else if (tensor->type == GGML_TYPE_BF16) {
+ ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
+ } else if (ggml_is_quantized(tensor->type)) {
+ qtype.to_float(tensor->data, f32_output, nelements);
+ } else {
+ GGML_ASSERT(false); // unreachable
+ }
+ return;
+ }
+
+ size_t block_size;
+ if (tensor->type == GGML_TYPE_F16 ||
+ tensor->type == GGML_TYPE_BF16) {
+ block_size = 1;
+ } else {
+ block_size = (size_t)ggml_blck_size(tensor->type);
+ }
+
+ size_t block_size_bytes = ggml_type_size(tensor->type);
+
+ GGML_ASSERT(nelements % block_size == 0);
+ size_t nblocks = nelements / block_size;
+ size_t blocks_per_thread = nblocks / nthread;
+ size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
+
+ size_t in_buff_offs = 0;
+ size_t out_buff_offs = 0;
+
+ for (int tnum = 0; tnum < nthread; tnum++) {
+ size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
+ size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
+ size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
+
+ auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
+ if (typ == GGML_TYPE_F16) {
+ ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
+ } else if (typ == GGML_TYPE_BF16) {
+ ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
+ } else {
+ qtype.to_float(inbuf, outbuf, nels);
+ }
+ };
+ workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
+ in_buff_offs += thr_block_bytes;
+ out_buff_offs += thr_elems;
+ }
+ for (auto & w : workers) { w.join(); }
+ workers.clear();
+}
+
+static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
+ const std::string name = ggml_get_name(tensor);
+
+ // TODO: avoid hardcoded tensor names - use the TN_* constants
+ const llm_arch arch = qs.model.arch;
+ const auto tn = LLM_TN(arch);
+
+ auto use_more_bits = [](int i_layer, int n_layers) -> bool {
+ return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
+ };
+ const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
+ auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
+ if (n_expert > 1) {
+ // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
+ // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
+ // for getting the current layer as I initially thought, and we need to resort to parsing the
+ // tensor name.
+ if (sscanf(name, "blk.%d.", &i_layer) != 1) {
+ throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
+ }
+ if (i_layer < 0 || i_layer >= n_layer) {
+ throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
+ }
+ }
+ return std::make_pair(i_layer, n_layer);
+ };
+
+ // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
+ // with the quantization of the output tensor
+ if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
+ if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
+ new_type = qs.params->output_tensor_type;
+ } else {
+ int nx = tensor->ne[0];
+ if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
+ new_type = GGML_TYPE_Q8_0;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ else if (new_type != GGML_TYPE_Q8_0) {
+ new_type = GGML_TYPE_Q6_K;
+ }
+ }
+ } else if (name == "token_embd.weight") {
+ if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
+ new_type = qs.params->token_embedding_type;
+ } else {
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+ new_type = GGML_TYPE_Q2_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
+ new_type = GGML_TYPE_IQ3_S;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+ new_type = GGML_TYPE_IQ3_S;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_BN || ftype == LLAMA_FTYPE_MOSTLY_IQ2_BN) {
+ new_type = GGML_TYPE_IQ4_NL;
+ }
+ else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
+ new_type == GGML_TYPE_Q4_0_8_8) {
+ new_type = GGML_TYPE_Q4_0;
+ }
+ }
+ } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+ if (name.find("attn_v.weight") != std::string::npos) {
+ if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
+ else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
+ ++qs.i_attention_wv;
+ }
+ else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (name.find("ffn_down") != std::string::npos) {
+ if (qs.i_ffn_down < qs.n_ffn_down/8) {
+ new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
+ }
+ ++qs.i_ffn_down;
+ }
+ else if (name.find("attn_output.weight") != std::string::npos) {
+ if (qs.model.hparams.n_expert == 8) {
+ new_type = GGML_TYPE_Q5_K;
+ } else {
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
+ }
+ }
+ } else if (name.find("attn_v.weight") != std::string::npos) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
+ new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+ new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
+ }
+ else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
+ new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
+ else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
+ use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
+ if (qs.model.type == MODEL_70B) {
+ // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
+ // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
+ // nearly negligible increase in model size by quantizing this tensor with more bits:
+ if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
+ }
+ if (qs.model.hparams.n_expert == 8) {
+ // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
+ // TODO: explore better strategies
+ new_type = GGML_TYPE_Q8_0;
+ }
+ ++qs.i_attention_wv;
+ } else if (name.find("attn_k.weight") != std::string::npos) {
+ if (qs.model.hparams.n_expert == 8) {
+ // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
+ // TODO: explore better strategies
+ new_type = GGML_TYPE_Q8_0;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
+ new_type = GGML_TYPE_IQ3_XXS;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+ new_type = GGML_TYPE_IQ2_S;
+ }
+ } else if (name.find("attn_q.weight") != std::string::npos) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
+ new_type = GGML_TYPE_IQ3_XXS;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
+ new_type = GGML_TYPE_IQ2_S;
+ }
+ } else if (name.find("ffn_down") != std::string::npos) {
+ auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
+ int i_layer = info.first, n_layer = info.second;
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
+ if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
+ new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
+ new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
+ : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
+ : GGML_TYPE_Q3_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
+ (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
+ new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
+ if (arch == LLM_ARCH_FALCON) {
+ new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
+ use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
+ } else {
+ if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
+ }
+ }
+ else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
+ && qs.has_imatrix && i_layer < n_layer/8) {
+ // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
+ // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
+ // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
+ new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
+ }
+ ++qs.i_ffn_down;
+ } else if (name.find("attn_output.weight") != std::string::npos) {
+ if (arch != LLM_ARCH_FALCON) {
+ if (qs.model.hparams.n_expert == 8) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
+ ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
+ ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
+ new_type = GGML_TYPE_Q5_K;
+ }
+ } else {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
+ }
+ } else {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
+ }
+ }
+ else if (name.find("attn_qkv.weight") != std::string::npos) {
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
+ new_type = GGML_TYPE_Q4_K;
+ }
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
+ }
+ else if (name.find("ffn_gate") != std::string::npos) {
+ auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
+ int i_layer = info.first, n_layer = info.second;
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
+ new_type = GGML_TYPE_IQ3_XXS;
+ }
+ ++qs.i_ffn_gate;
+ }
+ else if (name.find("ffn_up") != std::string::npos) {
+ auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
+ int i_layer = info.first, n_layer = info.second;
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
+ new_type = GGML_TYPE_IQ3_XXS;
+ }
+ ++qs.i_ffn_up;
+ }
+
+ // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+ //}
+ // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
+ //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
+ // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
+ //}
+ // This can be used to reduce the size of the Q5_K_S model.
+ // The associated PPL increase is fully in line with the size reduction
+ //else {
+ // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
+ //}
+ bool convert_incompatible_tensor = false;
+ if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
+ new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
+ new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
+ new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
+ new_type == GGML_TYPE_IQ1_M) {
+ int nx = tensor->ne[0];
+ int ny = tensor->ne[1];
+ if (nx % QK_K != 0) {
+ LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
+ convert_incompatible_tensor = true;
+ } else {
+ ++qs.n_k_quantized;
+ }
+ }
+ if (new_type == GGML_TYPE_IQ1_BN || new_type == GGML_TYPE_IQ2_BN) {
+ int nx = tensor->ne[0];
+ if (nx % QK_IQ1BN != 0) {
+ convert_incompatible_tensor = true;
+ }
+ }
+ if (convert_incompatible_tensor) {
+ switch (new_type) {
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ3_S:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ1_M:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
+ case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
+ case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
+ case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
+ default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
+ }
+ LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
+ ++qs.n_fallback;
+ }
+
+ return new_type;
+}
+
+static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
+ if (nthread < 2) {
+ // single-thread
+ size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
+ if (!ggml_validate_row_data(new_type, new_data, new_size)) {
+ throw std::runtime_error("quantized data validation failed");
+ }
+ return new_size;
+ }
+
+ std::mutex mutex;
+ int64_t counter = 0;
+ size_t new_size = 0;
+ bool valid = true;
+ auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
+ nrows, n_per_row, imatrix]() {
+ const int64_t nrows_per_chunk = chunk_size / n_per_row;
+ size_t local_size = 0;
+ while (true) {
+ std::unique_lock<std::mutex> lock(mutex);
+ int64_t first_row = counter; counter += nrows_per_chunk;
+ if (first_row >= nrows) {
+ if (local_size > 0) {
+ new_size += local_size;
+ }
+ break;
+ }
+ lock.unlock();
+ const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
+ size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
+ local_size += this_size;
+
+ // validate the quantized data
+ const size_t row_size = ggml_row_size(new_type, n_per_row);
+ void * this_data = (char *) new_data + first_row * row_size;
+ if (!ggml_validate_row_data(new_type, this_data, this_size)) {
+ std::unique_lock<std::mutex> lock(mutex);
+ valid = false;
+ break;
+ }
+ }
+ };
+ for (int it = 0; it < nthread - 1; ++it) {
+ workers.emplace_back(compute);
+ }
+ compute();
+ for (auto & w : workers) { w.join(); }
+ workers.clear();
+ if (!valid) {
+ throw std::runtime_error("quantized data validation failed");
+ }
+ return new_size;
+}
+
+static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
+ ggml_type default_type;
+ llama_ftype ftype = params->ftype;
+
+ switch (params->ftype) {
+ case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
+ case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
+ case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
+ case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
+ case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
+ case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
+ case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
+ case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
+
+ // K-quants
+ case LLAMA_FTYPE_MOSTLY_Q2_K_S:
+ case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
+ case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
+ case LLAMA_FTYPE_MOSTLY_Q3_K_S:
+ case LLAMA_FTYPE_MOSTLY_Q3_K_M:
+ case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
+ case LLAMA_FTYPE_MOSTLY_Q4_K_S:
+ case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
+ case LLAMA_FTYPE_MOSTLY_Q5_K_S:
+ case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
+ case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
+ case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
+ case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
+ case LLAMA_FTYPE_MOSTLY_IQ1_BN: default_type = GGML_TYPE_IQ1_BN; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_BN: default_type = GGML_TYPE_IQ2_BN; break;
+ case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
+ case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
+ case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
+ case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
+ case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
+ case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;
+
+ default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
+ }
+
+ int nthread = params->nthread;
+
+ if (nthread <= 0) {
+ nthread = std::thread::hardware_concurrency();
+ }
+
+ // mmap consistently increases speed Linux, and also increases speed on Windows with
+ // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
+#if defined(__linux__) || defined(_WIN32)
+ constexpr bool use_mmap = true;
+#else
+ constexpr bool use_mmap = false;
+#endif
+
+ llama_model_kv_override * kv_overrides = nullptr;
+ if (params->kv_overrides) {
+ auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
+ kv_overrides = v->data();
+ }
+ llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
+ ml.init_mappings(false); // no prefetching
+
+ llama_model model;
+ llm_load_arch(ml, model);
+ llm_load_hparams(ml, model);
+
+ struct quantize_state_internal qs(model, params);
+
+ if (params->only_copy) {
+ ftype = model.ftype;
+ }
+ const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
+ if (params->imatrix) {
+ imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
+ if (imatrix_data) {
+ LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
+ qs.has_imatrix = true;
+ // check imatrix for nans or infs
+ for (const auto & kv : *imatrix_data) {
+ for (float f : kv.second) {
+ if (!std::isfinite(f)) {
+ throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
+ }
+ }
+ }
+ }
+ }
+
+ const size_t align = GGUF_DEFAULT_ALIGNMENT;
+ struct gguf_context * ctx_out = gguf_init_empty();
+
+ // copy the KV pairs from the input file
+ gguf_set_kv (ctx_out, ml.meta);
+ gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
+ gguf_set_val_u32(ctx_out, "general.file_type", ftype); // TODO: use LLM_KV
+
+ // Remove split metadata
+ gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
+ gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
+ gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
+
+ if (params->kv_overrides) {
+ const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
+ for (auto & o : overrides) {
+ if (o.key[0] == 0) break;
+ if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
+ gguf_set_val_f32(ctx_out, o.key, o.val_f64);
+ } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
+ gguf_set_val_i32(ctx_out, o.key, o.val_i64);
+ } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
+ gguf_set_val_bool(ctx_out, o.key, o.val_bool);
+ } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
+ gguf_set_val_str(ctx_out, o.key, o.val_str);
+ } else {
+ LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
+ }
+ }
+ }
+
+ for (int i = 0; i < ml.n_tensors; ++i) {
+ const struct ggml_tensor * meta = ml.get_tensor_meta(i);
+
+ const std::string name = ggml_get_name(meta);
+
+ // TODO: avoid hardcoded tensor names - use the TN_* constants
+ if (name.find("attn_v.weight") != std::string::npos ||
+ name.find("attn_qkv.weight") != std::string::npos) {
+ ++qs.n_attention_wv;
+ } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
+ qs.has_output = true;
+ }
+ }
+
+ qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
+
+ // sanity checks
+ //
+ // - qs.n_attention_wv == 0 for Mamba models
+ // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
+ // - qs.n_attention_wv == 3 * model.hparams.n_layer for Encoder-Decoder models
+ //
+ GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer || qs.n_attention_wv == 3 * (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
+
+ size_t total_size_org = 0;
+ size_t total_size_new = 0;
+
+ std::vector<std::thread> workers;
+ workers.reserve(nthread);
+
+ int idx = 0;
+
+ std::vector<no_init<uint8_t>> read_data;
+ std::vector<no_init<uint8_t>> work;
+ std::vector<no_init<float>> f32_conv_buf;
+
+ uint16_t n_split = 1;
+ // Assume split index is continuous
+ if (params->keep_split) {
+ for (int i = 0; i < ml.n_tensors; ++i) {
+ n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
+ }
+ }
+ std::vector<gguf_context*> ctx_outs(n_split, NULL);
+ ctx_outs[0] = ctx_out;
+
+ // populate the original tensors so we get an initial meta data
+ for (int i = 0; i < ml.n_tensors; ++i) {
+ auto weight = ml.get_weight(i);
+ uint16_t i_split = params->keep_split ? weight->idx : 0;
+ struct ggml_tensor * tensor = weight->tensor;
+ if (ctx_outs[i_split] == NULL) {
+ ctx_outs[i_split] = gguf_init_empty();
+ }
+ gguf_add_tensor(ctx_outs[i_split], tensor);
+ }
+
+ // Set split info if needed
+ if (n_split > 1) {
+ for (size_t i = 0; i < ctx_outs.size(); ++i) {
+ gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
+ gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
+ gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
+ }
+ }
+
+ int cur_split = -1;
+ std::ofstream fout;
+ auto close_ofstream = [&]() {
+ // Write metadata and close file handler
+ if (fout.is_open()) {
+ fout.seekp(0);
+ std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
+ gguf_get_meta_data(ctx_outs[cur_split], data.data());
+ fout.write((const char *) data.data(), data.size());
+ fout.close();
+ }
+ };
+ auto new_ofstream = [&](int index) {
+ cur_split = index;
+ GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
+ std::string fname = fname_out;
+ if (params->keep_split) {
+ char split_path[PATH_MAX] = {0};
+ llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
+ fname = std::string(split_path);
+ }
+
+ fout = std::ofstream(fname, std::ios::binary);
+ fout.exceptions(std::ofstream::failbit); // fail fast on write errors
+ const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
+ // placeholder for the meta data
+ ::zeros(fout, meta_size);
+ };
+
+ const auto tn = LLM_TN(model.arch);
+ new_ofstream(0);
+ for (int i = 0; i < ml.n_tensors; ++i) {
+ auto weight = ml.get_weight(i);
+ struct ggml_tensor * tensor = weight->tensor;
+ if (weight->idx != cur_split && params->keep_split) {
+ close_ofstream();
+ new_ofstream(weight->idx);
+ }
+
+ const std::string name = ggml_get_name(tensor);
+
+ if (!ml.use_mmap) {
+ if (read_data.size() < ggml_nbytes(tensor)) {
+ read_data.resize(ggml_nbytes(tensor));
+ }
+ tensor->data = read_data.data();
+ }
+ ml.load_data_for(tensor);
+
+ LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
+ ++idx, ml.n_tensors,
+ ggml_get_name(tensor),
+ llama_format_tensor_shape(tensor).c_str(),
+ ggml_type_name(tensor->type));
+
+ // This used to be a regex, but <regex> has an extreme cost to compile times.
+ bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
+
+ // quantize only 2D and 3D tensors (experts)
+ quantize &= (ggml_n_dims(tensor) >= 2);
+
+ // do not quantize norm tensors
+ quantize &= name.find("_norm.weight") == std::string::npos;
+
+ quantize &= params->quantize_output_tensor || name != "output.weight";
+ quantize &= !params->only_copy;
+
+ // do not quantize expert gating tensors
+ // NOTE: can't use LLM_TN here because the layer number is not known
+ quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
+
+ // do not quantize positional embeddings and token types (BERT)
+ quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
+ quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
+
+ // do not quantize Mamba's small yet 2D weights
+ // NOTE: can't use LLM_TN here because the layer number is not known
+ quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
+ quantize &= name.find("ssm_x.weight") == std::string::npos;
+ quantize &= name.find("ssm_dt.weight") == std::string::npos;
+
+ // do not quantize relative position bias (T5)
+ quantize &= name.find("attn_rel_b.weight") == std::string::npos;
+
+ enum ggml_type new_type;
+ void * new_data;
+ size_t new_size;
+
+ if (quantize) {
+ new_type = default_type;
+
+ // get more optimal quantization type based on the tensor shape, layer, etc.
+ if (!params->pure && ggml_is_quantized(default_type)) {
+ new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
+ }
+ if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
+ new_type = params->token_embedding_type;
+ }
+ if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
+ new_type = params->output_tensor_type;
+ }
+
+ // If we've decided to quantize to the same type the tensor is already
+ // in then there's nothing to do.
+ quantize = tensor->type != new_type;
+ }
+
+ if (!quantize) {
+ new_type = tensor->type;
+ new_data = tensor->data;
+ new_size = ggml_nbytes(tensor);
+ LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
+ } else {
+ const int64_t nelements = ggml_nelements(tensor);
+
+ const float * imatrix = nullptr;
+ if (imatrix_data) {
+ auto it = imatrix_data->find(tensor->name);
+ if (it == imatrix_data->end()) {
+ LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
+ } else {
+ if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
+ imatrix = it->second.data();
+ } else {
+ LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
+ int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
+
+ // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
+ // this is a significant error and it may be good idea to abort the process if this happens,
+ // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
+ // tok_embd should be ignored in this case, since it always causes this warning
+ if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
+ throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
+ int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
+ }
+ }
+ }
+ }
+ if ((new_type == GGML_TYPE_IQ2_XXS ||
+ new_type == GGML_TYPE_IQ2_XS ||
+ new_type == GGML_TYPE_IQ2_S ||
+ new_type == GGML_TYPE_IQ1_S ||
+ (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
+ (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
+ LLAMA_LOG_ERROR("\n\n============================================================\n");
+ LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
+ LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
+ LLAMA_LOG_ERROR("============================================================\n\n");
+ throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
+ }
+
+ float * f32_data;
+
+ if (tensor->type == GGML_TYPE_F32) {
+ f32_data = (float *) tensor->data;
+ } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
+ throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
+ } else {
+ llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
+ f32_data = (float *) f32_conv_buf.data();
+ }
+
+ int chunk_size_multiplier = 1;
+ if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
+ if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
+ else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
+ if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
+ else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
+ }
+
+ LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
+ fflush(stdout);
+
+ if (work.size() < (size_t)nelements * 4) {
+ work.resize(nelements * 4); // upper bound on size
+ }
+ new_data = work.data();
+
+ const int64_t n_per_row = tensor->ne[0];
+ const int64_t nrows = tensor->ne[1];
+
+ static const int64_t min_chunk_size = 32 * 512;
+ const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
+ chunk_size_multiplier;
+
+ const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
+ const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
+ const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
+
+ // quantize each expert separately since they have different importance matrices
+ new_size = 0;
+ for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
+ const float * f32_data_03 = f32_data + i03 * nelements_matrix;
+ void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
+ const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
+
+ new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
+ }
+ LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
+ }
+ total_size_org += ggml_nbytes(tensor);
+ total_size_new += new_size;
+
+ // update the gguf meta data as we go
+ gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
+ gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
+
+ // write tensor data + padding
+ fout.write((const char *) new_data, new_size);
+ zeros(fout, GGML_PAD(new_size, align) - new_size);
+ }
+ close_ofstream();
+ for (auto & c:ctx_outs) {
+ gguf_free(c);
+ }
+
+ LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
+ LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
+
+ if (qs.n_fallback > 0) {
+ LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
+ __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
+ }
+}
+
+static void llama_lora_adapter_init_internal(struct llama_model * model, const char * path_lora, struct llama_lora_adapter & adapter) {
+ LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
+
+ ggml_context * ctx = nullptr;
+ struct gguf_init_params meta_gguf_params = {
+ /* .no_alloc = */ true,
+ /* .ctx = */ &ctx,
+ };
+ struct gguf_context * ctx_gguf = gguf_init_from_file(path_lora, meta_gguf_params);
+ if (!ctx_gguf) {
+ throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
+ }
+
+ // check metadata
+ {
+ auto get_kv_str = [&](const std::string & key) -> std::string {
+ int id = gguf_find_key(ctx_gguf, key.c_str());
+ return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
+ };
+ auto get_kv_f32 = [&](const std::string & key) -> float {
+ int id = gguf_find_key(ctx_gguf, key.c_str());
+ return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
+ };
+ LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
+
+ auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
+ if (general_type != "adapter") {
+ gguf_free(ctx_gguf);
+ throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
+ }
+
+ auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
+ auto general_arch = llm_arch_from_string(general_arch_str);
+ if (general_arch != model->arch) {
+ gguf_free(ctx_gguf);
+ throw std::runtime_error("model arch and LoRA arch mismatch");
+ }
+
+ auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
+ if (adapter_type != "lora") {
+ gguf_free(ctx_gguf);
+ throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
+ }
+
+ adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
+ }
+
+ int n_tensors = gguf_get_n_tensors(ctx_gguf);
+
+ // contexts for each buffer type
+ std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
+ auto get_ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
+ auto it = ctx_map.find(buft);
+ if (it == ctx_map.end()) {
+ // add a new context
+ struct ggml_init_params params = {
+ /*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+ ggml_context * buft_ctx = ggml_init(params);
+ ctx_map[buft] = buft_ctx;
+ return buft_ctx;
+ };
+ return it->second;
+ };
+
+ // bundle lora_a and lora_b into pairs
+ std::map<std::string, llama_lora_weight> ab_map;
+ auto str_endswith = [](const std::string & str, const std::string & suffix) {
+ return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
+ };
+ for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
+ std::string name(cur->name);
+ if (str_endswith(name, ".lora_a")) {
+ replace_all(name, ".lora_a", "");
+ if (ab_map.find(name) == ab_map.end()) {
+ ab_map[name] = llama_lora_weight(cur, nullptr);
+ } else {
+ ab_map[name].a = cur;
+ }
+ } else if (str_endswith(name, ".lora_b")) {
+ replace_all(name, ".lora_b", "");
+ if (ab_map.find(name) == ab_map.end()) {
+ ab_map[name] = llama_lora_weight(nullptr, cur);
+ } else {
+ ab_map[name].b = cur;
+ }
+ } else {
+ gguf_free(ctx_gguf);
+ ggml_free(ctx);
+ throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
+ }
+ }
+
+ // add tensors
+ for (auto & it : ab_map) {
+ const std::string & name = it.first;
+ llama_lora_weight & w = it.second;
+
+ if (!w.a || !w.b) {
+ gguf_free(ctx_gguf);
+ ggml_free(ctx);
+ throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
+ }
+
+ // device buft and device ctx
+ auto * model_tensor = llama_get_model_tensor(model, name.c_str());
+ if (!model_tensor) {
+ gguf_free(ctx_gguf);
+ ggml_free(ctx);
+ throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
+ }
+ struct ggml_context * dev_ctx = get_ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
+ // validate tensor shape
+ if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
+ gguf_free(ctx_gguf);
+ ggml_free(ctx);
+ throw std::runtime_error("tensor '" + name + "' has incorrect shape");
+ }
+ if (w.a->ne[1] != w.b->ne[0]) {
+ gguf_free(ctx_gguf);
+ ggml_free(ctx);
+ throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
+ }
+ // save tensor to adapter
+ struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
+ struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
+ ggml_set_name(tensor_a, w.a->name);
+ ggml_set_name(tensor_b, w.b->name);
+ adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
+ }
+
+ // allocate tensors / buffers and zero
+ {
+ adapter.ctxs.reserve(ctx_map.size());
+ adapter.bufs.reserve(ctx_map.size());
+ for (auto it : ctx_map) {
+ ggml_backend_buffer_type_t buft = it.first;
+ ggml_context * ctx_dev = it.second;
+ ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft);
+ if (!buf) {
+ gguf_free(ctx_gguf);
+ ggml_free(ctx);
+ throw std::runtime_error("failed to allocate buffer for lora adapter\n");
+ }
+ LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
+ adapter.ctxs.push_back(ctx_dev);
+ adapter.bufs.push_back(buf);
+ }
+ }
+
+ // set tensor data
+ {
+ llama_file gguf_file(path_lora, "rb");
+ std::vector<uint8_t> read_buf;
+ auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
+ size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, gguf_find_tensor(ctx_gguf, orig->name));
+ size_t size = ggml_nbytes(orig);
+ read_buf.resize(size);
+ gguf_file.seek(offs, SEEK_SET);
+ gguf_file.read_raw(read_buf.data(), size);
+ ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
+ };
+ for (auto & it : adapter.ab_map) {
+ auto orig = ab_map[it.first];
+ auto dev = it.second;
+ set_tensor(orig.a, dev.a);
+ set_tensor(orig.b, dev.b);
+ }
+ }
+
+ LLAMA_LOG_INFO("%s: loaded %ld tensors from lora file\n", __func__, adapter.ab_map.size()*2);
+
+ // free ctx for reading gguf
+ gguf_free(ctx_gguf);
+ ggml_free(ctx);
+}
+
+int32_t llama_lora_adapter_set(
+ struct llama_context * ctx,
+ struct llama_lora_adapter * adapter,
+ float scale) {
+ if (ctx->cparams.flash_attn) {
+ LLAMA_LOG_ERROR("%s: flash_attn is not compatible with LoRA\n", __func__);
+ return -1;
+ }
+ ctx->lora_adapters[adapter] = scale;
+ return 0;
+}
+
+int32_t llama_lora_adapter_remove(
+ struct llama_context * ctx,
+ struct llama_lora_adapter * adapter) {
+ auto pos = ctx->lora_adapters.find(adapter);
+ if (pos != ctx->lora_adapters.end()) {
+ ctx->lora_adapters.erase(pos);
+ return 0;
+ }
+ return -1;
+}
+
+void llama_lora_adapter_clear(struct llama_context * ctx) {
+ ctx->lora_adapters.clear();
+}
+
+void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
+ delete adapter;
+}
+
+//
+// interface implementation
+//
+struct llama_model_params llama_model_default_params() {
+ struct llama_model_params result = {
+ /*.n_gpu_layers =*/ 0,
+ /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
+ /*.main_gpu =*/ 0,
+ /*.tensor_split =*/ nullptr,
+ /*.rpc_servers =*/ nullptr,
+ /*.progress_callback =*/ nullptr,
+ /*.progress_callback_user_data =*/ nullptr,
+ /*.kv_overrides =*/ nullptr,
+ /*.vocab_only =*/ false,
+ /*.use_mmap =*/ true,
+ /*.use_mlock =*/ false,
+ /*.check_tensors =*/ false,
+ };
+
+#ifdef GGML_USE_METAL
+ // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
+ result.n_gpu_layers = 999;
+#endif
+
+ return result;
+}
+
+struct llama_context_params llama_context_default_params() {
+ struct llama_context_params result = {
+ /*.seed =*/ LLAMA_DEFAULT_SEED,
+ /*.n_ctx =*/ 512,
+ /*.n_batch =*/ 2048,
+ /*.n_ubatch =*/ 512,
+ /*.n_seq_max =*/ 1,
+ /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
+ /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
+ /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
+ /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
+ /*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
+ /*.rope_freq_base =*/ 0.0f,
+ /*.rope_freq_scale =*/ 0.0f,
+ /*.yarn_ext_factor =*/ -1.0f,
+ /*.yarn_attn_factor =*/ 1.0f,
+ /*.yarn_beta_fast =*/ 32.0f,
+ /*.yarn_beta_slow =*/ 1.0f,
+ /*.yarn_orig_ctx =*/ 0,
+ /*.defrag_thold =*/ -1.0f,
+ /*.cb_eval =*/ nullptr,
+ /*.cb_eval_user_data =*/ nullptr,
+ /*.type_k =*/ GGML_TYPE_F16,
+ /*.type_v =*/ GGML_TYPE_F16,
+ /*.logits_all =*/ false,
+ /*.embeddings =*/ false,
+ /*.offload_kqv =*/ true,
+ /*.flash_attn =*/ false,
+ /*.abort_callback =*/ nullptr,
+ /*.abort_callback_data =*/ nullptr,
+ };
+
+ return result;
+}
+
+struct llama_model_quantize_params llama_model_quantize_default_params() {
+ struct llama_model_quantize_params result = {
+ /*.nthread =*/ 0,
+ /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
+ /*.output_tensor_type =*/ GGML_TYPE_COUNT,
+ /*.token_embedding_type =*/ GGML_TYPE_COUNT,
+ /*.allow_requantize =*/ false,
+ /*.quantize_output_tensor =*/ true,
+ /*.only_copy =*/ false,
+ /*.pure =*/ false,
+ /*.keep_split =*/ false,
+ /*.imatrix =*/ nullptr,
+ /*.kv_overrides =*/ nullptr,
+ };
+
+ return result;
+}
+
+size_t llama_max_devices(void) {
+#if defined(GGML_USE_RPC)
+ return GGML_RPC_MAX_SERVERS;
+#elif defined(GGML_USE_METAL)
+ return 1;
+#elif defined(GGML_USE_CUDA)
+ return GGML_CUDA_MAX_DEVICES;
+#elif defined(GGML_USE_SYCL)
+ return GGML_SYCL_MAX_DEVICES;
+#elif defined(GGML_USE_VULKAN)
+ return GGML_VK_MAX_DEVICES;
+#elif defined(GGML_USE_CANN)
+ return GGML_CANN_MAX_DEVICES;
+#else
+ return 1;
+#endif
+}
+
+bool llama_supports_mmap(void) {
+ return llama_mmap::SUPPORTED;
+}
+
+bool llama_supports_mlock(void) {
+ return llama_mlock::SUPPORTED;
+}
+
+bool llama_supports_gpu_offload(void) {
+#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
+ defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
+ // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
+ return true;
+#else
+ return false;
+#endif
+}
+
+void llama_backend_init(void) {
+ ggml_time_init();
+
+ // needed to initialize f16 tables
+ {
+ struct ggml_init_params params = { 0, NULL, false };
+ struct ggml_context * ctx = ggml_init(params);
+ ggml_free(ctx);
+ }
+}
+
+void llama_numa_init(enum ggml_numa_strategy numa) {
+ if (numa != GGML_NUMA_STRATEGY_DISABLED) {
+ ggml_numa_init(numa);
+ }
+}
+
+void llama_backend_free(void) {
+ ggml_quantize_free();
+}
+
+int64_t llama_time_us(void) {
+ return ggml_time_us();
+}
+
+struct llama_model * llama_load_model_from_file(
+ const char * path_model,
+ struct llama_model_params params) {
+ ggml_time_init();
+
+ llama_model * model = new llama_model;
+
+ unsigned cur_percentage = 0;
+ if (params.progress_callback == NULL) {
+ params.progress_callback_user_data = &cur_percentage;
+ params.progress_callback = [](float progress, void * ctx) {
+ unsigned * cur_percentage_p = (unsigned *) ctx;
+ unsigned percentage = (unsigned) (100 * progress);
+ while (percentage > *cur_percentage_p) {
+ *cur_percentage_p = percentage;
+ LLAMA_LOG_INFO(".");
+ if (percentage >= 100) {
+ LLAMA_LOG_INFO("\n");
+ }
+ }
+ return true;
+ };
+ }
+ if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
+ // split the servers set them into model->rpc_servers
+ std::string servers(params.rpc_servers);
+ size_t pos = 0;
+ while ((pos = servers.find(",")) != std::string::npos) {
+ std::string server = servers.substr(0, pos);
+ model->rpc_servers.push_back(server);
+ servers.erase(0, pos + 1);
+ }
+ model->rpc_servers.push_back(servers);
+ }
+ int status = llama_model_load(path_model, *model, params);
+ GGML_ASSERT(status <= 0);
+ if (status < 0) {
+ if (status == -1) {
+ LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
+ } else if (status == -2) {
+ LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
+ }
+ delete model;
+ return nullptr;
+ }
+
+ return model;
+}
+
+void llama_free_model(struct llama_model * model) {
+ delete model;
+}
+
+struct llama_context * llama_new_context_with_model(
+ struct llama_model * model,
+ struct llama_context_params params) {
+
+ if (!model) {
+ LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
+ return nullptr;
+ }
+
+ if (params.n_batch == 0 && params.n_ubatch == 0) {
+ LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
+ return nullptr;
+ }
+
+ if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
+ LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
+ return nullptr;
+ }
+
+ if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
+ LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
+ params.flash_attn = false;
+ }
+
+ if (params.flash_attn && model->hparams.attn_soft_cap) {
+ LLAMA_LOG_WARN("%s: flash_attn is not compatible with attn_soft_cap - forcing off\n", __func__);
+ params.flash_attn = false;
+ }
+
+
+ if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
+ LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
+ params.flash_attn = false;
+ }
+
+ if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
+ LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
+ return nullptr;
+ }
+
+ llama_context * ctx = new llama_context(*model);
+
+ const auto & hparams = model->hparams;
+ auto & cparams = ctx->cparams;
+
+ cparams.n_seq_max = std::max(1u, params.n_seq_max);
+ cparams.n_threads = params.n_threads;
+ cparams.n_threads_batch = params.n_threads_batch;
+ cparams.yarn_ext_factor = params.yarn_ext_factor;
+ cparams.yarn_attn_factor = params.yarn_attn_factor;
+ cparams.yarn_beta_fast = params.yarn_beta_fast;
+ cparams.yarn_beta_slow = params.yarn_beta_slow;
+ cparams.defrag_thold = params.defrag_thold;
+ cparams.embeddings = params.embeddings;
+ cparams.offload_kqv = params.offload_kqv;
+ cparams.flash_attn = params.flash_attn;
+ cparams.pooling_type = params.pooling_type;
+
+ cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
+ cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
+ cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
+
+ // this is necessary due to kv_self.n being padded later during inference
+ cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
+
+ // with causal attention, the batch size is limited by the context size
+ cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
+
+ // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
+ // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
+ // ref: https://github.com/ggerganov/llama.cpp/pull/5021
+ if (cparams.n_batch < GGML_KQ_MASK_PAD) {
+ LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
+ cparams.n_batch = GGML_KQ_MASK_PAD;
+ }
+
+ cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
+
+ cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
+ hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
+ hparams.n_ctx_train;
+
+ cparams.cb_eval = params.cb_eval;
+ cparams.cb_eval_user_data = params.cb_eval_user_data;
+
+ auto rope_scaling_type = params.rope_scaling_type;
+ if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
+ rope_scaling_type = hparams.rope_scaling_type_train;
+ }
+
+ if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
+ cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
+ }
+
+ if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
+ cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
+ }
+
+ cparams.yarn_attn_factor *= hparams.rope_attn_factor;
+
+ if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
+ if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
+ cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
+ } else {
+ cparams.pooling_type = hparams.pooling_type;
+ }
+ }
+
+ if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
+ cparams.causal_attn = hparams.causal_attn;
+ } else {
+ cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
+ }
+
+ if (params.seed == LLAMA_DEFAULT_SEED) {
+ params.seed = time(NULL);
+ }
+
+ LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
+ LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
+ LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
+ LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
+ LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
+ LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
+
+ ctx->abort_callback = params.abort_callback;
+ ctx->abort_callback_data = params.abort_callback_data;
+
+ ctx->sampling.rng = std::mt19937(params.seed);
+ ctx->logits_all = params.logits_all;
+
+ uint32_t kv_size = cparams.n_ctx;
+ ggml_type type_k = params.type_k;
+ ggml_type type_v = params.type_v;
+
+ // Mamba only needs a constant number of KV cache cells per sequence
+ if (model->arch == LLM_ARCH_MAMBA) {
+ // Mamba needs at least as many KV cells as there are sequences kept at any time
+ kv_size = std::max((uint32_t) 1, params.n_seq_max);
+ // it's probably best to keep as much precision as possible for the states
+ type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
+ type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
+ }
+
+ GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
+ GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
+
+ if (!hparams.vocab_only) {
+ // initialize backends
+#if defined(GGML_USE_METAL)
+ if (model->n_gpu_layers > 0) {
+ ctx->backend_metal = ggml_backend_metal_init();
+ if (ctx->backend_metal == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(ctx->backend_metal);
+ }
+#elif defined(GGML_USE_CUDA)
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+ ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ } else {
+ // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+ for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
+ ggml_backend_t backend = ggml_backend_cuda_init(device);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ }
+#elif defined(GGML_USE_VULKAN)
+ if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
+ ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ } else {
+ for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
+ ggml_backend_t backend = ggml_backend_vk_init(device);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ }
+#elif defined(GGML_USE_SYCL)
+ // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ } else {
+ // LLAMA_SPLIT_LAYER requires a backend for each GPU
+ for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
+ ggml_backend_t backend = ggml_backend_sycl_init(i);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d for No.%d backend\n", __func__, i, i);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ }
+#elif defined(GGML_USE_KOMPUTE)
+ if (model->n_gpu_layers > 0) {
+ auto * backend = ggml_backend_kompute_init(model->main_gpu);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+#elif defined(GGML_USE_CANN)
+ // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+ // TODO: ggml_backend_cann is not support split tensor now, just leave code here.
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ ggml_backend_t backend = ggml_backend_cann_init(model->main_gpu);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, model->main_gpu);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ } else {
+ // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+ // TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
+ for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
+ ggml_backend_t backend = ggml_backend_cann_init(device);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ }
+#endif
+
+#ifdef GGML_USE_BLAS
+ ctx->backend_blas = ggml_backend_blas_init();
+ if (ctx->backend_blas == nullptr) {
+ LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
+ } else {
+ ctx->backends.push_back(ctx->backend_blas);
+ }
+#endif
+
+#if defined(GGML_USE_RPC)
+ if (model->n_gpu_layers > 0) {
+ for (const auto & endpoint : model->rpc_servers) {
+ ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ }
+#endif
+ ctx->backend_cpu = ggml_backend_cpu_init();
+ if (ctx->backend_cpu == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(ctx->backend_cpu);
+
+ if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
+ LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+
+ {
+ size_t memory_size_k = 0;
+ size_t memory_size_v = 0;
+
+ for (auto & k : ctx->kv_self.k_l) {
+ memory_size_k += ggml_nbytes(k);
+ }
+
+ for (auto & v : ctx->kv_self.v_l) {
+ memory_size_v += ggml_nbytes(v);
+ }
+
+ LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
+ (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
+ ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
+ ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
+ }
+
+ // graph outputs buffer
+ {
+ // resized during inference when a batch uses more outputs
+ if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
+ LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+
+ LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
+ ggml_backend_buffer_name(ctx->buf_output),
+ ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
+ }
+
+ // scheduler and compute buffers
+ {
+ // buffer types used for the compute buffer of each backend
+ std::vector<ggml_backend_buffer_type_t> backend_buft;
+ for (auto * backend : ctx->backends) {
+ if (ggml_backend_is_cpu(backend)) {
+ // use host buffers for the CPU backend compute buffer
+ backend_buft.push_back(llama_default_buffer_type_cpu(true));
+ } else {
+ backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
+ }
+ }
+
+ // buffer used to store the computation graph and the tensor meta data
+ ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
+
+ // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
+ bool pipeline_parallel =
+ llama_get_device_count(*model) > 1 &&
+ model->n_gpu_layers > (int)model->hparams.n_layer &&
+ model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
+ params.offload_kqv;
+#ifndef GGML_USE_CUDA
+ // pipeline parallelism requires support for async compute and events
+ // currently this is only implemented in the CUDA backend
+ pipeline_parallel = false;
+#endif
+ ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
+
+ if (pipeline_parallel) {
+ LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
+ }
+
+ // build worst-case graph
+ int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
+ int n_past = cparams.n_ctx - n_tokens;
+ llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
+ ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
+
+ // initialize scheduler with the worst-case graph
+ if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
+ LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
+ llama_free(ctx);
+ return nullptr;
+ }
+
+ for (size_t i = 0; i < ctx->backends.size(); i++) {
+ ggml_backend_t backend = ctx->backends[i];
+ ggml_backend_buffer_type_t buft = backend_buft[i];
+ size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
+ if (size > 1) {
+ LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
+ ggml_backend_buft_name(buft),
+ size / 1024.0 / 1024.0);
+ }
+ }
+
+ // note: the number of splits during measure is higher than during inference due to the kv shift
+ int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
+ LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
+ LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
+ }
+ }
+
+ return ctx;
+}
+
+void llama_free(struct llama_context * ctx) {
+ delete ctx;
+}
+
+const struct llama_model * llama_get_model(const struct llama_context * ctx) {
+ return &ctx->model;
+}
+
+const struct llama_vocab * llama_get_vocab(const struct llama_context * ctx) {
+ return &ctx->model.vocab;
+}
+
+uint32_t llama_n_ctx(const struct llama_context * ctx) {
+ return ctx->cparams.n_ctx;
+}
+
+uint32_t llama_n_batch(const struct llama_context * ctx) {
+ return ctx->cparams.n_batch;
+}
+
+uint32_t llama_n_ubatch(const struct llama_context * ctx) {
+ return ctx->cparams.n_ubatch;
+}
+
+uint32_t llama_n_seq_max(const struct llama_context * ctx) {
+ return ctx->kv_self.size;
+}
+
+enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
+ return model->vocab.type;
+}
+
+enum llama_rope_type llama_rope_type(const struct llama_model * model) {
+ switch (model->arch) {
+ // these models do not use RoPE
+ case LLM_ARCH_GPT2:
+ case LLM_ARCH_GPTJ:
+ case LLM_ARCH_MPT:
+ case LLM_ARCH_REFACT:
+ case LLM_ARCH_BLOOM:
+ case LLM_ARCH_MAMBA:
+ case LLM_ARCH_JINA_BERT_V2:
+ case LLM_ARCH_T5:
+ case LLM_ARCH_JAIS:
+ return LLAMA_ROPE_TYPE_NONE;
+
+ // use what we call a normal RoPE, operating on pairs of consecutive head values
+ case LLM_ARCH_LLAMA:
+ case LLM_ARCH_BAICHUAN:
+ case LLM_ARCH_STARCODER:
+ case LLM_ARCH_PLAMO:
+ case LLM_ARCH_ORION:
+ case LLM_ARCH_INTERNLM2:
+ case LLM_ARCH_MINICPM:
+ case LLM_ARCH_XVERSE:
+ case LLM_ARCH_COMMAND_R:
+ case LLM_ARCH_OLMO:
+ case LLM_ARCH_ARCTIC:
+ case LLM_ARCH_DEEPSEEK2:
+ case LLM_ARCH_CHATGLM:
+ return LLAMA_ROPE_TYPE_NORM;
+
+ // the pairs of head values are offset by n_rot/2
+ case LLM_ARCH_FALCON:
+ case LLM_ARCH_GROK:
+ case LLM_ARCH_DBRX:
+ case LLM_ARCH_BERT:
+ case LLM_ARCH_NOMIC_BERT:
+ case LLM_ARCH_STABLELM:
+ case LLM_ARCH_BITNET:
+ case LLM_ARCH_QWEN:
+ case LLM_ARCH_QWEN2:
+ case LLM_ARCH_QWEN2MOE:
+ case LLM_ARCH_PHI2:
+ case LLM_ARCH_PHI3:
+ case LLM_ARCH_GEMMA:
+ case LLM_ARCH_GEMMA2:
+ case LLM_ARCH_STARCODER2:
+ case LLM_ARCH_OPENELM:
+ case LLM_ARCH_GPTNEOX:
+ case LLM_ARCH_CODESHELL:
+ return LLAMA_ROPE_TYPE_NEOX;
+
+ // all model arches should be listed explicitly here
+ case LLM_ARCH_UNKNOWN:
+ GGML_ASSERT(false && "unknown architecture");
+ break;
+ }
+
+ return LLAMA_ROPE_TYPE_NONE;
+}
+
+enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
+ return ctx->cparams.pooling_type;
+}
+
+int32_t llama_n_vocab(const struct llama_model * model) {
+ return model->hparams.n_vocab;
+}
+
+int32_t llama_n_ctx_train(const struct llama_model * model) {
+ return model->hparams.n_ctx_train;
+}
+
+int32_t llama_n_embd(const struct llama_model * model) {
+ return model->hparams.n_embd;
+}
+
+int32_t llama_n_layer(const struct llama_model * model) {
+ return model->hparams.n_layer;
+}
+
+float llama_rope_freq_scale_train(const struct llama_model * model) {
+ return model->hparams.rope_freq_scale_train;
+}
+
+int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
+ const auto & it = model->gguf_kv.find(key);
+ if (it == model->gguf_kv.end()) {
+ if (buf_size > 0) {
+ buf[0] = '\0';
+ }
+ return -1;
+ }
+ return snprintf(buf, buf_size, "%s", it->second.c_str());
+}
+
+int32_t llama_model_meta_count(const struct llama_model * model) {
+ return (int)model->gguf_kv.size();
+}
+
+int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
+ if (i < 0 || i >= (int)model->gguf_kv.size()) {
+ if (buf_size > 0) {
+ buf[0] = '\0';
+ }
+ return -1;
+ }
+ auto it = model->gguf_kv.begin();
+ std::advance(it, i);
+ return snprintf(buf, buf_size, "%s", it->first.c_str());
+}
+
+int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
+ if (i < 0 || i >= (int)model->gguf_kv.size()) {
+ if (buf_size > 0) {
+ buf[0] = '\0';
+ }
+ return -1;
+ }
+ auto it = model->gguf_kv.begin();
+ std::advance(it, i);
+ return snprintf(buf, buf_size, "%s", it->second.c_str());
+}
+
+int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
+ return snprintf(buf, buf_size, "%s %s %s",
+ llama_model_arch_name(model->arch),
+ llama_model_type_name(model->type),
+ llama_model_ftype_name(model->ftype).c_str());
+}
+
+uint64_t llama_model_size(const struct llama_model * model) {
+ uint64_t size = 0;
+ for (const auto & it : model->tensors_by_name) {
+ size += ggml_nbytes(it.second);
+ }
+ return size;
+}
+
+uint64_t llama_model_n_params(const struct llama_model * model) {
+ uint64_t nparams = 0;
+ for (const auto & it : model->tensors_by_name) {
+ nparams += ggml_nelements(it.second);
+ }
+ return nparams;
+}
+
+struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
+ auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
+ [name](const std::pair<std::string, struct ggml_tensor *> & it) {
+ return it.first == name;
+ });
+ if (it == model->tensors_by_name.end()) {
+ return nullptr;
+ }
+ return it->second;
+}
+
+bool llama_model_has_encoder(const struct llama_model * model) {
+ switch (model->arch) {
+ case LLM_ARCH_T5: return true;
+ default: return false;
+ }
+}
+
+llama_token llama_model_decoder_start_token(const struct llama_model * model) {
+ return model->hparams.dec_start_token_id;
+}
+
+uint32_t llama_model_quantize(
+ const char * fname_inp,
+ const char * fname_out,
+ const llama_model_quantize_params * params) {
+ try {
+ llama_model_quantize_internal(fname_inp, fname_out, params);
+ return 0;
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
+ return 1;
+ }
+}
+
+struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
+ try {
+ struct llama_lora_adapter * adapter = new llama_lora_adapter(model);
+ llama_lora_adapter_init_internal(model, path_lora, *adapter);
+ return adapter;
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
+ return nullptr;
+ }
+}
+
+static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
+ GGML_ASSERT(cvec.tensors.empty());
+ GGML_ASSERT(cvec.ctxs.empty());
+ GGML_ASSERT(cvec.bufs.empty());
+
+ // count layer buffer types
+ std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
+ for (int64_t i = 0; i < model.hparams.n_layer; i++) {
+ buft_layer_count[model.buft_layer[i].buft]++;
+ }
+
+ // allocate contexts
+ std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
+ for (auto & it : buft_layer_count) {
+ int n_layers = it.second;
+ struct ggml_init_params params = {
+ /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+ ggml_context * ctx = ggml_init(params);
+ if (!ctx) {
+ LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
+ return 1;
+ }
+ ctx_map[it.first] = ctx;
+ }
+
+ // make tensors
+ cvec.tensors.reserve(model.hparams.n_layer);
+ cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
+ for (size_t il = 1; il < model.hparams.n_layer; il++) {
+ struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
+ ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
+ cvec.tensors.push_back(tensor);
+ }
+
+ // allocate tensors / buffers and zero
+ cvec.ctxs.reserve(ctx_map.size());
+ cvec.bufs.reserve(ctx_map.size());
+ for (auto it : ctx_map) {
+ ggml_backend_buffer_type_t buft = it.first;
+ ggml_context * ctx = it.second;
+ ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
+ if (!buf) {
+ LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
+ return false;
+ }
+ ggml_backend_buffer_clear(buf, 0);
+ cvec.ctxs.push_back(ctx);
+ cvec.bufs.push_back(buf);
+ }
+
+ return true;
+}
+
+int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
+ const llama_model & model = lctx->model;
+ llama_control_vector & cvec = lctx->cvec;
+
+ if (data == nullptr) {
+ // disable the current control vector (but leave allocated for later)
+ cvec.layer_start = -1;
+ cvec.layer_end = -1;
+ return 0;
+ }
+
+ if (n_embd != (int) model.hparams.n_embd) {
+ LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
+ return 1;
+ }
+
+ if (cvec.tensors.empty()) {
+ if (!llama_control_vector_init(cvec, model)) {
+ return 1;
+ }
+ }
+
+ cvec.layer_start = il_start;
+ cvec.layer_end = il_end;
+
+ for (size_t il = 1; il < model.hparams.n_layer; il++) {
+ assert(cvec.tensors[il] != nullptr);
+
+ const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
+ if (off + n_embd <= len) {
+ ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
+ }
+ }
+
+ return 0;
+}
+
+struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
+ struct llama_kv_cache_view result = {
+ /*.n_cells = */ 0,
+ /*.n_seq_max = */ n_seq_max,
+ /*.token_count = */ 0,
+ /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
+ /*.max_contiguous = */ 0,
+ /*.max_contiguous_idx = */ -1,
+ /*.cells = */ nullptr,
+ /*.cells_sequences = */ nullptr,
+ };
+ return result;
+}
+
+void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
+ if (view->cells != nullptr) {
+ free(view->cells);
+ view->cells = nullptr;
+ }
+ if (view->cells_sequences != nullptr) {
+ free(view->cells_sequences);
+ view->cells_sequences = nullptr;
+ }
+}
+
+void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
+ if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
+ view->n_cells = int32_t(ctx->kv_self.size);
+ void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
+ GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
+ view->cells = (struct llama_kv_cache_view_cell *)p;
+ p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
+ GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
+ view->cells_sequences = (llama_seq_id *)p;
+ }
+
+ const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
+ llama_kv_cache_view_cell * c_curr = view->cells;
+ llama_seq_id * cs_curr = view->cells_sequences;
+ int32_t used_cells = 0;
+ int32_t token_count = 0;
+ int32_t curr_contig_idx = -1;
+ uint32_t max_contig = 0;
+ int32_t max_contig_idx = -1;
+
+ for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
+ const size_t curr_size = kv_cells[i].seq_id.size();
+ token_count += curr_size;
+ c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
+
+ if (curr_size > 0) {
+ if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
+ max_contig = i - curr_contig_idx;
+ max_contig_idx = curr_contig_idx;
+ }
+ curr_contig_idx = -1;
+ } else if (curr_contig_idx < 0) {
+ curr_contig_idx = i;
+ }
+
+ int seq_idx = 0;
+ for (const llama_seq_id it : kv_cells[i].seq_id) {
+ if (seq_idx >= view->n_seq_max) {
+ break;
+ }
+ cs_curr[seq_idx] = it;
+ seq_idx++;
+ }
+ if (seq_idx != 0) {
+ used_cells++;
+ }
+ for (; seq_idx < view->n_seq_max; seq_idx++) {
+ cs_curr[seq_idx] = -1;
+ }
+ }
+ if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
+ max_contig_idx = curr_contig_idx;
+ max_contig = kv_cells.size() - curr_contig_idx;
+ }
+ view->max_contiguous = max_contig;
+ view->max_contiguous_idx = max_contig_idx;
+ view->token_count = token_count;
+ view->used_cells = used_cells;
+ if (uint32_t(used_cells) != ctx->kv_self.used) {
+ LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
+ __func__, ctx->kv_self.used, used_cells);
+ }
+}
+
+int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
+ int result = 0;
+
+ for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
+ result += ctx->kv_self.cells[i].seq_id.size();
+ }
+
+ return result;
+}
+
+int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
+ return ctx->kv_self.used;
+}
+
+void llama_kv_cache_clear(struct llama_context * ctx) {
+ llama_kv_cache_clear(ctx->kv_self);
+}
+
+bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
+ return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
+}
+
+void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
+ if (seq_id_src == seq_id_dst) {
+ return;
+ }
+ llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
+}
+
+void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
+ llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
+}
+
+void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
+ if (delta == 0) {
+ return;
+ }
+
+ llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
+}
+
+void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
+ if (d == 1) {
+ return;
+ }
+
+ llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
+}
+
+llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
+ return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
+}
+
+void llama_kv_cache_defrag(struct llama_context * ctx) {
+ llama_kv_cache_defrag(ctx->kv_self);
+}
+
+void llama_kv_cache_update(struct llama_context * ctx) {
+ llama_kv_cache_update_internal(*ctx);
+}
+
+// deprecated
+size_t llama_get_state_size(const struct llama_context * ctx) {
+ return llama_state_get_size(ctx);
+}
+
+// deprecated
+size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
+ return llama_state_get_data(ctx, dst);
+}
+
+// deprecated
+size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
+ return llama_state_set_data(ctx, src);
+}
+
+// deprecated
+bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+ return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
+}
+
+// deprecated
+bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+ return llama_state_save_file(ctx, path_session, tokens, n_token_count);
+}
+
+// Returns the *maximum* size of the state
+size_t llama_state_get_size(const struct llama_context * ctx) {
+ const auto & cparams = ctx->cparams;
+ const auto & hparams = ctx->model.hparams;
+
+ // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
+ // for reference, std::mt19937(1337) serializes to 6701 bytes.
+ const size_t s_rng_size = sizeof(size_t);
+ const size_t s_rng = LLAMA_MAX_RNG_STATE;
+ const size_t s_n_outputs = sizeof(size_t);
+ // assume worst case for outputs although only currently set ones are serialized
+ const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
+ const size_t s_logits_size = sizeof(size_t);
+ const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
+ const size_t s_embedding_size = sizeof(size_t);
+ const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
+ const size_t s_kv_buf_size = sizeof(size_t);
+ const size_t s_kv_head = sizeof(uint32_t);
+ const size_t s_kv_size = sizeof(uint32_t);
+ const size_t s_kv_used = sizeof(uint32_t);
+ const size_t s_v_trans = sizeof(uint32_t);
+ const size_t s_kv = ctx->kv_self.total_size();
+ const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
+ const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
+
+ const size_t s_total = (
+ + s_rng_size
+ + s_rng
+ + s_n_outputs
+ + s_output_pos
+ + s_logits_size
+ + s_logits
+ + s_embedding_size
+ + s_embedding
+ + s_kv_buf_size
+ + s_kv_head
+ + s_kv_size
+ + s_kv_used
+ + s_v_trans
+ + s_kv
+ + s_kv_cells
+ );
+
+ // on session change it is very likely that the state size has changed - so we need to update this function
+ static_assert(LLAMA_SESSION_VERSION == 7, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
+
+ return s_total;
+}
+
+// llama_context_data
+struct llama_data_context {
+ virtual void write(const void * src, size_t size) = 0;
+ virtual size_t get_size_written() = 0;
+ virtual ~llama_data_context() = default;
+};
+
+struct llama_data_buffer_context : llama_data_context {
+ uint8_t * ptr;
+ size_t size_written = 0;
+
+ llama_data_buffer_context(uint8_t * p) : ptr(p) {}
+
+ void write(const void * src, size_t size) override {
+ memcpy(ptr, src, size);
+ ptr += size;
+ size_written += size;
+ }
+
+ size_t get_size_written() override {
+ return size_written;
+ }
+};
+
+struct llama_data_file_context : llama_data_context {
+ llama_file * file;
+ size_t size_written = 0;
+
+ llama_data_file_context(llama_file * f) : file(f) {}
+
+ void write(const void * src, size_t size) override {
+ file->write_raw(src, size);
+ size_written += size;
+ }
+
+ size_t get_size_written() override {
+ return size_written;
+ }
+};
+
+/** copy state data into either a buffer or file depending on the passed in context
+ *
+ * file context:
+ * llama_file file("/path", "wb");
+ * llama_data_file_context data_ctx(&file);
+ * llama_state_get_data(ctx, &data_ctx);
+ *
+ * buffer context:
+ * std::vector<uint8_t> buf(max_size, 0);
+ * llama_data_buffer_context data_ctx(&buf.data());
+ * llama_state_get_data(ctx, &data_ctx);
+ *
+*/
+static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
+ llama_synchronize(ctx);
+
+ // copy rng
+ {
+ std::ostringstream rng_ss;
+ rng_ss << ctx->sampling.rng;
+
+ const std::string & rng_str = rng_ss.str();
+ const size_t rng_size = rng_str.size();
+
+ GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
+
+ data_ctx->write(&rng_size, sizeof(rng_size));
+ data_ctx->write(rng_str.data(), rng_size);
+ }
+
+ // copy outputs
+ {
+ // Can't use ctx->n_outputs because it's not for the
+ // entire last batch when n_ubatch is smaller than n_batch
+ size_t n_outputs = 0;
+
+ // copy output ids
+ {
+ std::vector<int32_t> output_pos;
+
+ const size_t n_batch = ctx->cparams.n_batch;
+ const auto & output_ids = ctx->output_ids;
+
+ output_pos.resize(ctx->output_size);
+
+ // build a more compact representation of the output ids
+ for (size_t i = 0; i < n_batch; ++i) {
+ // map an output id to a position in the batch
+ int32_t pos = output_ids[i];
+ if (pos >= 0) {
+ if ((size_t) pos >= n_outputs) {
+ n_outputs = pos + 1;
+ }
+ GGML_ASSERT((size_t) pos < ctx->output_size);
+ output_pos[pos] = i;
+ }
+ }
+
+ data_ctx->write(&n_outputs, sizeof(n_outputs));
+
+ if (n_outputs) {
+ data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
+ }
+ }
+
+ // copy logits
+ {
+ const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
+
+ data_ctx->write(&logits_size, sizeof(logits_size));
+
+ if (logits_size) {
+ data_ctx->write(ctx->logits, logits_size * sizeof(float));
+ }
+ }
+
+ // copy embeddings
+ {
+ const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
+
+ data_ctx->write(&embeddings_size, sizeof(embeddings_size));
+
+ if (embeddings_size) {
+ data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
+ }
+ }
+ }
+
+ // copy kv cache
+ {
+ const auto & kv_self = ctx->kv_self;
+ const auto & hparams = ctx->model.hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
+ const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
+ const uint32_t kv_size = kv_self.size;
+ const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
+ const uint32_t kv_used = kv_self.used;
+ const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
+
+ data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
+ data_ctx->write(&kv_head, sizeof(kv_head));
+ data_ctx->write(&kv_size, sizeof(kv_size));
+ data_ctx->write(&kv_used, sizeof(kv_used));
+ data_ctx->write(&v_trans, sizeof(v_trans));
+
+ if (kv_buf_size) {
+ const size_t pre_kv_buf_size = data_ctx->get_size_written();
+
+ std::vector<uint8_t> tmp_buf;
+ for (int il = 0; il < (int) n_layer; ++il) {
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+ const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
+
+ tmp_buf.resize(k_size);
+ ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
+ data_ctx->write(tmp_buf.data(), tmp_buf.size());
+
+ if (kv_self.recurrent || !kv_self.v_trans) {
+ // v is contiguous for recurrent models
+ // TODO: use other tensors for state models than k and v
+ const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
+
+ tmp_buf.resize(v_size);
+ ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
+ data_ctx->write(tmp_buf.data(), tmp_buf.size());
+ continue;
+ }
+
+ // v is not contiguous, copy row by row
+ const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
+ const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
+
+ tmp_buf.resize(v_row_size);
+ for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
+ ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
+ data_ctx->write(tmp_buf.data(), tmp_buf.size());
+ }
+ }
+ GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
+ }
+
+ for (uint32_t i = 0; i < kv_head; ++i) {
+ const auto & cell = kv_self.cells[i];
+
+ const llama_pos pos = cell.pos;
+ const size_t seq_id_size = cell.seq_id.size();
+
+ data_ctx->write(&pos, sizeof(pos));
+ data_ctx->write(&seq_id_size, sizeof(seq_id_size));
+
+ for (auto seq_id : cell.seq_id) {
+ data_ctx->write(&seq_id, sizeof(seq_id));
+ }
+ }
+ }
+}
+
+size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
+ llama_data_buffer_context data_ctx(dst);
+ llama_state_get_data_internal(ctx, &data_ctx);
+
+ return data_ctx.get_size_written();
+}
+
+// Sets the state reading from the specified source address
+size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
+ llama_synchronize(ctx);
+
+ const uint8_t * inp = src;
+
+ // set rng
+ {
+ size_t rng_size;
+ memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
+
+ GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
+
+ std::string rng_str((const char *)inp, rng_size); inp += rng_size;
+
+ std::istringstream rng_ss(rng_str);
+ rng_ss >> ctx->sampling.rng;
+
+ GGML_ASSERT(!rng_ss.fail());
+ }
+
+ // set output ids
+ {
+ size_t n_outputs;
+ std::vector<int32_t> output_pos;
+
+ memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
+
+ GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
+
+ if (n_outputs) {
+ output_pos.resize(n_outputs);
+ memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
+ inp += n_outputs * sizeof(int32_t);
+
+ for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
+ int32_t id = output_pos[i];
+ GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
+ ctx->output_ids[id] = i;
+ }
+
+ ctx->n_outputs = n_outputs;
+ }
+ }
+
+ // set logits
+ {
+ size_t logits_size;
+
+ memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
+
+ GGML_ASSERT(ctx->logits_size >= logits_size);
+
+ if (logits_size) {
+ memcpy(ctx->logits, inp, logits_size * sizeof(float));
+ inp += logits_size * sizeof(float);
+ }
+ }
+
+ // set embeddings
+ {
+ size_t embeddings_size;
+
+ memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
+
+ GGML_ASSERT(ctx->embd_size >= embeddings_size);
+
+ if (embeddings_size) {
+ memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
+ inp += embeddings_size * sizeof(float);
+ }
+ }
+
+ // set kv cache
+ {
+ const auto & kv_self = ctx->kv_self;
+ const auto & hparams = ctx->model.hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ size_t kv_buf_size;
+ uint32_t kv_head;
+ uint32_t kv_size;
+ uint32_t kv_used;
+ uint32_t v_trans;
+
+ memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
+ memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
+ memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
+ memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
+ memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
+
+ GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
+
+ if (kv_self.size != kv_size) {
+ // the KV cache needs to be big enough to load all the KV cells from the saved state
+ GGML_ASSERT(kv_self.size >= kv_head);
+
+ LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
+ __func__, kv_head, kv_size, kv_self.size);
+ }
+
+ llama_kv_cache_clear(ctx);
+
+ if (kv_buf_size) {
+ const size_t pre_kv_buf_size = inp - src;
+
+ GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
+
+ for (int il = 0; il < (int) n_layer; ++il) {
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+ const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
+
+ ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
+ inp += k_size;
+
+ if (kv_self.recurrent || !kv_self.v_trans) {
+ // v is contiguous for recurrent models
+ // TODO: use other tensors for state models than k and v
+ const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
+
+ ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
+ inp += v_size;
+ continue;
+ }
+
+ // v is not contiguous, copy row by row
+ const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
+ const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
+
+ for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
+ ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
+ inp += v_row_size;
+ }
+ }
+ GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
+ }
+
+ ctx->kv_self.head = kv_head;
+ ctx->kv_self.used = kv_used;
+
+ for (uint32_t i = 0; i < kv_head; ++i) {
+ llama_pos pos;
+ size_t seq_id_size;
+
+ memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
+ memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
+
+ ctx->kv_self.cells[i].pos = pos;
+
+ llama_seq_id seq_id;
+
+ for (size_t j = 0; j < seq_id_size; ++j) {
+ memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
+ ctx->kv_self.cells[i].seq_id.insert(seq_id);
+ }
+ }
+ }
+
+ const size_t nread = inp - src;
+ const size_t max_size = llama_state_get_size(ctx);
+
+ GGML_ASSERT(nread <= max_size);
+
+ return nread;
+}
+
+static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+ llama_file file(path_session, "rb");
+
+ // sanity checks
+ {
+ const uint32_t magic = file.read_u32();
+ const uint32_t version = file.read_u32();
+
+ if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
+ LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
+ return false;
+ }
+
+ llama_hparams session_hparams;
+ file.read_raw(&session_hparams, sizeof(llama_hparams));
+
+ if (session_hparams != ctx->model.hparams) {
+ LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
+ return false;
+ }
+ }
+
+ // load the prompt
+ {
+ const uint32_t n_token_count = file.read_u32();
+
+ if (n_token_count > n_token_capacity) {
+ LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
+ return false;
+ }
+
+ file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
+ *n_token_count_out = n_token_count;
+ }
+
+ // restore the context state
+ {
+ const size_t n_state_size_cur = file.size - file.tell();
+ const size_t n_state_size_max = llama_state_get_size(ctx);
+
+ if (n_state_size_cur > n_state_size_max) {
+ LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
+ return false;
+ }
+
+ std::vector<uint8_t> state_data(n_state_size_max);
+ file.read_raw(state_data.data(), n_state_size_cur);
+
+ llama_state_set_data(ctx, state_data.data());
+ }
+
+ return true;
+}
+
+bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+ try {
+ return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
+ return false;
+ }
+}
+
+static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+ llama_file file(path_session, "wb");
+
+ file.write_u32(LLAMA_SESSION_MAGIC);
+ file.write_u32(LLAMA_SESSION_VERSION);
+
+ file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
+
+ // save the prompt
+ file.write_u32((uint32_t) n_token_count);
+ file.write_raw(tokens, sizeof(llama_token) * n_token_count);
+
+ // save the context state using stream saving
+ llama_data_file_context data_ctx(&file);
+ llama_state_get_data_internal(ctx, &data_ctx);
+
+ return true;
+}
+
+bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+ try {
+ return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
+ return false;
+ }
+}
+
+size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
+ // save the size of size_t as a uint32_t for safety check
+ const size_t size_t_size_size = sizeof(uint32_t);
+
+ // other values
+ const size_t s_cell_count_size = sizeof(uint32_t);
+ const size_t s_layer_count_size = sizeof(uint32_t);
+ const size_t n_embd_v_gqa_size = sizeof(uint32_t);
+
+ size_t s_cell_count = 0;
+ size_t s_cell_data_size = 0;
+ const auto & kv_self = ctx->kv_self;
+ const auto & hparams = ctx->model.hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ for (uint32_t i = 0; i < kv_self.size; ++i) {
+ const auto & cell = kv_self.cells[i];
+ if (cell.seq_id.count(seq_id) > 0) {
+ ++s_cell_count;
+ s_cell_data_size += sizeof(llama_pos);
+ }
+ }
+
+ for (int il = 0; il < (int)n_layer; ++il) {
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+ // types of keys and values
+ s_cell_data_size += sizeof(int32_t) * 2;
+ // k_size_row and v_size_el values of layer
+ s_cell_data_size += sizeof(size_t) * 2;
+
+ // keys
+ const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+ s_cell_data_size += k_size_row * s_cell_count;
+
+ // values (transposed)
+ const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+ s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
+ }
+
+ const size_t s_total = (
+ size_t_size_size +
+ s_cell_count_size +
+ s_layer_count_size +
+ n_embd_v_gqa_size +
+ s_cell_data_size
+ );
+
+ return s_total;
+}
+
+static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
+ llama_synchronize(ctx);
+
+ const auto & kv_self = ctx->kv_self;
+ GGML_ASSERT(!kv_self.recurrent); // not implemented
+
+ // Save the size of size_t as a uint32_t for safety check
+ const uint32_t size_t_size = sizeof(size_t);
+ data_ctx.write(&size_t_size, sizeof(size_t_size));
+
+ std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
+ uint32_t cell_count = 0;
+
+ // Count the number of cells with the specified seq_id
+ // Find all the ranges of cells with this seq id
+ {
+ uint32_t cell_range_begin = kv_self.size;
+ for (uint32_t i = 0; i < kv_self.size; ++i) {
+ const auto & cell = kv_self.cells[i];
+ if (cell.has_seq_id(seq_id)) {
+ ++cell_count;
+ if (cell_range_begin == kv_self.size) {
+ cell_range_begin = i;
+ }
+ }
+ else {
+ if (cell_range_begin != kv_self.size) {
+ cell_ranges.emplace_back(cell_range_begin, i);
+ cell_range_begin = kv_self.size;
+ }
+ }
+ }
+ if (cell_range_begin != kv_self.size) {
+ cell_ranges.emplace_back(cell_range_begin, kv_self.size);
+ }
+
+ // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
+ uint32_t cell_count_check = 0;
+ for (const auto & range : cell_ranges) {
+ cell_count_check += range.second - range.first;
+ }
+ GGML_ASSERT(cell_count == cell_count_check);
+ }
+
+ // Write the cell count
+ data_ctx.write(&cell_count, sizeof(cell_count));
+
+ const auto & hparams = ctx->model.hparams;
+ const uint32_t n_layer = hparams.n_layer;
+
+ // Write the layer count
+ data_ctx.write(&n_layer, sizeof(n_layer));
+
+ // Write n_embd_v_gqa (reference value)
+ {
+ const uint32_t n_embd_v_gqa_ref = hparams.n_embd_v_gqa() + hparams.n_embd_k_s();
+ data_ctx.write(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
+ }
+
+ // Iterate the ranges and write all the pos (this is the token position in the prompt)
+ for (const auto & range : cell_ranges) {
+ for (uint32_t i = range.first; i < range.second; ++i) {
+ const auto & cell = kv_self.cells[i];
+ data_ctx.write(&cell.pos, sizeof(cell.pos));
+ }
+ }
+
+ // Iterate and write all the keys first, each row is a cell
+ // Get whole range at a time
+ std::vector<uint8_t> tmp_buf;
+ for (int il = 0; il < (int)n_layer; ++il) {
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+
+ // Write key type
+ const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
+ data_ctx.write(&k_type_i, sizeof(k_type_i));
+
+ // Write row size of key
+ const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+ data_ctx.write(&k_size_row, sizeof(k_size_row));
+
+ // Read each range of cells of k_size length each into tmp_buf and write out
+ for (const auto & range : cell_ranges) {
+ const size_t range_size = range.second - range.first;
+ tmp_buf.resize(range_size * k_size_row);
+ ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
+ data_ctx.write(tmp_buf.data(), tmp_buf.size());
+ }
+ }
+
+ // TODO: simplify, reduce copy-paste
+ if (!kv_self.v_trans) {
+ for (int il = 0; il < (int)n_layer; ++il) {
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+ // Write value type
+ const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+ data_ctx.write(&v_type_i, sizeof(v_type_i));
+
+ // Write row size of value
+ const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
+ data_ctx.write(&v_size_row, sizeof(v_size_row));
+
+ // Read each range of cells of v_size length each into tmp_buf and write out
+ for (const auto & range : cell_ranges) {
+ const size_t range_size = range.second - range.first;
+ tmp_buf.resize(range_size * v_size_row);
+ ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
+ data_ctx.write(tmp_buf.data(), tmp_buf.size());
+ }
+ }
+ } else {
+ // For the values, they are transposed, so we also need the element size and get the element ranges from each row
+ const uint32_t kv_size = kv_self.size;
+ for (int il = 0; il < (int)n_layer; ++il) {
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+ // Write value type
+ const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+ data_ctx.write(&v_type_i, sizeof(v_type_i));
+
+ // Write element size
+ const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+ data_ctx.write(&v_size_el, sizeof(v_size_el));
+
+ // For each row, we get the element values of each cell
+ for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
+ // Read each range of cells of v_size_el length each into tmp_buf and write out
+ for (const auto & range : cell_ranges) {
+ const size_t range_size = range.second - range.first;
+ const size_t src_offset = (range.first + j * kv_size) * v_size_el;
+ tmp_buf.resize(range_size * v_size_el);
+ ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
+ data_ctx.write(tmp_buf.data(), tmp_buf.size());
+ }
+ }
+ }
+ }
+
+ return data_ctx.get_size_written();
+}
+
+size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
+ llama_data_buffer_context data_ctx(dst);
+ return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
+}
+
+size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
+ llama_synchronize(ctx);
+
+ auto & kv_self = ctx->kv_self;
+ GGML_ASSERT(!kv_self.recurrent); // not implemented
+
+ // Wipe the slot
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+
+ const uint8_t * inp = src;
+
+ // Read size of size_t
+ uint32_t size_t_size;
+ memcpy(&size_t_size, inp, sizeof(size_t_size));
+ inp += sizeof(size_t_size);
+ if (size_t_size != sizeof(size_t)) {
+ LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
+ return 0;
+ }
+
+ // Read the cell count
+ uint32_t cell_count;
+ memcpy(&cell_count, inp, sizeof(cell_count));
+ inp += sizeof(cell_count);
+
+ // Read the layer count
+ uint32_t n_layer_ref;
+ memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
+ inp += sizeof(n_layer_ref);
+
+ // Read n_embd_v_gqa
+ uint32_t n_embd_v_gqa_ref;
+ memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
+ inp += sizeof(n_embd_v_gqa_ref);
+
+ // Sanity check model compatibility
+ const auto & hparams = ctx->model.hparams;
+ const uint32_t n_layer = hparams.n_layer;
+
+ if (n_layer != n_layer_ref) {
+ LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
+ return 0;
+ }
+
+ if (hparams.n_embd_v_gqa() != n_embd_v_gqa_ref) {
+ LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, hparams.n_embd_v_gqa(), n_embd_v_gqa_ref);
+ return 0;
+ }
+
+ // Allocate the new cells for the slot
+ if (cell_count) {
+ llama_batch batch = llama_batch_init(cell_count, 0, 1);
+ batch.n_tokens = cell_count;
+ for (uint32_t i = 0; i < cell_count; ++i) {
+ llama_pos pos;
+ memcpy(&pos, inp, sizeof(pos));
+ inp += sizeof(pos);
+
+ batch.pos[i] = pos;
+ batch.n_seq_id[i] = 1;
+ batch.seq_id[i][0] = dest_seq_id;
+ }
+ if (!llama_kv_cache_find_slot(kv_self, batch)) {
+ llama_batch_free(batch);
+ LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
+ return 0;
+ }
+
+ // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
+ // Assume that this is one contiguous block of cells
+ GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
+ GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
+ GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
+ GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
+ GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
+
+ // Cleanup
+ llama_batch_free(batch);
+ }
+
+ const uint32_t kv_size = kv_self.size;
+ const uint32_t kv_head = kv_self.head;
+
+ // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
+ for (int il = 0; il < (int)n_layer; ++il) {
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
+
+ // Read type of key
+ int32_t k_type_i_ref;
+ memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
+ inp += sizeof(k_type_i_ref);
+ const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
+ if (k_type_i != k_type_i_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
+ return 0;
+ }
+
+ // Read row size of key
+ size_t k_size_row_ref;
+ memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
+ inp += sizeof(k_size_row_ref);
+ const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+ if (k_size_row != k_size_row_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
+ return 0;
+ }
+
+ if (cell_count) {
+ // Read and set the keys for the whole cell range
+ ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
+ inp += cell_count * k_size_row;
+ }
+ }
+
+ // TODO: simplify, reduce copy-paste
+ if (!kv_self.v_trans) {
+ for (int il = 0; il < (int)n_layer; ++il) {
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+ // Read type of value
+ int32_t v_type_i_ref;
+ memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
+ inp += sizeof(v_type_i_ref);
+ const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+ if (v_type_i != v_type_i_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
+ return 0;
+ }
+
+ // Read row size of value
+ size_t v_size_row_ref;
+ memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
+ inp += sizeof(v_size_row_ref);
+ const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
+ if (v_size_row != v_size_row_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
+ return 0;
+ }
+
+ if (cell_count) {
+ // Read and set the values for the whole cell range
+ ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
+ inp += cell_count * v_size_row;
+ }
+ }
+ } else {
+ // For each layer, read the values for each cell (transposed)
+ for (int il = 0; il < (int)n_layer; ++il) {
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
+
+ // Read type of value
+ int32_t v_type_i_ref;
+ memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
+ inp += sizeof(v_type_i_ref);
+ const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+ if (v_type_i != v_type_i_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
+ return 0;
+ }
+
+ // Read element size of value
+ size_t v_size_el_ref;
+ memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
+ inp += sizeof(v_size_el_ref);
+ const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+ if (v_size_el != v_size_el_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
+ return 0;
+ }
+
+ if (cell_count) {
+ // For each row in the transposed matrix, read the values for the whole cell range
+ for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
+ const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
+ ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
+ inp += cell_count * v_size_el;
+ }
+ }
+ }
+ }
+
+ const size_t nread = inp - src;
+
+ return nread;
+}
+
+static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
+ llama_file file(filepath, "wb");
+
+ file.write_u32(LLAMA_STATE_SEQ_MAGIC);
+ file.write_u32(LLAMA_STATE_SEQ_VERSION);
+
+ // save the prompt
+ file.write_u32((uint32_t)n_token_count);
+ file.write_raw(tokens, sizeof(llama_token) * n_token_count);
+
+ // save the context state using stream saving
+ llama_data_file_context data_ctx(&file);
+ llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
+
+ const size_t res = file.tell();
+ GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
+ return res;
+}
+
+static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+ llama_file file(filepath, "rb");
+
+ // version checks
+ {
+ const uint32_t magic = file.read_u32();
+ const uint32_t version = file.read_u32();
+
+ if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
+ LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
+ return 0;
+ }
+ }
+
+ // load the prompt
+ {
+ const uint32_t n_token_count = file.read_u32();
+
+ if (n_token_count > n_token_capacity) {
+ LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
+ return 0;
+ }
+
+ file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
+ *n_token_count_out = n_token_count;
+ }
+
+ // restore the context state
+ {
+ const size_t state_size = file.size - file.tell();
+ std::vector<uint8_t> state_data(state_size);
+ file.read_raw(state_data.data(), state_size);
+ const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
+ if (!nread) {
+ LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
+ return 0;
+ }
+ GGML_ASSERT(nread <= state_size);
+ GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
+ }
+
+ return file.tell();
+}
+
+size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
+ try {
+ return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
+ return 0;
+ }
+}
+
+size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+ try {
+ return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
+ return 0;
+ }
+}
+
+void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
+ ctx->cparams.n_threads = n_threads;
+ ctx->cparams.n_threads_batch = n_threads_batch;
+}
+
+uint32_t llama_n_threads(struct llama_context * ctx) {
+ return ctx->cparams.n_threads;
+}
+
+uint32_t llama_n_threads_batch(struct llama_context * ctx) {
+ return ctx->cparams.n_threads_batch;
+}
+
+void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
+ ctx->abort_callback = abort_callback;
+ ctx->abort_callback_data = abort_callback_data;
+}
+
+void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
+ ctx->cparams.embeddings = embeddings;
+}
+
+void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
+ ctx->cparams.causal_attn = causal_attn;
+}
+
+struct llama_batch llama_batch_get_one(
+ llama_token * tokens,
+ int32_t n_tokens,
+ llama_pos pos_0,
+ llama_seq_id seq_id) {
+ return {
+ /*n_tokens =*/ n_tokens,
+ /*tokens =*/ tokens,
+ /*embd =*/ nullptr,
+ /*pos =*/ nullptr,
+ /*n_seq_id =*/ nullptr,
+ /*seq_id =*/ nullptr,
+ /*logits =*/ nullptr,
+ /*all_pos_0 =*/ pos_0,
+ /*all_pos_1 =*/ 1,
+ /*all_seq_id =*/ seq_id,
+ };
+}
+
+struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
+ llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
+
+ if (embd) {
+ batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
+ } else {
+ batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
+ }
+
+ batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
+ batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
+ batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
+ for (int i = 0; i < n_tokens_alloc; ++i) {
+ batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
+ }
+ batch.seq_id[n_tokens_alloc] = nullptr;
+
+ batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
+
+ return batch;
+}
+
+void llama_batch_free(struct llama_batch batch) {
+ if (batch.token) free(batch.token);
+ if (batch.embd) free(batch.embd);
+ if (batch.pos) free(batch.pos);
+ if (batch.n_seq_id) free(batch.n_seq_id);
+ if (batch.seq_id) {
+ for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
+ free(batch.seq_id[i]);
+ }
+ free(batch.seq_id);
+ }
+ if (batch.logits) free(batch.logits);
+}
+
+int32_t llama_encode(
+ struct llama_context * ctx,
+ struct llama_batch batch) {
+ const int ret = llama_encode_internal(*ctx, batch);
+ if (ret < 0) {
+ LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
+ }
+
+ return ret;
+}
+
+int32_t llama_decode(
+ struct llama_context * ctx,
+ struct llama_batch batch) {
+ const int ret = llama_decode_internal(*ctx, batch);
+ if (ret < 0) {
+ LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
+ }
+
+ return ret;
+}
+
+void llama_synchronize(struct llama_context * ctx) {
+ ggml_backend_sched_synchronize(ctx->sched);
+
+ // FIXME: if multiple single tokens are evaluated without a synchronization,
+ // the stats will be added to the prompt evaluation stats
+ // this should only happen when using batch size 1 to evaluate a batch
+
+ // add the evaluation to the stats
+ if (ctx->n_queued_tokens == 1) {
+ ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
+ ctx->n_eval++;
+ } else if (ctx->n_queued_tokens > 1) {
+ ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
+ ctx->n_p_eval += ctx->n_queued_tokens;
+ }
+
+ // get a more accurate load time, upon first eval
+ if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
+ ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
+ ctx->has_evaluated_once = true;
+ }
+
+ ctx->n_queued_tokens = 0;
+ ctx->t_compute_start_us = 0;
+}
+
+float * llama_get_logits(struct llama_context * ctx) {
+ llama_synchronize(ctx);
+
+ return ctx->logits;
+}
+
+float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
+ int32_t j = -1;
+ llama_synchronize(ctx);
+
+ try {
+ if (ctx->logits == nullptr) {
+ throw std::runtime_error("no logits");
+ }
+
+ if (i < 0) {
+ j = ctx->n_outputs + i;
+ if (j < 0) {
+ throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
+ }
+ } else if ((size_t) i >= ctx->output_ids.size()) {
+ throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
+ } else {
+ j = ctx->output_ids[i];
+ }
+
+ if (j < 0) {
+ throw std::runtime_error(format("batch.logits[%d] != true", i));
+ }
+ if (j >= ctx->n_outputs) {
+ // This should not happen
+ throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
+ }
+
+ return ctx->logits + j*ctx->model.hparams.n_vocab;
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
+#ifndef NDEBUG
+ GGML_ASSERT(false);
+#endif
+ return nullptr;
+ }
+}
+
+float * llama_get_embeddings(struct llama_context * ctx) {
+ llama_synchronize(ctx);
+
+ return ctx->embd;
+}
+
+float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
+ int32_t j = -1;
+
+ llama_synchronize(ctx);
+
+ try {
+ if (ctx->embd == nullptr) {
+ throw std::runtime_error("no embeddings");
+ }
+
+ if (i < 0) {
+ j = ctx->n_outputs + i;
+ if (j < 0) {
+ throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
+ }
+ } else if ((size_t) i >= ctx->output_ids.size()) {
+ throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
+ } else {
+ j = ctx->output_ids[i];
+ }
+
+ if (j < 0) {
+ throw std::runtime_error(format("batch.logits[%d] != true", i));
+ }
+ if (j >= ctx->n_outputs) {
+ // This should not happen
+ throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
+ }
+
+ return ctx->embd + j*ctx->model.hparams.n_embd;
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
+#ifndef NDEBUG
+ GGML_ASSERT(false);
+#endif
+ return nullptr;
+ }
+}
+
+float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
+ llama_synchronize(ctx);
+
+ auto it = ctx->embd_seq.find(seq_id);
+ if (it == ctx->embd_seq.end()) {
+ return nullptr;
+ }
+
+ return it->second.data();
+}
+
+//
+// vocab
+//
+
+const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
+ return llama_token_get_text_impl(model->vocab, token);
+}
+
+float llama_token_get_score(const struct llama_model * model, llama_token token) {
+ return llama_token_get_score_impl(model->vocab, token);
+}
+
+enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
+ return llama_token_get_attr_impl(model->vocab, token);
+}
+
+bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
+ return llama_token_is_eog_impl(model->vocab, token);
+}
+
+bool llama_token_is_control(const struct llama_model * model, llama_token token) {
+ return llama_token_is_control_impl(model->vocab, token);
+}
+
+llama_token llama_token_bos(const struct llama_model * model) {
+ return llama_token_bos_impl(model->vocab);
+}
+
+llama_token llama_token_eos(const struct llama_model * model) {
+ return llama_token_eos_impl(model->vocab);
+}
+
+llama_token llama_token_cls(const struct llama_model * model) {
+ return llama_token_cls_impl(model->vocab);
+}
+
+llama_token llama_token_sep(const struct llama_model * model) {
+ return llama_token_sep_impl(model->vocab);
+}
+
+llama_token llama_token_nl (const struct llama_model * model) {
+ return llama_token_nl_impl(model->vocab);
+}
+
+llama_token llama_token_pad(const struct llama_model * model) {
+ return llama_token_pad_impl(model->vocab);
+}
+
+int32_t llama_add_bos_token(const struct llama_model * model) {
+ return llama_add_bos_token_impl(model->vocab);
+}
+
+int32_t llama_add_eos_token(const struct llama_model * model) {
+ return llama_add_eos_token_impl(model->vocab);
+}
+
+llama_token llama_token_prefix(const struct llama_model * model) {
+ return llama_token_prefix_impl(model->vocab);
+}
+
+llama_token llama_token_middle(const struct llama_model * model) {
+ return llama_token_middle_impl(model->vocab);
+}
+
+llama_token llama_token_suffix(const struct llama_model * model) {
+ return llama_token_suffix_impl(model->vocab);
+}
+
+llama_token llama_token_eot(const struct llama_model * model) {
+ return llama_token_eot_impl(model->vocab);
+}
+
+//
+// tokenization
+//
+
+int32_t llama_tokenize(
+ const struct llama_model * model,
+ const char * text,
+ int32_t text_len,
+ llama_token * tokens,
+ int32_t n_tokens_max,
+ bool add_special,
+ bool parse_special) {
+ return llama_tokenize_impl(model->vocab, text, text_len, tokens, n_tokens_max, add_special, parse_special);
+}
+
+int32_t llama_token_to_piece(
+ const struct llama_model * model,
+ llama_token token,
+ char * buf,
+ int32_t length,
+ int32_t lstrip,
+ bool special) {
+ return llama_token_to_piece_impl(model->vocab, token, buf, length, lstrip, special);
+}
+
+int32_t llama_detokenize(
+ const struct llama_model * model,
+ const llama_token * tokens,
+ int32_t n_tokens,
+ char * text,
+ int32_t text_len_max,
+ bool remove_special,
+ bool unparse_special) {
+ return llama_detokenize_impl(model->vocab, tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
+}
+
+//
+// chat templates
+//
+
+// Simple version of "llama_apply_chat_template" that only works with strings
+// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
+static int32_t llama_chat_apply_template_internal(
+ const std::string & tmpl,
+ const std::vector<const llama_chat_message *> & chat,
+ std::string & dest, bool add_ass) {
+ // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
+ std::stringstream ss;
+ auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
+ return tmpl.find(haystack) != std::string::npos;
+ };
+ if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
+ // chatml template
+ for (auto message : chat) {
+ ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
+ }
+ if (add_ass) {
+ ss << "<|im_start|>assistant\n";
+ }
+ } else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
+ // llama2 template and its variants
+ // [variant] support system message
+ bool support_system_message = tmpl_contains("<<SYS>>") || tmpl == "mistral";
+ // [variant] space before + after response
+ bool space_around_response = tmpl_contains("' ' + eos_token");
+ // [variant] add BOS inside history
+ bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
+ // [variant] trim spaces from the input message
+ bool strip_message = tmpl_contains("content.strip()");
+ // construct the prompt
+ bool is_inside_turn = true; // skip BOS at the beginning
+ ss << "[INST] ";
+ for (auto message : chat) {
+ std::string content = strip_message ? trim(message->content) : message->content;
+ std::string role(message->role);
+ if (!is_inside_turn) {
+ is_inside_turn = true;
+ ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
+ }
+ if (role == "system") {
+ if (support_system_message) {
+ ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
+ } else {
+ // if the model does not support system message, we still include it in the first message, but without <<SYS>>
+ ss << content << "\n";
+ }
+ } else if (role == "user") {
+ ss << content << " [/INST]";
+ } else {
+ ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
+ is_inside_turn = false;
+ }
+ }
+ // llama2 templates seem to not care about "add_generation_prompt"
+ } else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
+ // Phi 3
+ for (auto message : chat) {
+ std::string role(message->role);
+ ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
+ }
+ if (add_ass) {
+ ss << "<|assistant|>\n";
+ }
+ } else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
+ // zephyr template
+ for (auto message : chat) {
+ ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
+ }
+ if (add_ass) {
+ ss << "<|assistant|>\n";
+ }
+ } else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
+ // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
+ for (auto message : chat) {
+ std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
+ ss << bos << message->role << "\n" << message->content << "</s>\n";
+ }
+ if (add_ass) {
+ ss << "<s>assistant\n";
+ }
+ } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("<start_of_turn>")) {
+ // google/gemma-7b-it
+ std::string system_prompt = "";
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
+ system_prompt = trim(message->content);
+ continue;
+ }
+ // in gemma, "assistant" is "model"
+ role = role == "assistant" ? "model" : message->role;
+ ss << "<start_of_turn>" << role << "\n";
+ if (!system_prompt.empty() && role != "model") {
+ ss << system_prompt << "\n\n";
+ system_prompt = "";
+ }
+ ss << trim(message->content) << "<end_of_turn>\n";
+ }
+ if (add_ass) {
+ ss << "<start_of_turn>model\n";
+ }
+ } else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
+ // OrionStarAI/Orion-14B-Chat
+ std::string system_prompt = "";
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ // there is no system message support, we will merge it with user prompt
+ system_prompt = message->content;
+ continue;
+ } else if (role == "user") {
+ ss << "Human: ";
+ if (!system_prompt.empty()) {
+ ss << system_prompt << "\n\n";
+ system_prompt = "";
+ }
+ ss << message->content << "\n\nAssistant: </s>";
+ } else {
+ ss << message->content << "</s>";
+ }
+ }
+ } else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
+ // openchat/openchat-3.5-0106,
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << message->content << "<|end_of_turn|>";
+ } else {
+ role[0] = toupper(role[0]);
+ ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
+ }
+ }
+ if (add_ass) {
+ ss << "GPT4 Correct Assistant:";
+ }
+ } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
+ // eachadea/vicuna-13b-1.1 (and Orca variant)
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ // Orca-Vicuna variant uses a system prefix
+ if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
+ ss << "SYSTEM: " << message->content << "\n";
+ } else {
+ ss << message->content << "\n\n";
+ }
+ } else if (role == "user") {
+ ss << "USER: " << message->content << "\n";
+ } else if (role == "assistant") {
+ ss << "ASSISTANT: " << message->content << "</s>\n";
+ }
+ }
+ if (add_ass) {
+ ss << "ASSISTANT:";
+ }
+ } else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
+ // deepseek-ai/deepseek-coder-33b-instruct
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << message->content;
+ } else if (role == "user") {
+ ss << "### Instruction:\n" << message->content << "\n";
+ } else if (role == "assistant") {
+ ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
+ }
+ }
+ if (add_ass) {
+ ss << "### Response:\n";
+ }
+ } else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
+ // CohereForAI/c4ai-command-r-plus
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
+ } else if (role == "user") {
+ ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
+ } else if (role == "assistant") {
+ ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
+ }
+ }
+ if (add_ass) {
+ ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
+ }
+ } else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
+ // Llama 3
+ for (auto message : chat) {
+ std::string role(message->role);
+ ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
+ }
+ if (add_ass) {
+ ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
+ }
+ } else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
+ // chatglm3-6b
+ ss << "[gMASK]" << "sop";
+ for (auto message : chat) {
+ std::string role(message->role);
+ ss << "<|" << role << "|>" << "\n " << message->content;
+ }
+ if (add_ass) {
+ ss << "<|assistant|>";
+ }
+ } else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]<sop>")) {
+ ss << "[gMASK]" << "<sop>";
+ for (auto message : chat) {
+ std::string role(message->role);
+ ss << "<|" << role << "|>" << "\n" << message->content;
+ }
+ if (add_ass) {
+ ss << "<|assistant|>";
+ }
+ } else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
+ // MiniCPM-3B-OpenHermes-2.5-v2-GGUF
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "user") {
+ ss << LU8("<用户>");
+ ss << trim(message->content);
+ ss << "<AI>";
+ } else {
+ ss << trim(message->content);
+ }
+ }
+ } else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
+ // DeepSeek-V2
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << message->content << "\n\n";
+ } else if (role == "user") {
+ ss << "User: " << message->content << "\n\n";
+ } else if (role == "assistant") {
+ ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
+ }
+ }
+ if (add_ass) {
+ ss << "Assistant:";
+ }
+ } else {
+ // template not supported
+ return -1;
+ }
+ dest = ss.str();
+ return dest.size();
+}
+
+int32_t llama_chat_apply_template(
+ const struct llama_model * model,
+ const char * tmpl,
+ const struct llama_chat_message * chat,
+ size_t n_msg,
+ bool add_ass,
+ char * buf,
+ int32_t length) {
+ std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
+ if (tmpl == nullptr) {
+ GGML_ASSERT(model != nullptr);
+ // load template from model
+ std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
+ std::string template_key = "tokenizer.chat_template";
+ int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
+ if (res < 0) {
+ // worst case: there is no information about template, we will use chatml by default
+ curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
+ } else {
+ curr_tmpl = std::string(model_template.data(), model_template.size());
+ }
+ }
+
+ // format the chat to string
+ std::vector<const llama_chat_message *> chat_vec;
+ chat_vec.resize(n_msg);
+ for (size_t i = 0; i < n_msg; i++) {
+ chat_vec[i] = &chat[i];
+ }
+
+ std::string formatted_chat;
+ int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
+ if (res < 0) {
+ return res;
+ }
+ if (buf && length > 0) {
+ strncpy(buf, formatted_chat.c_str(), length);
+ }
+ return res;
+}
+
+//
+// grammar
+//
+
+struct llama_grammar * llama_grammar_init(
+ const llama_grammar_element ** rules,
+ size_t n_rules,
+ size_t start_rule_index) {
+ return llama_grammar_init_impl(rules, n_rules, start_rule_index);
+}
+
+void llama_grammar_free(struct llama_grammar * grammar) {
+ llama_grammar_free_impl(grammar);
+}
+
+struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
+ return llama_grammar_copy_impl(grammar);
+}
+
+void llama_grammar_sample(
+ const struct llama_grammar * grammar,
+ const struct llama_context * ctx,
+ llama_token_data_array * candidates) {
+ llama_grammar_sample_impl(grammar, &ctx->model.vocab, &ctx->sampling, candidates);
+}
+
+void llama_sample_grammar(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ const struct llama_grammar * grammar) {
+ llama_grammar_sample(grammar, ctx, candidates);
+}
+
+void llama_grammar_accept_token(
+ struct llama_grammar * grammar,
+ struct llama_context * ctx,
+ llama_token token) {
+ llama_grammar_accept_token_impl(grammar, &ctx->model.vocab, &ctx->sampling, token);
+}
+
+//
+// sampling
+//
+
+void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
+ llama_set_rng_seed_impl(&ctx->sampling, seed);
+}
+
+void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
+ llama_sample_softmax_impl(ctx ? &ctx->sampling : nullptr, candidates);
+}
+
+void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
+ llama_sample_top_k_impl(ctx ? &ctx->sampling : nullptr, candidates, k, min_keep);
+}
+
+void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+ llama_sample_top_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
+}
+
+void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+ llama_sample_min_p_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
+}
+
+void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
+ llama_sample_tail_free_impl(ctx ? &ctx->sampling : nullptr, candidates, z, min_keep);
+}
+
+void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+ llama_sample_typical_impl(ctx ? &ctx->sampling : nullptr, candidates, p, min_keep);
+}
+
+void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
+ llama_sample_entropy_impl(ctx ? &ctx->sampling : nullptr, candidates_p, min_temp, max_temp, exponent_val);
+}
+
+void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
+ llama_sample_temp_impl(ctx ? &ctx->sampling : nullptr, candidates_p, temp);
+}
+
+void llama_sample_repetition_penalties(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates,
+ const llama_token * last_tokens,
+ size_t penalty_last_n,
+ float penalty_repeat,
+ float penalty_freq,
+ float penalty_present) {
+ llama_sample_repetition_penalties_impl(ctx ? &ctx->sampling : nullptr, candidates, last_tokens, penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
+}
+
+void llama_sample_apply_guidance(
+ struct llama_context * ctx,
+ float * logits,
+ float * logits_guidance,
+ float scale) {
+ llama_sample_apply_guidance_impl(&ctx->sampling, logits, logits_guidance, scale);
+}
+
+llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
+ return llama_sample_token_mirostat_impl(&ctx->sampling, candidates, tau, eta, m, mu);
+}
+
+llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
+ return llama_sample_token_mirostat_v2_impl(ctx ? &ctx->sampling : nullptr, candidates, tau, eta, mu);
+}
+
+llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
+ return llama_sample_token_greedy_impl(ctx ? &ctx->sampling : nullptr, candidates);
+}
+
+llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
+ return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, rng);
+}
+
+llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
+ return llama_sample_token_with_rng_impl(&ctx->sampling, candidates, ctx->sampling.rng);
+}
+
+int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
+ static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
+ if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
+ return strlen(split_path);
+ }
+ return 0;
+}
+
+int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
+ std::string str_split_path(split_path);
+ char postfix[32];
+ snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
+ std::string str_postfix(postfix);
+
+ // check if dest ends with postfix
+ int size_prefix = str_split_path.size() - str_postfix.size();
+ if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
+ snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
+ return size_prefix;
+ }
+
+ return 0;
+}
+
+struct llama_timings llama_get_timings(struct llama_context * ctx) {
+ struct llama_timings result = {
+ /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
+ /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
+ /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
+ /*.t_sample_ms =*/ 1e-3 * ctx->sampling.t_sample_us,
+ /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
+ /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
+
+ /*.n_sample =*/ std::max(1, ctx->sampling.n_sample),
+ /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
+ /*.n_eval =*/ std::max(1, ctx->n_eval),
+ };
+
+ return result;
+}
+
+void llama_print_timings(struct llama_context * ctx) {
+ const llama_timings timings = llama_get_timings(ctx);
+
+ LLAMA_LOG_INFO("\n");
+ LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
+ LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
+ __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
+ LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
+ __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
+ LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
+ __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
+ LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
+}
+
+void llama_reset_timings(struct llama_context * ctx) {
+ ctx->t_start_us = ggml_time_us();
+ ctx->t_eval_us = ctx->n_eval = 0;
+ ctx->t_p_eval_us = ctx->n_p_eval = 0;
+
+ ctx->sampling.reset_timings();
+}
+
+const char * llama_print_system_info(void) {
+ static std::string s;
+
+ s = "";
+ s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
+ s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
+ s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
+ s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
+ s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
+ s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
+ s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
+ s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
+ s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
+ s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
+ s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
+ s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
+ s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
+ s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
+ s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
+ s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
+ s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
+ s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
+ s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
+ s += "LLAMAFILE = " + std::to_string(ggml_cpu_has_llamafile()) + " | ";
+
+ return s.c_str();
+}
+
+void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
+ fprintf(stream, "\n");
+ fprintf(stream, "###########\n");
+ fprintf(stream, "# Timings #\n");
+ fprintf(stream, "###########\n");
+ fprintf(stream, "\n");
+
+ fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
+ 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
+ fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
+ 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
+ fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
+ 1.0e-3 * ctx->sampling.t_sample_us / ctx->sampling.n_sample);
+ fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
+ fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
+ fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->sampling.n_sample);
+ fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
+ fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
+ fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
+ fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->sampling.t_sample_us);
+ fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
+ 1.0e6 * ctx->n_eval / ctx->t_eval_us);
+ fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
+ 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
+ fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
+ 1.0e6 * ctx->sampling.n_sample / ctx->sampling.t_sample_us);
+}
+
+// For internal test use
+const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
+ struct llama_context * ctx
+) {
+ return ctx->model.tensors_by_name;
+}
+
+void llama_log_set(ggml_log_callback log_callback, void * user_data) {
+ g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
+ g_state.log_callback_user_data = user_data;
+#ifdef GGML_USE_METAL
+ ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
+#elif defined(GGML_USE_CUDA)
+ ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
+#elif defined(GGML_USE_CANN)
+ ggml_backend_cann_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
+#endif
+}
+
+static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
+ va_list args_copy;
+ va_copy(args_copy, args);
+ char buffer[128];
+ int len = vsnprintf(buffer, 128, format, args);
+ if (len < 128) {
+ g_state.log_callback(level, buffer, g_state.log_callback_user_data);
+ } else {
+ char* buffer2 = new char[len+1];
+ vsnprintf(buffer2, len+1, format, args_copy);
+ buffer2[len] = 0;
+ g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
+ delete[] buffer2;
+ }
+ va_end(args_copy);
+}
+
+void llama_log_internal(ggml_log_level level, const char * format, ...) {
+ va_list args;
+ va_start(args, format);
+ llama_log_internal_v(level, format, args);
+ va_end(args);
+}
+
+void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
+ (void) level;
+ (void) user_data;
+ fputs(text, stderr);
+ fflush(stderr);
+}
diff --git a/src/unicode-data.cpp b/src/unicode-data.cpp
new file mode 100644
index 00000000..02bdf782
--- /dev/null
+++ b/src/unicode-data.cpp
@@ -0,0 +1,7032 @@
+// generated with scripts/gen-unicode-data.py
+
+#include "unicode-data.h"
+
+#include <cstdint>
+#include <vector>
+#include <unordered_map>
+#include <unordered_set>
+
+const std::vector<std::pair<uint32_t, uint16_t>> unicode_ranges_flags = { // start, flags // last=next_start-1
+{0x000000, 0x0080},
+{0x000020, 0x0008},
+{0x000021, 0x0020},
+{0x000024, 0x0040},
+{0x000025, 0x0020},
+{0x00002B, 0x0040},
+{0x00002C, 0x0020},
+{0x000030, 0x0002},
+{0x00003A, 0x0020},
+{0x00003C, 0x0040},
+{0x00003F, 0x0020},
+{0x000041, 0x0004},
+{0x00005B, 0x0020},
+{0x00005E, 0x0040},
+{0x00005F, 0x0020},
+{0x000060, 0x0040},
+{0x000061, 0x0004},
+{0x00007B, 0x0020},
+{0x00007C, 0x0040},
+{0x00007D, 0x0020},
+{0x00007E, 0x0040},
+{0x00007F, 0x0080},
+{0x0000A0, 0x0008},
+{0x0000A1, 0x0020},
+{0x0000A2, 0x0040},
+{0x0000A7, 0x0020},
+{0x0000A8, 0x0040},
+{0x0000AA, 0x0004},
+{0x0000AB, 0x0020},
+{0x0000AC, 0x0040},
+{0x0000AD, 0x0080},
+{0x0000AE, 0x0040},
+{0x0000B2, 0x0002},
+{0x0000B4, 0x0040},
+{0x0000B5, 0x0004},
+{0x0000B6, 0x0020},
+{0x0000B8, 0x0040},
+{0x0000B9, 0x0002},
+{0x0000BA, 0x0004},
+{0x0000BB, 0x0020},
+{0x0000BC, 0x0002},
+{0x0000BF, 0x0020},
+{0x0000C0, 0x0004},
+{0x0000D7, 0x0040},
+{0x0000D8, 0x0004},
+{0x0000F7, 0x0040},
+{0x0000F8, 0x0004},
+{0x0002C2, 0x0040},
+{0x0002C6, 0x0004},
+{0x0002D2, 0x0040},
+{0x0002E0, 0x0004},
+{0x0002E5, 0x0040},
+{0x0002EC, 0x0004},
+{0x0002ED, 0x0040},
+{0x0002EE, 0x0004},
+{0x0002EF, 0x0040},
+{0x000300, 0x0010},
+{0x000370, 0x0004},
+{0x000375, 0x0040},
+{0x000376, 0x0004},
+{0x000378, 0x0001},
+{0x00037A, 0x0004},
+{0x00037E, 0x0020},
+{0x00037F, 0x0004},
+{0x000380, 0x0001},
+{0x000384, 0x0040},
+{0x000386, 0x0004},
+{0x000387, 0x0020},
+{0x000388, 0x0004},
+{0x00038B, 0x0001},
+{0x00038C, 0x0004},
+{0x00038D, 0x0001},
+{0x00038E, 0x0004},
+{0x0003A2, 0x0001},
+{0x0003A3, 0x0004},
+{0x0003F6, 0x0040},
+{0x0003F7, 0x0004},
+{0x000482, 0x0040},
+{0x000483, 0x0010},
+{0x00048A, 0x0004},
+{0x000530, 0x0001},
+{0x000531, 0x0004},
+{0x000557, 0x0001},
+{0x000559, 0x0004},
+{0x00055A, 0x0020},
+{0x000560, 0x0004},
+{0x000589, 0x0020},
+{0x00058B, 0x0001},
+{0x00058D, 0x0040},
+{0x000590, 0x0001},
+{0x000591, 0x0010},
+{0x0005BE, 0x0020},
+{0x0005BF, 0x0010},
+{0x0005C0, 0x0020},
+{0x0005C1, 0x0010},
+{0x0005C3, 0x0020},
+{0x0005C4, 0x0010},
+{0x0005C6, 0x0020},
+{0x0005C7, 0x0010},
+{0x0005C8, 0x0001},
+{0x0005D0, 0x0004},
+{0x0005EB, 0x0001},
+{0x0005EF, 0x0004},
+{0x0005F3, 0x0020},
+{0x0005F5, 0x0001},
+{0x000600, 0x0080},
+{0x000606, 0x0040},
+{0x000609, 0x0020},
+{0x00060B, 0x0040},
+{0x00060C, 0x0020},
+{0x00060E, 0x0040},
+{0x000610, 0x0010},
+{0x00061B, 0x0020},
+{0x00061C, 0x0080},
+{0x00061D, 0x0020},
+{0x000620, 0x0004},
+{0x00064B, 0x0010},
+{0x000660, 0x0002},
+{0x00066A, 0x0020},
+{0x00066E, 0x0004},
+{0x000670, 0x0010},
+{0x000671, 0x0004},
+{0x0006D4, 0x0020},
+{0x0006D5, 0x0004},
+{0x0006D6, 0x0010},
+{0x0006DD, 0x0080},
+{0x0006DE, 0x0040},
+{0x0006DF, 0x0010},
+{0x0006E5, 0x0004},
+{0x0006E7, 0x0010},
+{0x0006E9, 0x0040},
+{0x0006EA, 0x0010},
+{0x0006EE, 0x0004},
+{0x0006F0, 0x0002},
+{0x0006FA, 0x0004},
+{0x0006FD, 0x0040},
+{0x0006FF, 0x0004},
+{0x000700, 0x0020},
+{0x00070E, 0x0001},
+{0x00070F, 0x0080},
+{0x000710, 0x0004},
+{0x000711, 0x0010},
+{0x000712, 0x0004},
+{0x000730, 0x0010},
+{0x00074B, 0x0001},
+{0x00074D, 0x0004},
+{0x0007A6, 0x0010},
+{0x0007B1, 0x0004},
+{0x0007B2, 0x0001},
+{0x0007C0, 0x0002},
+{0x0007CA, 0x0004},
+{0x0007EB, 0x0010},
+{0x0007F4, 0x0004},
+{0x0007F6, 0x0040},
+{0x0007F7, 0x0020},
+{0x0007FA, 0x0004},
+{0x0007FB, 0x0001},
+{0x0007FD, 0x0010},
+{0x0007FE, 0x0040},
+{0x000800, 0x0004},
+{0x000816, 0x0010},
+{0x00081A, 0x0004},
+{0x00081B, 0x0010},
+{0x000824, 0x0004},
+{0x000825, 0x0010},
+{0x000828, 0x0004},
+{0x000829, 0x0010},
+{0x00082E, 0x0001},
+{0x000830, 0x0020},
+{0x00083F, 0x0001},
+{0x000840, 0x0004},
+{0x000859, 0x0010},
+{0x00085C, 0x0001},
+{0x00085E, 0x0020},
+{0x00085F, 0x0001},
+{0x000860, 0x0004},
+{0x00086B, 0x0001},
+{0x000870, 0x0004},
+{0x000888, 0x0040},
+{0x000889, 0x0004},
+{0x00088F, 0x0001},
+{0x000890, 0x0080},
+{0x000892, 0x0001},
+{0x000898, 0x0010},
+{0x0008A0, 0x0004},
+{0x0008CA, 0x0010},
+{0x0008E2, 0x0080},
+{0x0008E3, 0x0010},
+{0x000904, 0x0004},
+{0x00093A, 0x0010},
+{0x00093D, 0x0004},
+{0x00093E, 0x0010},
+{0x000950, 0x0004},
+{0x000951, 0x0010},
+{0x000958, 0x0004},
+{0x000962, 0x0010},
+{0x000964, 0x0020},
+{0x000966, 0x0002},
+{0x000970, 0x0020},
+{0x000971, 0x0004},
+{0x000981, 0x0010},
+{0x000984, 0x0001},
+{0x000985, 0x0004},
+{0x00098D, 0x0001},
+{0x00098F, 0x0004},
+{0x000991, 0x0001},
+{0x000993, 0x0004},
+{0x0009A9, 0x0001},
+{0x0009AA, 0x0004},
+{0x0009B1, 0x0001},
+{0x0009B2, 0x0004},
+{0x0009B3, 0x0001},
+{0x0009B6, 0x0004},
+{0x0009BA, 0x0001},
+{0x0009BC, 0x0010},
+{0x0009BD, 0x0004},
+{0x0009BE, 0x0010},
+{0x0009C5, 0x0001},
+{0x0009C7, 0x0010},
+{0x0009C9, 0x0001},
+{0x0009CB, 0x0010},
+{0x0009CE, 0x0004},
+{0x0009CF, 0x0001},
+{0x0009D7, 0x0010},
+{0x0009D8, 0x0001},
+{0x0009DC, 0x0004},
+{0x0009DE, 0x0001},
+{0x0009DF, 0x0004},
+{0x0009E2, 0x0010},
+{0x0009E4, 0x0001},
+{0x0009E6, 0x0002},
+{0x0009F0, 0x0004},
+{0x0009F2, 0x0040},
+{0x0009F4, 0x0002},
+{0x0009FA, 0x0040},
+{0x0009FC, 0x0004},
+{0x0009FD, 0x0020},
+{0x0009FE, 0x0010},
+{0x0009FF, 0x0001},
+{0x000A01, 0x0010},
+{0x000A04, 0x0001},
+{0x000A05, 0x0004},
+{0x000A0B, 0x0001},
+{0x000A0F, 0x0004},
+{0x000A11, 0x0001},
+{0x000A13, 0x0004},
+{0x000A29, 0x0001},
+{0x000A2A, 0x0004},
+{0x000A31, 0x0001},
+{0x000A32, 0x0004},
+{0x000A34, 0x0001},
+{0x000A35, 0x0004},
+{0x000A37, 0x0001},
+{0x000A38, 0x0004},
+{0x000A3A, 0x0001},
+{0x000A3C, 0x0010},
+{0x000A3D, 0x0001},
+{0x000A3E, 0x0010},
+{0x000A43, 0x0001},
+{0x000A47, 0x0010},
+{0x000A49, 0x0001},
+{0x000A4B, 0x0010},
+{0x000A4E, 0x0001},
+{0x000A51, 0x0010},
+{0x000A52, 0x0001},
+{0x000A59, 0x0004},
+{0x000A5D, 0x0001},
+{0x000A5E, 0x0004},
+{0x000A5F, 0x0001},
+{0x000A66, 0x0002},
+{0x000A70, 0x0010},
+{0x000A72, 0x0004},
+{0x000A75, 0x0010},
+{0x000A76, 0x0020},
+{0x000A77, 0x0001},
+{0x000A81, 0x0010},
+{0x000A84, 0x0001},
+{0x000A85, 0x0004},
+{0x000A8E, 0x0001},
+{0x000A8F, 0x0004},
+{0x000A92, 0x0001},
+{0x000A93, 0x0004},
+{0x000AA9, 0x0001},
+{0x000AAA, 0x0004},
+{0x000AB1, 0x0001},
+{0x000AB2, 0x0004},
+{0x000AB4, 0x0001},
+{0x000AB5, 0x0004},
+{0x000ABA, 0x0001},
+{0x000ABC, 0x0010},
+{0x000ABD, 0x0004},
+{0x000ABE, 0x0010},
+{0x000AC6, 0x0001},
+{0x000AC7, 0x0010},
+{0x000ACA, 0x0001},
+{0x000ACB, 0x0010},
+{0x000ACE, 0x0001},
+{0x000AD0, 0x0004},
+{0x000AD1, 0x0001},
+{0x000AE0, 0x0004},
+{0x000AE2, 0x0010},
+{0x000AE4, 0x0001},
+{0x000AE6, 0x0002},
+{0x000AF0, 0x0020},
+{0x000AF1, 0x0040},
+{0x000AF2, 0x0001},
+{0x000AF9, 0x0004},
+{0x000AFA, 0x0010},
+{0x000B00, 0x0001},
+{0x000B01, 0x0010},
+{0x000B04, 0x0001},
+{0x000B05, 0x0004},
+{0x000B0D, 0x0001},
+{0x000B0F, 0x0004},
+{0x000B11, 0x0001},
+{0x000B13, 0x0004},
+{0x000B29, 0x0001},
+{0x000B2A, 0x0004},
+{0x000B31, 0x0001},
+{0x000B32, 0x0004},
+{0x000B34, 0x0001},
+{0x000B35, 0x0004},
+{0x000B3A, 0x0001},
+{0x000B3C, 0x0010},
+{0x000B3D, 0x0004},
+{0x000B3E, 0x0010},
+{0x000B45, 0x0001},
+{0x000B47, 0x0010},
+{0x000B49, 0x0001},
+{0x000B4B, 0x0010},
+{0x000B4E, 0x0001},
+{0x000B55, 0x0010},
+{0x000B58, 0x0001},
+{0x000B5C, 0x0004},
+{0x000B5E, 0x0001},
+{0x000B5F, 0x0004},
+{0x000B62, 0x0010},
+{0x000B64, 0x0001},
+{0x000B66, 0x0002},
+{0x000B70, 0x0040},
+{0x000B71, 0x0004},
+{0x000B72, 0x0002},
+{0x000B78, 0x0001},
+{0x000B82, 0x0010},
+{0x000B83, 0x0004},
+{0x000B84, 0x0001},
+{0x000B85, 0x0004},
+{0x000B8B, 0x0001},
+{0x000B8E, 0x0004},
+{0x000B91, 0x0001},
+{0x000B92, 0x0004},
+{0x000B96, 0x0001},
+{0x000B99, 0x0004},
+{0x000B9B, 0x0001},
+{0x000B9C, 0x0004},
+{0x000B9D, 0x0001},
+{0x000B9E, 0x0004},
+{0x000BA0, 0x0001},
+{0x000BA3, 0x0004},
+{0x000BA5, 0x0001},
+{0x000BA8, 0x0004},
+{0x000BAB, 0x0001},
+{0x000BAE, 0x0004},
+{0x000BBA, 0x0001},
+{0x000BBE, 0x0010},
+{0x000BC3, 0x0001},
+{0x000BC6, 0x0010},
+{0x000BC9, 0x0001},
+{0x000BCA, 0x0010},
+{0x000BCE, 0x0001},
+{0x000BD0, 0x0004},
+{0x000BD1, 0x0001},
+{0x000BD7, 0x0010},
+{0x000BD8, 0x0001},
+{0x000BE6, 0x0002},
+{0x000BF3, 0x0040},
+{0x000BFB, 0x0001},
+{0x000C00, 0x0010},
+{0x000C05, 0x0004},
+{0x000C0D, 0x0001},
+{0x000C0E, 0x0004},
+{0x000C11, 0x0001},
+{0x000C12, 0x0004},
+{0x000C29, 0x0001},
+{0x000C2A, 0x0004},
+{0x000C3A, 0x0001},
+{0x000C3C, 0x0010},
+{0x000C3D, 0x0004},
+{0x000C3E, 0x0010},
+{0x000C45, 0x0001},
+{0x000C46, 0x0010},
+{0x000C49, 0x0001},
+{0x000C4A, 0x0010},
+{0x000C4E, 0x0001},
+{0x000C55, 0x0010},
+{0x000C57, 0x0001},
+{0x000C58, 0x0004},
+{0x000C5B, 0x0001},
+{0x000C5D, 0x0004},
+{0x000C5E, 0x0001},
+{0x000C60, 0x0004},
+{0x000C62, 0x0010},
+{0x000C64, 0x0001},
+{0x000C66, 0x0002},
+{0x000C70, 0x0001},
+{0x000C77, 0x0020},
+{0x000C78, 0x0002},
+{0x000C7F, 0x0040},
+{0x000C80, 0x0004},
+{0x000C81, 0x0010},
+{0x000C84, 0x0020},
+{0x000C85, 0x0004},
+{0x000C8D, 0x0001},
+{0x000C8E, 0x0004},
+{0x000C91, 0x0001},
+{0x000C92, 0x0004},
+{0x000CA9, 0x0001},
+{0x000CAA, 0x0004},
+{0x000CB4, 0x0001},
+{0x000CB5, 0x0004},
+{0x000CBA, 0x0001},
+{0x000CBC, 0x0010},
+{0x000CBD, 0x0004},
+{0x000CBE, 0x0010},
+{0x000CC5, 0x0001},
+{0x000CC6, 0x0010},
+{0x000CC9, 0x0001},
+{0x000CCA, 0x0010},
+{0x000CCE, 0x0001},
+{0x000CD5, 0x0010},
+{0x000CD7, 0x0001},
+{0x000CDD, 0x0004},
+{0x000CDF, 0x0001},
+{0x000CE0, 0x0004},
+{0x000CE2, 0x0010},
+{0x000CE4, 0x0001},
+{0x000CE6, 0x0002},
+{0x000CF0, 0x0001},
+{0x000CF1, 0x0004},
+{0x000CF3, 0x0010},
+{0x000CF4, 0x0001},
+{0x000D00, 0x0010},
+{0x000D04, 0x0004},
+{0x000D0D, 0x0001},
+{0x000D0E, 0x0004},
+{0x000D11, 0x0001},
+{0x000D12, 0x0004},
+{0x000D3B, 0x0010},
+{0x000D3D, 0x0004},
+{0x000D3E, 0x0010},
+{0x000D45, 0x0001},
+{0x000D46, 0x0010},
+{0x000D49, 0x0001},
+{0x000D4A, 0x0010},
+{0x000D4E, 0x0004},
+{0x000D4F, 0x0040},
+{0x000D50, 0x0001},
+{0x000D54, 0x0004},
+{0x000D57, 0x0010},
+{0x000D58, 0x0002},
+{0x000D5F, 0x0004},
+{0x000D62, 0x0010},
+{0x000D64, 0x0001},
+{0x000D66, 0x0002},
+{0x000D79, 0x0040},
+{0x000D7A, 0x0004},
+{0x000D80, 0x0001},
+{0x000D81, 0x0010},
+{0x000D84, 0x0001},
+{0x000D85, 0x0004},
+{0x000D97, 0x0001},
+{0x000D9A, 0x0004},
+{0x000DB2, 0x0001},
+{0x000DB3, 0x0004},
+{0x000DBC, 0x0001},
+{0x000DBD, 0x0004},
+{0x000DBE, 0x0001},
+{0x000DC0, 0x0004},
+{0x000DC7, 0x0001},
+{0x000DCA, 0x0010},
+{0x000DCB, 0x0001},
+{0x000DCF, 0x0010},
+{0x000DD5, 0x0001},
+{0x000DD6, 0x0010},
+{0x000DD7, 0x0001},
+{0x000DD8, 0x0010},
+{0x000DE0, 0x0001},
+{0x000DE6, 0x0002},
+{0x000DF0, 0x0001},
+{0x000DF2, 0x0010},
+{0x000DF4, 0x0020},
+{0x000DF5, 0x0001},
+{0x000E01, 0x0004},
+{0x000E31, 0x0010},
+{0x000E32, 0x0004},
+{0x000E34, 0x0010},
+{0x000E3B, 0x0001},
+{0x000E3F, 0x0040},
+{0x000E40, 0x0004},
+{0x000E47, 0x0010},
+{0x000E4F, 0x0020},
+{0x000E50, 0x0002},
+{0x000E5A, 0x0020},
+{0x000E5C, 0x0001},
+{0x000E81, 0x0004},
+{0x000E83, 0x0001},
+{0x000E84, 0x0004},
+{0x000E85, 0x0001},
+{0x000E86, 0x0004},
+{0x000E8B, 0x0001},
+{0x000E8C, 0x0004},
+{0x000EA4, 0x0001},
+{0x000EA5, 0x0004},
+{0x000EA6, 0x0001},
+{0x000EA7, 0x0004},
+{0x000EB1, 0x0010},
+{0x000EB2, 0x0004},
+{0x000EB4, 0x0010},
+{0x000EBD, 0x0004},
+{0x000EBE, 0x0001},
+{0x000EC0, 0x0004},
+{0x000EC5, 0x0001},
+{0x000EC6, 0x0004},
+{0x000EC7, 0x0001},
+{0x000EC8, 0x0010},
+{0x000ECF, 0x0001},
+{0x000ED0, 0x0002},
+{0x000EDA, 0x0001},
+{0x000EDC, 0x0004},
+{0x000EE0, 0x0001},
+{0x000F00, 0x0004},
+{0x000F01, 0x0040},
+{0x000F04, 0x0020},
+{0x000F13, 0x0040},
+{0x000F14, 0x0020},
+{0x000F15, 0x0040},
+{0x000F18, 0x0010},
+{0x000F1A, 0x0040},
+{0x000F20, 0x0002},
+{0x000F34, 0x0040},
+{0x000F35, 0x0010},
+{0x000F36, 0x0040},
+{0x000F37, 0x0010},
+{0x000F38, 0x0040},
+{0x000F39, 0x0010},
+{0x000F3A, 0x0020},
+{0x000F3E, 0x0010},
+{0x000F40, 0x0004},
+{0x000F48, 0x0001},
+{0x000F49, 0x0004},
+{0x000F6D, 0x0001},
+{0x000F71, 0x0010},
+{0x000F85, 0x0020},
+{0x000F86, 0x0010},
+{0x000F88, 0x0004},
+{0x000F8D, 0x0010},
+{0x000F98, 0x0001},
+{0x000F99, 0x0010},
+{0x000FBD, 0x0001},
+{0x000FBE, 0x0040},
+{0x000FC6, 0x0010},
+{0x000FC7, 0x0040},
+{0x000FCD, 0x0001},
+{0x000FCE, 0x0040},
+{0x000FD0, 0x0020},
+{0x000FD5, 0x0040},
+{0x000FD9, 0x0020},
+{0x000FDB, 0x0001},
+{0x001000, 0x0004},
+{0x00102B, 0x0010},
+{0x00103F, 0x0004},
+{0x001040, 0x0002},
+{0x00104A, 0x0020},
+{0x001050, 0x0004},
+{0x001056, 0x0010},
+{0x00105A, 0x0004},
+{0x00105E, 0x0010},
+{0x001061, 0x0004},
+{0x001062, 0x0010},
+{0x001065, 0x0004},
+{0x001067, 0x0010},
+{0x00106E, 0x0004},
+{0x001071, 0x0010},
+{0x001075, 0x0004},
+{0x001082, 0x0010},
+{0x00108E, 0x0004},
+{0x00108F, 0x0010},
+{0x001090, 0x0002},
+{0x00109A, 0x0010},
+{0x00109E, 0x0040},
+{0x0010A0, 0x0004},
+{0x0010C6, 0x0001},
+{0x0010C7, 0x0004},
+{0x0010C8, 0x0001},
+{0x0010CD, 0x0004},
+{0x0010CE, 0x0001},
+{0x0010D0, 0x0004},
+{0x0010FB, 0x0020},
+{0x0010FC, 0x0004},
+{0x001249, 0x0001},
+{0x00124A, 0x0004},
+{0x00124E, 0x0001},
+{0x001250, 0x0004},
+{0x001257, 0x0001},
+{0x001258, 0x0004},
+{0x001259, 0x0001},
+{0x00125A, 0x0004},
+{0x00125E, 0x0001},
+{0x001260, 0x0004},
+{0x001289, 0x0001},
+{0x00128A, 0x0004},
+{0x00128E, 0x0001},
+{0x001290, 0x0004},
+{0x0012B1, 0x0001},
+{0x0012B2, 0x0004},
+{0x0012B6, 0x0001},
+{0x0012B8, 0x0004},
+{0x0012BF, 0x0001},
+{0x0012C0, 0x0004},
+{0x0012C1, 0x0001},
+{0x0012C2, 0x0004},
+{0x0012C6, 0x0001},
+{0x0012C8, 0x0004},
+{0x0012D7, 0x0001},
+{0x0012D8, 0x0004},
+{0x001311, 0x0001},
+{0x001312, 0x0004},
+{0x001316, 0x0001},
+{0x001318, 0x0004},
+{0x00135B, 0x0001},
+{0x00135D, 0x0010},
+{0x001360, 0x0020},
+{0x001369, 0x0002},
+{0x00137D, 0x0001},
+{0x001380, 0x0004},
+{0x001390, 0x0040},
+{0x00139A, 0x0001},
+{0x0013A0, 0x0004},
+{0x0013F6, 0x0001},
+{0x0013F8, 0x0004},
+{0x0013FE, 0x0001},
+{0x001400, 0x0020},
+{0x001401, 0x0004},
+{0x00166D, 0x0040},
+{0x00166E, 0x0020},
+{0x00166F, 0x0004},
+{0x001680, 0x0008},
+{0x001681, 0x0004},
+{0x00169B, 0x0020},
+{0x00169D, 0x0001},
+{0x0016A0, 0x0004},
+{0x0016EB, 0x0020},
+{0x0016EE, 0x0002},
+{0x0016F1, 0x0004},
+{0x0016F9, 0x0001},
+{0x001700, 0x0004},
+{0x001712, 0x0010},
+{0x001716, 0x0001},
+{0x00171F, 0x0004},
+{0x001732, 0x0010},
+{0x001735, 0x0020},
+{0x001737, 0x0001},
+{0x001740, 0x0004},
+{0x001752, 0x0010},
+{0x001754, 0x0001},
+{0x001760, 0x0004},
+{0x00176D, 0x0001},
+{0x00176E, 0x0004},
+{0x001771, 0x0001},
+{0x001772, 0x0010},
+{0x001774, 0x0001},
+{0x001780, 0x0004},
+{0x0017B4, 0x0010},
+{0x0017D4, 0x0020},
+{0x0017D7, 0x0004},
+{0x0017D8, 0x0020},
+{0x0017DB, 0x0040},
+{0x0017DC, 0x0004},
+{0x0017DD, 0x0010},
+{0x0017DE, 0x0001},
+{0x0017E0, 0x0002},
+{0x0017EA, 0x0001},
+{0x0017F0, 0x0002},
+{0x0017FA, 0x0001},
+{0x001800, 0x0020},
+{0x00180B, 0x0010},
+{0x00180E, 0x0080},
+{0x00180F, 0x0010},
+{0x001810, 0x0002},
+{0x00181A, 0x0001},
+{0x001820, 0x0004},
+{0x001879, 0x0001},
+{0x001880, 0x0004},
+{0x001885, 0x0010},
+{0x001887, 0x0004},
+{0x0018A9, 0x0010},
+{0x0018AA, 0x0004},
+{0x0018AB, 0x0001},
+{0x0018B0, 0x0004},
+{0x0018F6, 0x0001},
+{0x001900, 0x0004},
+{0x00191F, 0x0001},
+{0x001920, 0x0010},
+{0x00192C, 0x0001},
+{0x001930, 0x0010},
+{0x00193C, 0x0001},
+{0x001940, 0x0040},
+{0x001941, 0x0001},
+{0x001944, 0x0020},
+{0x001946, 0x0002},
+{0x001950, 0x0004},
+{0x00196E, 0x0001},
+{0x001970, 0x0004},
+{0x001975, 0x0001},
+{0x001980, 0x0004},
+{0x0019AC, 0x0001},
+{0x0019B0, 0x0004},
+{0x0019CA, 0x0001},
+{0x0019D0, 0x0002},
+{0x0019DB, 0x0001},
+{0x0019DE, 0x0040},
+{0x001A00, 0x0004},
+{0x001A17, 0x0010},
+{0x001A1C, 0x0001},
+{0x001A1E, 0x0020},
+{0x001A20, 0x0004},
+{0x001A55, 0x0010},
+{0x001A5F, 0x0001},
+{0x001A60, 0x0010},
+{0x001A7D, 0x0001},
+{0x001A7F, 0x0010},
+{0x001A80, 0x0002},
+{0x001A8A, 0x0001},
+{0x001A90, 0x0002},
+{0x001A9A, 0x0001},
+{0x001AA0, 0x0020},
+{0x001AA7, 0x0004},
+{0x001AA8, 0x0020},
+{0x001AAE, 0x0001},
+{0x001AB0, 0x0010},
+{0x001ACF, 0x0001},
+{0x001B00, 0x0010},
+{0x001B05, 0x0004},
+{0x001B34, 0x0010},
+{0x001B45, 0x0004},
+{0x001B4D, 0x0001},
+{0x001B50, 0x0002},
+{0x001B5A, 0x0020},
+{0x001B61, 0x0040},
+{0x001B6B, 0x0010},
+{0x001B74, 0x0040},
+{0x001B7D, 0x0020},
+{0x001B7F, 0x0001},
+{0x001B80, 0x0010},
+{0x001B83, 0x0004},
+{0x001BA1, 0x0010},
+{0x001BAE, 0x0004},
+{0x001BB0, 0x0002},
+{0x001BBA, 0x0004},
+{0x001BE6, 0x0010},
+{0x001BF4, 0x0001},
+{0x001BFC, 0x0020},
+{0x001C00, 0x0004},
+{0x001C24, 0x0010},
+{0x001C38, 0x0001},
+{0x001C3B, 0x0020},
+{0x001C40, 0x0002},
+{0x001C4A, 0x0001},
+{0x001C4D, 0x0004},
+{0x001C50, 0x0002},
+{0x001C5A, 0x0004},
+{0x001C7E, 0x0020},
+{0x001C80, 0x0004},
+{0x001C89, 0x0001},
+{0x001C90, 0x0004},
+{0x001CBB, 0x0001},
+{0x001CBD, 0x0004},
+{0x001CC0, 0x0020},
+{0x001CC8, 0x0001},
+{0x001CD0, 0x0010},
+{0x001CD3, 0x0020},
+{0x001CD4, 0x0010},
+{0x001CE9, 0x0004},
+{0x001CED, 0x0010},
+{0x001CEE, 0x0004},
+{0x001CF4, 0x0010},
+{0x001CF5, 0x0004},
+{0x001CF7, 0x0010},
+{0x001CFA, 0x0004},
+{0x001CFB, 0x0001},
+{0x001D00, 0x0004},
+{0x001DC0, 0x0010},
+{0x001E00, 0x0004},
+{0x001F16, 0x0001},
+{0x001F18, 0x0004},
+{0x001F1E, 0x0001},
+{0x001F20, 0x0004},
+{0x001F46, 0x0001},
+{0x001F48, 0x0004},
+{0x001F4E, 0x0001},
+{0x001F50, 0x0004},
+{0x001F58, 0x0001},
+{0x001F59, 0x0004},
+{0x001F5A, 0x0001},
+{0x001F5B, 0x0004},
+{0x001F5C, 0x0001},
+{0x001F5D, 0x0004},
+{0x001F5E, 0x0001},
+{0x001F5F, 0x0004},
+{0x001F7E, 0x0001},
+{0x001F80, 0x0004},
+{0x001FB5, 0x0001},
+{0x001FB6, 0x0004},
+{0x001FBD, 0x0040},
+{0x001FBE, 0x0004},
+{0x001FBF, 0x0040},
+{0x001FC2, 0x0004},
+{0x001FC5, 0x0001},
+{0x001FC6, 0x0004},
+{0x001FCD, 0x0040},
+{0x001FD0, 0x0004},
+{0x001FD4, 0x0001},
+{0x001FD6, 0x0004},
+{0x001FDC, 0x0001},
+{0x001FDD, 0x0040},
+{0x001FE0, 0x0004},
+{0x001FED, 0x0040},
+{0x001FF0, 0x0001},
+{0x001FF2, 0x0004},
+{0x001FF5, 0x0001},
+{0x001FF6, 0x0004},
+{0x001FFD, 0x0040},
+{0x001FFF, 0x0001},
+{0x002000, 0x0008},
+{0x00200B, 0x0080},
+{0x002010, 0x0020},
+{0x002028, 0x0008},
+{0x00202A, 0x0080},
+{0x00202F, 0x0008},
+{0x002030, 0x0020},
+{0x002044, 0x0040},
+{0x002045, 0x0020},
+{0x002052, 0x0040},
+{0x002053, 0x0020},
+{0x00205F, 0x0008},
+{0x002060, 0x0080},
+{0x002065, 0x0001},
+{0x002066, 0x0080},
+{0x002070, 0x0002},
+{0x002071, 0x0004},
+{0x002072, 0x0001},
+{0x002074, 0x0002},
+{0x00207A, 0x0040},
+{0x00207D, 0x0020},
+{0x00207F, 0x0004},
+{0x002080, 0x0002},
+{0x00208A, 0x0040},
+{0x00208D, 0x0020},
+{0x00208F, 0x0001},
+{0x002090, 0x0004},
+{0x00209D, 0x0001},
+{0x0020A0, 0x0040},
+{0x0020C1, 0x0001},
+{0x0020D0, 0x0010},
+{0x0020F1, 0x0001},
+{0x002100, 0x0040},
+{0x002102, 0x0004},
+{0x002103, 0x0040},
+{0x002107, 0x0004},
+{0x002108, 0x0040},
+{0x00210A, 0x0004},
+{0x002114, 0x0040},
+{0x002115, 0x0004},
+{0x002116, 0x0040},
+{0x002119, 0x0004},
+{0x00211E, 0x0040},
+{0x002124, 0x0004},
+{0x002125, 0x0040},
+{0x002126, 0x0004},
+{0x002127, 0x0040},
+{0x002128, 0x0004},
+{0x002129, 0x0040},
+{0x00212A, 0x0004},
+{0x00212E, 0x0040},
+{0x00212F, 0x0004},
+{0x00213A, 0x0040},
+{0x00213C, 0x0004},
+{0x002140, 0x0040},
+{0x002145, 0x0004},
+{0x00214A, 0x0040},
+{0x00214E, 0x0004},
+{0x00214F, 0x0040},
+{0x002150, 0x0002},
+{0x002183, 0x0004},
+{0x002185, 0x0002},
+{0x00218A, 0x0040},
+{0x00218C, 0x0001},
+{0x002190, 0x0040},
+{0x002308, 0x0020},
+{0x00230C, 0x0040},
+{0x002329, 0x0020},
+{0x00232B, 0x0040},
+{0x002427, 0x0001},
+{0x002440, 0x0040},
+{0x00244B, 0x0001},
+{0x002460, 0x0002},
+{0x00249C, 0x0040},
+{0x0024EA, 0x0002},
+{0x002500, 0x0040},
+{0x002768, 0x0020},
+{0x002776, 0x0002},
+{0x002794, 0x0040},
+{0x0027C5, 0x0020},
+{0x0027C7, 0x0040},
+{0x0027E6, 0x0020},
+{0x0027F0, 0x0040},
+{0x002983, 0x0020},
+{0x002999, 0x0040},
+{0x0029D8, 0x0020},
+{0x0029DC, 0x0040},
+{0x0029FC, 0x0020},
+{0x0029FE, 0x0040},
+{0x002B74, 0x0001},
+{0x002B76, 0x0040},
+{0x002B96, 0x0001},
+{0x002B97, 0x0040},
+{0x002C00, 0x0004},
+{0x002CE5, 0x0040},
+{0x002CEB, 0x0004},
+{0x002CEF, 0x0010},
+{0x002CF2, 0x0004},
+{0x002CF4, 0x0001},
+{0x002CF9, 0x0020},
+{0x002CFD, 0x0002},
+{0x002CFE, 0x0020},
+{0x002D00, 0x0004},
+{0x002D26, 0x0001},
+{0x002D27, 0x0004},
+{0x002D28, 0x0001},
+{0x002D2D, 0x0004},
+{0x002D2E, 0x0001},
+{0x002D30, 0x0004},
+{0x002D68, 0x0001},
+{0x002D6F, 0x0004},
+{0x002D70, 0x0020},
+{0x002D71, 0x0001},
+{0x002D7F, 0x0010},
+{0x002D80, 0x0004},
+{0x002D97, 0x0001},
+{0x002DA0, 0x0004},
+{0x002DA7, 0x0001},
+{0x002DA8, 0x0004},
+{0x002DAF, 0x0001},
+{0x002DB0, 0x0004},
+{0x002DB7, 0x0001},
+{0x002DB8, 0x0004},
+{0x002DBF, 0x0001},
+{0x002DC0, 0x0004},
+{0x002DC7, 0x0001},
+{0x002DC8, 0x0004},
+{0x002DCF, 0x0001},
+{0x002DD0, 0x0004},
+{0x002DD7, 0x0001},
+{0x002DD8, 0x0004},
+{0x002DDF, 0x0001},
+{0x002DE0, 0x0010},
+{0x002E00, 0x0020},
+{0x002E2F, 0x0004},
+{0x002E30, 0x0020},
+{0x002E50, 0x0040},
+{0x002E52, 0x0020},
+{0x002E5E, 0x0001},
+{0x002E80, 0x0040},
+{0x002E9A, 0x0001},
+{0x002E9B, 0x0040},
+{0x002EF4, 0x0001},
+{0x002F00, 0x0040},
+{0x002FD6, 0x0001},
+{0x002FF0, 0x0040},
+{0x003000, 0x0008},
+{0x003001, 0x0020},
+{0x003004, 0x0040},
+{0x003005, 0x0004},
+{0x003007, 0x0002},
+{0x003008, 0x0020},
+{0x003012, 0x0040},
+{0x003014, 0x0020},
+{0x003020, 0x0040},
+{0x003021, 0x0002},
+{0x00302A, 0x0010},
+{0x003030, 0x0020},
+{0x003031, 0x0004},
+{0x003036, 0x0040},
+{0x003038, 0x0002},
+{0x00303B, 0x0004},
+{0x00303D, 0x0020},
+{0x00303E, 0x0040},
+{0x003040, 0x0001},
+{0x003041, 0x0004},
+{0x003097, 0x0001},
+{0x003099, 0x0010},
+{0x00309B, 0x0040},
+{0x00309D, 0x0004},
+{0x0030A0, 0x0020},
+{0x0030A1, 0x0004},
+{0x0030FB, 0x0020},
+{0x0030FC, 0x0004},
+{0x003100, 0x0001},
+{0x003105, 0x0004},
+{0x003130, 0x0001},
+{0x003131, 0x0004},
+{0x00318F, 0x0001},
+{0x003190, 0x0040},
+{0x003192, 0x0002},
+{0x003196, 0x0040},
+{0x0031A0, 0x0004},
+{0x0031C0, 0x0040},
+{0x0031E4, 0x0001},
+{0x0031EF, 0x0040},
+{0x0031F0, 0x0004},
+{0x003200, 0x0040},
+{0x00321F, 0x0001},
+{0x003220, 0x0002},
+{0x00322A, 0x0040},
+{0x003248, 0x0002},
+{0x003250, 0x0040},
+{0x003251, 0x0002},
+{0x003260, 0x0040},
+{0x003280, 0x0002},
+{0x00328A, 0x0040},
+{0x0032B1, 0x0002},
+{0x0032C0, 0x0040},
+{0x003400, 0x0004},
+{0x004DC0, 0x0040},
+{0x004E00, 0x0004},
+{0x00A48D, 0x0001},
+{0x00A490, 0x0040},
+{0x00A4C7, 0x0001},
+{0x00A4D0, 0x0004},
+{0x00A4FE, 0x0020},
+{0x00A500, 0x0004},
+{0x00A60D, 0x0020},
+{0x00A610, 0x0004},
+{0x00A620, 0x0002},
+{0x00A62A, 0x0004},
+{0x00A62C, 0x0001},
+{0x00A640, 0x0004},
+{0x00A66F, 0x0010},
+{0x00A673, 0x0020},
+{0x00A674, 0x0010},
+{0x00A67E, 0x0020},
+{0x00A67F, 0x0004},
+{0x00A69E, 0x0010},
+{0x00A6A0, 0x0004},
+{0x00A6E6, 0x0002},
+{0x00A6F0, 0x0010},
+{0x00A6F2, 0x0020},
+{0x00A6F8, 0x0001},
+{0x00A700, 0x0040},
+{0x00A717, 0x0004},
+{0x00A720, 0x0040},
+{0x00A722, 0x0004},
+{0x00A789, 0x0040},
+{0x00A78B, 0x0004},
+{0x00A7CB, 0x0001},
+{0x00A7D0, 0x0004},
+{0x00A7D2, 0x0001},
+{0x00A7D3, 0x0004},
+{0x00A7D4, 0x0001},
+{0x00A7D5, 0x0004},
+{0x00A7DA, 0x0001},
+{0x00A7F2, 0x0004},
+{0x00A802, 0x0010},
+{0x00A803, 0x0004},
+{0x00A806, 0x0010},
+{0x00A807, 0x0004},
+{0x00A80B, 0x0010},
+{0x00A80C, 0x0004},
+{0x00A823, 0x0010},
+{0x00A828, 0x0040},
+{0x00A82C, 0x0010},
+{0x00A82D, 0x0001},
+{0x00A830, 0x0002},
+{0x00A836, 0x0040},
+{0x00A83A, 0x0001},
+{0x00A840, 0x0004},
+{0x00A874, 0x0020},
+{0x00A878, 0x0001},
+{0x00A880, 0x0010},
+{0x00A882, 0x0004},
+{0x00A8B4, 0x0010},
+{0x00A8C6, 0x0001},
+{0x00A8CE, 0x0020},
+{0x00A8D0, 0x0002},
+{0x00A8DA, 0x0001},
+{0x00A8E0, 0x0010},
+{0x00A8F2, 0x0004},
+{0x00A8F8, 0x0020},
+{0x00A8FB, 0x0004},
+{0x00A8FC, 0x0020},
+{0x00A8FD, 0x0004},
+{0x00A8FF, 0x0010},
+{0x00A900, 0x0002},
+{0x00A90A, 0x0004},
+{0x00A926, 0x0010},
+{0x00A92E, 0x0020},
+{0x00A930, 0x0004},
+{0x00A947, 0x0010},
+{0x00A954, 0x0001},
+{0x00A95F, 0x0020},
+{0x00A960, 0x0004},
+{0x00A97D, 0x0001},
+{0x00A980, 0x0010},
+{0x00A984, 0x0004},
+{0x00A9B3, 0x0010},
+{0x00A9C1, 0x0020},
+{0x00A9CE, 0x0001},
+{0x00A9CF, 0x0004},
+{0x00A9D0, 0x0002},
+{0x00A9DA, 0x0001},
+{0x00A9DE, 0x0020},
+{0x00A9E0, 0x0004},
+{0x00A9E5, 0x0010},
+{0x00A9E6, 0x0004},
+{0x00A9F0, 0x0002},
+{0x00A9FA, 0x0004},
+{0x00A9FF, 0x0001},
+{0x00AA00, 0x0004},
+{0x00AA29, 0x0010},
+{0x00AA37, 0x0001},
+{0x00AA40, 0x0004},
+{0x00AA43, 0x0010},
+{0x00AA44, 0x0004},
+{0x00AA4C, 0x0010},
+{0x00AA4E, 0x0001},
+{0x00AA50, 0x0002},
+{0x00AA5A, 0x0001},
+{0x00AA5C, 0x0020},
+{0x00AA60, 0x0004},
+{0x00AA77, 0x0040},
+{0x00AA7A, 0x0004},
+{0x00AA7B, 0x0010},
+{0x00AA7E, 0x0004},
+{0x00AAB0, 0x0010},
+{0x00AAB1, 0x0004},
+{0x00AAB2, 0x0010},
+{0x00AAB5, 0x0004},
+{0x00AAB7, 0x0010},
+{0x00AAB9, 0x0004},
+{0x00AABE, 0x0010},
+{0x00AAC0, 0x0004},
+{0x00AAC1, 0x0010},
+{0x00AAC2, 0x0004},
+{0x00AAC3, 0x0001},
+{0x00AADB, 0x0004},
+{0x00AADE, 0x0020},
+{0x00AAE0, 0x0004},
+{0x00AAEB, 0x0010},
+{0x00AAF0, 0x0020},
+{0x00AAF2, 0x0004},
+{0x00AAF5, 0x0010},
+{0x00AAF7, 0x0001},
+{0x00AB01, 0x0004},
+{0x00AB07, 0x0001},
+{0x00AB09, 0x0004},
+{0x00AB0F, 0x0001},
+{0x00AB11, 0x0004},
+{0x00AB17, 0x0001},
+{0x00AB20, 0x0004},
+{0x00AB27, 0x0001},
+{0x00AB28, 0x0004},
+{0x00AB2F, 0x0001},
+{0x00AB30, 0x0004},
+{0x00AB5B, 0x0040},
+{0x00AB5C, 0x0004},
+{0x00AB6A, 0x0040},
+{0x00AB6C, 0x0001},
+{0x00AB70, 0x0004},
+{0x00ABE3, 0x0010},
+{0x00ABEB, 0x0020},
+{0x00ABEC, 0x0010},
+{0x00ABEE, 0x0001},
+{0x00ABF0, 0x0002},
+{0x00ABFA, 0x0001},
+{0x00AC00, 0x0004},
+{0x00D7A4, 0x0001},
+{0x00D7B0, 0x0004},
+{0x00D7C7, 0x0001},
+{0x00D7CB, 0x0004},
+{0x00D7FC, 0x0001},
+{0x00D800, 0x0080},
+{0x00F900, 0x0004},
+{0x00FA6E, 0x0001},
+{0x00FA70, 0x0004},
+{0x00FADA, 0x0001},
+{0x00FB00, 0x0004},
+{0x00FB07, 0x0001},
+{0x00FB13, 0x0004},
+{0x00FB18, 0x0001},
+{0x00FB1D, 0x0004},
+{0x00FB1E, 0x0010},
+{0x00FB1F, 0x0004},
+{0x00FB29, 0x0040},
+{0x00FB2A, 0x0004},
+{0x00FB37, 0x0001},
+{0x00FB38, 0x0004},
+{0x00FB3D, 0x0001},
+{0x00FB3E, 0x0004},
+{0x00FB3F, 0x0001},
+{0x00FB40, 0x0004},
+{0x00FB42, 0x0001},
+{0x00FB43, 0x0004},
+{0x00FB45, 0x0001},
+{0x00FB46, 0x0004},
+{0x00FBB2, 0x0040},
+{0x00FBC3, 0x0001},
+{0x00FBD3, 0x0004},
+{0x00FD3E, 0x0020},
+{0x00FD40, 0x0040},
+{0x00FD50, 0x0004},
+{0x00FD90, 0x0001},
+{0x00FD92, 0x0004},
+{0x00FDC8, 0x0001},
+{0x00FDCF, 0x0040},
+{0x00FDD0, 0x0001},
+{0x00FDF0, 0x0004},
+{0x00FDFC, 0x0040},
+{0x00FE00, 0x0010},
+{0x00FE10, 0x0020},
+{0x00FE1A, 0x0001},
+{0x00FE20, 0x0010},
+{0x00FE30, 0x0020},
+{0x00FE53, 0x0001},
+{0x00FE54, 0x0020},
+{0x00FE62, 0x0040},
+{0x00FE63, 0x0020},
+{0x00FE64, 0x0040},
+{0x00FE67, 0x0001},
+{0x00FE68, 0x0020},
+{0x00FE69, 0x0040},
+{0x00FE6A, 0x0020},
+{0x00FE6C, 0x0001},
+{0x00FE70, 0x0004},
+{0x00FE75, 0x0001},
+{0x00FE76, 0x0004},
+{0x00FEFD, 0x0001},
+{0x00FEFF, 0x0080},
+{0x00FF00, 0x0001},
+{0x00FF01, 0x0020},
+{0x00FF04, 0x0040},
+{0x00FF05, 0x0020},
+{0x00FF0B, 0x0040},
+{0x00FF0C, 0x0020},
+{0x00FF10, 0x0002},
+{0x00FF1A, 0x0020},
+{0x00FF1C, 0x0040},
+{0x00FF1F, 0x0020},
+{0x00FF21, 0x0004},
+{0x00FF3B, 0x0020},
+{0x00FF3E, 0x0040},
+{0x00FF3F, 0x0020},
+{0x00FF40, 0x0040},
+{0x00FF41, 0x0004},
+{0x00FF5B, 0x0020},
+{0x00FF5C, 0x0040},
+{0x00FF5D, 0x0020},
+{0x00FF5E, 0x0040},
+{0x00FF5F, 0x0020},
+{0x00FF66, 0x0004},
+{0x00FFBF, 0x0001},
+{0x00FFC2, 0x0004},
+{0x00FFC8, 0x0001},
+{0x00FFCA, 0x0004},
+{0x00FFD0, 0x0001},
+{0x00FFD2, 0x0004},
+{0x00FFD8, 0x0001},
+{0x00FFDA, 0x0004},
+{0x00FFDD, 0x0001},
+{0x00FFE0, 0x0040},
+{0x00FFE7, 0x0001},
+{0x00FFE8, 0x0040},
+{0x00FFEF, 0x0001},
+{0x00FFF9, 0x0080},
+{0x00FFFC, 0x0040},
+{0x00FFFE, 0x0001},
+{0x010000, 0x0004},
+{0x01000C, 0x0001},
+{0x01000D, 0x0004},
+{0x010027, 0x0001},
+{0x010028, 0x0004},
+{0x01003B, 0x0001},
+{0x01003C, 0x0004},
+{0x01003E, 0x0001},
+{0x01003F, 0x0004},
+{0x01004E, 0x0001},
+{0x010050, 0x0004},
+{0x01005E, 0x0001},
+{0x010080, 0x0004},
+{0x0100FB, 0x0001},
+{0x010100, 0x0020},
+{0x010103, 0x0001},
+{0x010107, 0x0002},
+{0x010134, 0x0001},
+{0x010137, 0x0040},
+{0x010140, 0x0002},
+{0x010179, 0x0040},
+{0x01018A, 0x0002},
+{0x01018C, 0x0040},
+{0x01018F, 0x0001},
+{0x010190, 0x0040},
+{0x01019D, 0x0001},
+{0x0101A0, 0x0040},
+{0x0101A1, 0x0001},
+{0x0101D0, 0x0040},
+{0x0101FD, 0x0010},
+{0x0101FE, 0x0001},
+{0x010280, 0x0004},
+{0x01029D, 0x0001},
+{0x0102A0, 0x0004},
+{0x0102D1, 0x0001},
+{0x0102E0, 0x0010},
+{0x0102E1, 0x0002},
+{0x0102FC, 0x0001},
+{0x010300, 0x0004},
+{0x010320, 0x0002},
+{0x010324, 0x0001},
+{0x01032D, 0x0004},
+{0x010341, 0x0002},
+{0x010342, 0x0004},
+{0x01034A, 0x0002},
+{0x01034B, 0x0001},
+{0x010350, 0x0004},
+{0x010376, 0x0010},
+{0x01037B, 0x0001},
+{0x010380, 0x0004},
+{0x01039E, 0x0001},
+{0x01039F, 0x0020},
+{0x0103A0, 0x0004},
+{0x0103C4, 0x0001},
+{0x0103C8, 0x0004},
+{0x0103D0, 0x0020},
+{0x0103D1, 0x0002},
+{0x0103D6, 0x0001},
+{0x010400, 0x0004},
+{0x01049E, 0x0001},
+{0x0104A0, 0x0002},
+{0x0104AA, 0x0001},
+{0x0104B0, 0x0004},
+{0x0104D4, 0x0001},
+{0x0104D8, 0x0004},
+{0x0104FC, 0x0001},
+{0x010500, 0x0004},
+{0x010528, 0x0001},
+{0x010530, 0x0004},
+{0x010564, 0x0001},
+{0x01056F, 0x0020},
+{0x010570, 0x0004},
+{0x01057B, 0x0001},
+{0x01057C, 0x0004},
+{0x01058B, 0x0001},
+{0x01058C, 0x0004},
+{0x010593, 0x0001},
+{0x010594, 0x0004},
+{0x010596, 0x0001},
+{0x010597, 0x0004},
+{0x0105A2, 0x0001},
+{0x0105A3, 0x0004},
+{0x0105B2, 0x0001},
+{0x0105B3, 0x0004},
+{0x0105BA, 0x0001},
+{0x0105BB, 0x0004},
+{0x0105BD, 0x0001},
+{0x010600, 0x0004},
+{0x010737, 0x0001},
+{0x010740, 0x0004},
+{0x010756, 0x0001},
+{0x010760, 0x0004},
+{0x010768, 0x0001},
+{0x010780, 0x0004},
+{0x010786, 0x0001},
+{0x010787, 0x0004},
+{0x0107B1, 0x0001},
+{0x0107B2, 0x0004},
+{0x0107BB, 0x0001},
+{0x010800, 0x0004},
+{0x010806, 0x0001},
+{0x010808, 0x0004},
+{0x010809, 0x0001},
+{0x01080A, 0x0004},
+{0x010836, 0x0001},
+{0x010837, 0x0004},
+{0x010839, 0x0001},
+{0x01083C, 0x0004},
+{0x01083D, 0x0001},
+{0x01083F, 0x0004},
+{0x010856, 0x0001},
+{0x010857, 0x0020},
+{0x010858, 0x0002},
+{0x010860, 0x0004},
+{0x010877, 0x0040},
+{0x010879, 0x0002},
+{0x010880, 0x0004},
+{0x01089F, 0x0001},
+{0x0108A7, 0x0002},
+{0x0108B0, 0x0001},
+{0x0108E0, 0x0004},
+{0x0108F3, 0x0001},
+{0x0108F4, 0x0004},
+{0x0108F6, 0x0001},
+{0x0108FB, 0x0002},
+{0x010900, 0x0004},
+{0x010916, 0x0002},
+{0x01091C, 0x0001},
+{0x01091F, 0x0020},
+{0x010920, 0x0004},
+{0x01093A, 0x0001},
+{0x01093F, 0x0020},
+{0x010940, 0x0001},
+{0x010980, 0x0004},
+{0x0109B8, 0x0001},
+{0x0109BC, 0x0002},
+{0x0109BE, 0x0004},
+{0x0109C0, 0x0002},
+{0x0109D0, 0x0001},
+{0x0109D2, 0x0002},
+{0x010A00, 0x0004},
+{0x010A01, 0x0010},
+{0x010A04, 0x0001},
+{0x010A05, 0x0010},
+{0x010A07, 0x0001},
+{0x010A0C, 0x0010},
+{0x010A10, 0x0004},
+{0x010A14, 0x0001},
+{0x010A15, 0x0004},
+{0x010A18, 0x0001},
+{0x010A19, 0x0004},
+{0x010A36, 0x0001},
+{0x010A38, 0x0010},
+{0x010A3B, 0x0001},
+{0x010A3F, 0x0010},
+{0x010A40, 0x0002},
+{0x010A49, 0x0001},
+{0x010A50, 0x0020},
+{0x010A59, 0x0001},
+{0x010A60, 0x0004},
+{0x010A7D, 0x0002},
+{0x010A7F, 0x0020},
+{0x010A80, 0x0004},
+{0x010A9D, 0x0002},
+{0x010AA0, 0x0001},
+{0x010AC0, 0x0004},
+{0x010AC8, 0x0040},
+{0x010AC9, 0x0004},
+{0x010AE5, 0x0010},
+{0x010AE7, 0x0001},
+{0x010AEB, 0x0002},
+{0x010AF0, 0x0020},
+{0x010AF7, 0x0001},
+{0x010B00, 0x0004},
+{0x010B36, 0x0001},
+{0x010B39, 0x0020},
+{0x010B40, 0x0004},
+{0x010B56, 0x0001},
+{0x010B58, 0x0002},
+{0x010B60, 0x0004},
+{0x010B73, 0x0001},
+{0x010B78, 0x0002},
+{0x010B80, 0x0004},
+{0x010B92, 0x0001},
+{0x010B99, 0x0020},
+{0x010B9D, 0x0001},
+{0x010BA9, 0x0002},
+{0x010BB0, 0x0001},
+{0x010C00, 0x0004},
+{0x010C49, 0x0001},
+{0x010C80, 0x0004},
+{0x010CB3, 0x0001},
+{0x010CC0, 0x0004},
+{0x010CF3, 0x0001},
+{0x010CFA, 0x0002},
+{0x010D00, 0x0004},
+{0x010D24, 0x0010},
+{0x010D28, 0x0001},
+{0x010D30, 0x0002},
+{0x010D3A, 0x0001},
+{0x010E60, 0x0002},
+{0x010E7F, 0x0001},
+{0x010E80, 0x0004},
+{0x010EAA, 0x0001},
+{0x010EAB, 0x0010},
+{0x010EAD, 0x0020},
+{0x010EAE, 0x0001},
+{0x010EB0, 0x0004},
+{0x010EB2, 0x0001},
+{0x010EFD, 0x0010},
+{0x010F00, 0x0004},
+{0x010F1D, 0x0002},
+{0x010F27, 0x0004},
+{0x010F28, 0x0001},
+{0x010F30, 0x0004},
+{0x010F46, 0x0010},
+{0x010F51, 0x0002},
+{0x010F55, 0x0020},
+{0x010F5A, 0x0001},
+{0x010F70, 0x0004},
+{0x010F82, 0x0010},
+{0x010F86, 0x0020},
+{0x010F8A, 0x0001},
+{0x010FB0, 0x0004},
+{0x010FC5, 0x0002},
+{0x010FCC, 0x0001},
+{0x010FE0, 0x0004},
+{0x010FF7, 0x0001},
+{0x011000, 0x0010},
+{0x011003, 0x0004},
+{0x011038, 0x0010},
+{0x011047, 0x0020},
+{0x01104E, 0x0001},
+{0x011052, 0x0002},
+{0x011070, 0x0010},
+{0x011071, 0x0004},
+{0x011073, 0x0010},
+{0x011075, 0x0004},
+{0x011076, 0x0001},
+{0x01107F, 0x0010},
+{0x011083, 0x0004},
+{0x0110B0, 0x0010},
+{0x0110BB, 0x0020},
+{0x0110BD, 0x0080},
+{0x0110BE, 0x0020},
+{0x0110C2, 0x0010},
+{0x0110C3, 0x0001},
+{0x0110CD, 0x0080},
+{0x0110CE, 0x0001},
+{0x0110D0, 0x0004},
+{0x0110E9, 0x0001},
+{0x0110F0, 0x0002},
+{0x0110FA, 0x0001},
+{0x011100, 0x0010},
+{0x011103, 0x0004},
+{0x011127, 0x0010},
+{0x011135, 0x0001},
+{0x011136, 0x0002},
+{0x011140, 0x0020},
+{0x011144, 0x0004},
+{0x011145, 0x0010},
+{0x011147, 0x0004},
+{0x011148, 0x0001},
+{0x011150, 0x0004},
+{0x011173, 0x0010},
+{0x011174, 0x0020},
+{0x011176, 0x0004},
+{0x011177, 0x0001},
+{0x011180, 0x0010},
+{0x011183, 0x0004},
+{0x0111B3, 0x0010},
+{0x0111C1, 0x0004},
+{0x0111C5, 0x0020},
+{0x0111C9, 0x0010},
+{0x0111CD, 0x0020},
+{0x0111CE, 0x0010},
+{0x0111D0, 0x0002},
+{0x0111DA, 0x0004},
+{0x0111DB, 0x0020},
+{0x0111DC, 0x0004},
+{0x0111DD, 0x0020},
+{0x0111E0, 0x0001},
+{0x0111E1, 0x0002},
+{0x0111F5, 0x0001},
+{0x011200, 0x0004},
+{0x011212, 0x0001},
+{0x011213, 0x0004},
+{0x01122C, 0x0010},
+{0x011238, 0x0020},
+{0x01123E, 0x0010},
+{0x01123F, 0x0004},
+{0x011241, 0x0010},
+{0x011242, 0x0001},
+{0x011280, 0x0004},
+{0x011287, 0x0001},
+{0x011288, 0x0004},
+{0x011289, 0x0001},
+{0x01128A, 0x0004},
+{0x01128E, 0x0001},
+{0x01128F, 0x0004},
+{0x01129E, 0x0001},
+{0x01129F, 0x0004},
+{0x0112A9, 0x0020},
+{0x0112AA, 0x0001},
+{0x0112B0, 0x0004},
+{0x0112DF, 0x0010},
+{0x0112EB, 0x0001},
+{0x0112F0, 0x0002},
+{0x0112FA, 0x0001},
+{0x011300, 0x0010},
+{0x011304, 0x0001},
+{0x011305, 0x0004},
+{0x01130D, 0x0001},
+{0x01130F, 0x0004},
+{0x011311, 0x0001},
+{0x011313, 0x0004},
+{0x011329, 0x0001},
+{0x01132A, 0x0004},
+{0x011331, 0x0001},
+{0x011332, 0x0004},
+{0x011334, 0x0001},
+{0x011335, 0x0004},
+{0x01133A, 0x0001},
+{0x01133B, 0x0010},
+{0x01133D, 0x0004},
+{0x01133E, 0x0010},
+{0x011345, 0x0001},
+{0x011347, 0x0010},
+{0x011349, 0x0001},
+{0x01134B, 0x0010},
+{0x01134E, 0x0001},
+{0x011350, 0x0004},
+{0x011351, 0x0001},
+{0x011357, 0x0010},
+{0x011358, 0x0001},
+{0x01135D, 0x0004},
+{0x011362, 0x0010},
+{0x011364, 0x0001},
+{0x011366, 0x0010},
+{0x01136D, 0x0001},
+{0x011370, 0x0010},
+{0x011375, 0x0001},
+{0x011400, 0x0004},
+{0x011435, 0x0010},
+{0x011447, 0x0004},
+{0x01144B, 0x0020},
+{0x011450, 0x0002},
+{0x01145A, 0x0020},
+{0x01145C, 0x0001},
+{0x01145D, 0x0020},
+{0x01145E, 0x0010},
+{0x01145F, 0x0004},
+{0x011462, 0x0001},
+{0x011480, 0x0004},
+{0x0114B0, 0x0010},
+{0x0114C4, 0x0004},
+{0x0114C6, 0x0020},
+{0x0114C7, 0x0004},
+{0x0114C8, 0x0001},
+{0x0114D0, 0x0002},
+{0x0114DA, 0x0001},
+{0x011580, 0x0004},
+{0x0115AF, 0x0010},
+{0x0115B6, 0x0001},
+{0x0115B8, 0x0010},
+{0x0115C1, 0x0020},
+{0x0115D8, 0x0004},
+{0x0115DC, 0x0010},
+{0x0115DE, 0x0001},
+{0x011600, 0x0004},
+{0x011630, 0x0010},
+{0x011641, 0x0020},
+{0x011644, 0x0004},
+{0x011645, 0x0001},
+{0x011650, 0x0002},
+{0x01165A, 0x0001},
+{0x011660, 0x0020},
+{0x01166D, 0x0001},
+{0x011680, 0x0004},
+{0x0116AB, 0x0010},
+{0x0116B8, 0x0004},
+{0x0116B9, 0x0020},
+{0x0116BA, 0x0001},
+{0x0116C0, 0x0002},
+{0x0116CA, 0x0001},
+{0x011700, 0x0004},
+{0x01171B, 0x0001},
+{0x01171D, 0x0010},
+{0x01172C, 0x0001},
+{0x011730, 0x0002},
+{0x01173C, 0x0020},
+{0x01173F, 0x0040},
+{0x011740, 0x0004},
+{0x011747, 0x0001},
+{0x011800, 0x0004},
+{0x01182C, 0x0010},
+{0x01183B, 0x0020},
+{0x01183C, 0x0001},
+{0x0118A0, 0x0004},
+{0x0118E0, 0x0002},
+{0x0118F3, 0x0001},
+{0x0118FF, 0x0004},
+{0x011907, 0x0001},
+{0x011909, 0x0004},
+{0x01190A, 0x0001},
+{0x01190C, 0x0004},
+{0x011914, 0x0001},
+{0x011915, 0x0004},
+{0x011917, 0x0001},
+{0x011918, 0x0004},
+{0x011930, 0x0010},
+{0x011936, 0x0001},
+{0x011937, 0x0010},
+{0x011939, 0x0001},
+{0x01193B, 0x0010},
+{0x01193F, 0x0004},
+{0x011940, 0x0010},
+{0x011941, 0x0004},
+{0x011942, 0x0010},
+{0x011944, 0x0020},
+{0x011947, 0x0001},
+{0x011950, 0x0002},
+{0x01195A, 0x0001},
+{0x0119A0, 0x0004},
+{0x0119A8, 0x0001},
+{0x0119AA, 0x0004},
+{0x0119D1, 0x0010},
+{0x0119D8, 0x0001},
+{0x0119DA, 0x0010},
+{0x0119E1, 0x0004},
+{0x0119E2, 0x0020},
+{0x0119E3, 0x0004},
+{0x0119E4, 0x0010},
+{0x0119E5, 0x0001},
+{0x011A00, 0x0004},
+{0x011A01, 0x0010},
+{0x011A0B, 0x0004},
+{0x011A33, 0x0010},
+{0x011A3A, 0x0004},
+{0x011A3B, 0x0010},
+{0x011A3F, 0x0020},
+{0x011A47, 0x0010},
+{0x011A48, 0x0001},
+{0x011A50, 0x0004},
+{0x011A51, 0x0010},
+{0x011A5C, 0x0004},
+{0x011A8A, 0x0010},
+{0x011A9A, 0x0020},
+{0x011A9D, 0x0004},
+{0x011A9E, 0x0020},
+{0x011AA3, 0x0001},
+{0x011AB0, 0x0004},
+{0x011AF9, 0x0001},
+{0x011B00, 0x0020},
+{0x011B0A, 0x0001},
+{0x011C00, 0x0004},
+{0x011C09, 0x0001},
+{0x011C0A, 0x0004},
+{0x011C2F, 0x0010},
+{0x011C37, 0x0001},
+{0x011C38, 0x0010},
+{0x011C40, 0x0004},
+{0x011C41, 0x0020},
+{0x011C46, 0x0001},
+{0x011C50, 0x0002},
+{0x011C6D, 0x0001},
+{0x011C70, 0x0020},
+{0x011C72, 0x0004},
+{0x011C90, 0x0001},
+{0x011C92, 0x0010},
+{0x011CA8, 0x0001},
+{0x011CA9, 0x0010},
+{0x011CB7, 0x0001},
+{0x011D00, 0x0004},
+{0x011D07, 0x0001},
+{0x011D08, 0x0004},
+{0x011D0A, 0x0001},
+{0x011D0B, 0x0004},
+{0x011D31, 0x0010},
+{0x011D37, 0x0001},
+{0x011D3A, 0x0010},
+{0x011D3B, 0x0001},
+{0x011D3C, 0x0010},
+{0x011D3E, 0x0001},
+{0x011D3F, 0x0010},
+{0x011D46, 0x0004},
+{0x011D47, 0x0010},
+{0x011D48, 0x0001},
+{0x011D50, 0x0002},
+{0x011D5A, 0x0001},
+{0x011D60, 0x0004},
+{0x011D66, 0x0001},
+{0x011D67, 0x0004},
+{0x011D69, 0x0001},
+{0x011D6A, 0x0004},
+{0x011D8A, 0x0010},
+{0x011D8F, 0x0001},
+{0x011D90, 0x0010},
+{0x011D92, 0x0001},
+{0x011D93, 0x0010},
+{0x011D98, 0x0004},
+{0x011D99, 0x0001},
+{0x011DA0, 0x0002},
+{0x011DAA, 0x0001},
+{0x011EE0, 0x0004},
+{0x011EF3, 0x0010},
+{0x011EF7, 0x0020},
+{0x011EF9, 0x0001},
+{0x011F00, 0x0010},
+{0x011F02, 0x0004},
+{0x011F03, 0x0010},
+{0x011F04, 0x0004},
+{0x011F11, 0x0001},
+{0x011F12, 0x0004},
+{0x011F34, 0x0010},
+{0x011F3B, 0x0001},
+{0x011F3E, 0x0010},
+{0x011F43, 0x0020},
+{0x011F50, 0x0002},
+{0x011F5A, 0x0001},
+{0x011FB0, 0x0004},
+{0x011FB1, 0x0001},
+{0x011FC0, 0x0002},
+{0x011FD5, 0x0040},
+{0x011FF2, 0x0001},
+{0x011FFF, 0x0020},
+{0x012000, 0x0004},
+{0x01239A, 0x0001},
+{0x012400, 0x0002},
+{0x01246F, 0x0001},
+{0x012470, 0x0020},
+{0x012475, 0x0001},
+{0x012480, 0x0004},
+{0x012544, 0x0001},
+{0x012F90, 0x0004},
+{0x012FF1, 0x0020},
+{0x012FF3, 0x0001},
+{0x013000, 0x0004},
+{0x013430, 0x0080},
+{0x013440, 0x0010},
+{0x013441, 0x0004},
+{0x013447, 0x0010},
+{0x013456, 0x0001},
+{0x014400, 0x0004},
+{0x014647, 0x0001},
+{0x016800, 0x0004},
+{0x016A39, 0x0001},
+{0x016A40, 0x0004},
+{0x016A5F, 0x0001},
+{0x016A60, 0x0002},
+{0x016A6A, 0x0001},
+{0x016A6E, 0x0020},
+{0x016A70, 0x0004},
+{0x016ABF, 0x0001},
+{0x016AC0, 0x0002},
+{0x016ACA, 0x0001},
+{0x016AD0, 0x0004},
+{0x016AEE, 0x0001},
+{0x016AF0, 0x0010},
+{0x016AF5, 0x0020},
+{0x016AF6, 0x0001},
+{0x016B00, 0x0004},
+{0x016B30, 0x0010},
+{0x016B37, 0x0020},
+{0x016B3C, 0x0040},
+{0x016B40, 0x0004},
+{0x016B44, 0x0020},
+{0x016B45, 0x0040},
+{0x016B46, 0x0001},
+{0x016B50, 0x0002},
+{0x016B5A, 0x0001},
+{0x016B5B, 0x0002},
+{0x016B62, 0x0001},
+{0x016B63, 0x0004},
+{0x016B78, 0x0001},
+{0x016B7D, 0x0004},
+{0x016B90, 0x0001},
+{0x016E40, 0x0004},
+{0x016E80, 0x0002},
+{0x016E97, 0x0020},
+{0x016E9B, 0x0001},
+{0x016F00, 0x0004},
+{0x016F4B, 0x0001},
+{0x016F4F, 0x0010},
+{0x016F50, 0x0004},
+{0x016F51, 0x0010},
+{0x016F88, 0x0001},
+{0x016F8F, 0x0010},
+{0x016F93, 0x0004},
+{0x016FA0, 0x0001},
+{0x016FE0, 0x0004},
+{0x016FE2, 0x0020},
+{0x016FE3, 0x0004},
+{0x016FE4, 0x0010},
+{0x016FE5, 0x0001},
+{0x016FF0, 0x0010},
+{0x016FF2, 0x0001},
+{0x017000, 0x0004},
+{0x0187F8, 0x0001},
+{0x018800, 0x0004},
+{0x018CD6, 0x0001},
+{0x018D00, 0x0004},
+{0x018D09, 0x0001},
+{0x01AFF0, 0x0004},
+{0x01AFF4, 0x0001},
+{0x01AFF5, 0x0004},
+{0x01AFFC, 0x0001},
+{0x01AFFD, 0x0004},
+{0x01AFFF, 0x0001},
+{0x01B000, 0x0004},
+{0x01B123, 0x0001},
+{0x01B132, 0x0004},
+{0x01B133, 0x0001},
+{0x01B150, 0x0004},
+{0x01B153, 0x0001},
+{0x01B155, 0x0004},
+{0x01B156, 0x0001},
+{0x01B164, 0x0004},
+{0x01B168, 0x0001},
+{0x01B170, 0x0004},
+{0x01B2FC, 0x0001},
+{0x01BC00, 0x0004},
+{0x01BC6B, 0x0001},
+{0x01BC70, 0x0004},
+{0x01BC7D, 0x0001},
+{0x01BC80, 0x0004},
+{0x01BC89, 0x0001},
+{0x01BC90, 0x0004},
+{0x01BC9A, 0x0001},
+{0x01BC9C, 0x0040},
+{0x01BC9D, 0x0010},
+{0x01BC9F, 0x0020},
+{0x01BCA0, 0x0080},
+{0x01BCA4, 0x0001},
+{0x01CF00, 0x0010},
+{0x01CF2E, 0x0001},
+{0x01CF30, 0x0010},
+{0x01CF47, 0x0001},
+{0x01CF50, 0x0040},
+{0x01CFC4, 0x0001},
+{0x01D000, 0x0040},
+{0x01D0F6, 0x0001},
+{0x01D100, 0x0040},
+{0x01D127, 0x0001},
+{0x01D129, 0x0040},
+{0x01D165, 0x0010},
+{0x01D16A, 0x0040},
+{0x01D16D, 0x0010},
+{0x01D173, 0x0080},
+{0x01D17B, 0x0010},
+{0x01D183, 0x0040},
+{0x01D185, 0x0010},
+{0x01D18C, 0x0040},
+{0x01D1AA, 0x0010},
+{0x01D1AE, 0x0040},
+{0x01D1EB, 0x0001},
+{0x01D200, 0x0040},
+{0x01D242, 0x0010},
+{0x01D245, 0x0040},
+{0x01D246, 0x0001},
+{0x01D2C0, 0x0002},
+{0x01D2D4, 0x0001},
+{0x01D2E0, 0x0002},
+{0x01D2F4, 0x0001},
+{0x01D300, 0x0040},
+{0x01D357, 0x0001},
+{0x01D360, 0x0002},
+{0x01D379, 0x0001},
+{0x01D400, 0x0004},
+{0x01D455, 0x0001},
+{0x01D456, 0x0004},
+{0x01D49D, 0x0001},
+{0x01D49E, 0x0004},
+{0x01D4A0, 0x0001},
+{0x01D4A2, 0x0004},
+{0x01D4A3, 0x0001},
+{0x01D4A5, 0x0004},
+{0x01D4A7, 0x0001},
+{0x01D4A9, 0x0004},
+{0x01D4AD, 0x0001},
+{0x01D4AE, 0x0004},
+{0x01D4BA, 0x0001},
+{0x01D4BB, 0x0004},
+{0x01D4BC, 0x0001},
+{0x01D4BD, 0x0004},
+{0x01D4C4, 0x0001},
+{0x01D4C5, 0x0004},
+{0x01D506, 0x0001},
+{0x01D507, 0x0004},
+{0x01D50B, 0x0001},
+{0x01D50D, 0x0004},
+{0x01D515, 0x0001},
+{0x01D516, 0x0004},
+{0x01D51D, 0x0001},
+{0x01D51E, 0x0004},
+{0x01D53A, 0x0001},
+{0x01D53B, 0x0004},
+{0x01D53F, 0x0001},
+{0x01D540, 0x0004},
+{0x01D545, 0x0001},
+{0x01D546, 0x0004},
+{0x01D547, 0x0001},
+{0x01D54A, 0x0004},
+{0x01D551, 0x0001},
+{0x01D552, 0x0004},
+{0x01D6A6, 0x0001},
+{0x01D6A8, 0x0004},
+{0x01D6C1, 0x0040},
+{0x01D6C2, 0x0004},
+{0x01D6DB, 0x0040},
+{0x01D6DC, 0x0004},
+{0x01D6FB, 0x0040},
+{0x01D6FC, 0x0004},
+{0x01D715, 0x0040},
+{0x01D716, 0x0004},
+{0x01D735, 0x0040},
+{0x01D736, 0x0004},
+{0x01D74F, 0x0040},
+{0x01D750, 0x0004},
+{0x01D76F, 0x0040},
+{0x01D770, 0x0004},
+{0x01D789, 0x0040},
+{0x01D78A, 0x0004},
+{0x01D7A9, 0x0040},
+{0x01D7AA, 0x0004},
+{0x01D7C3, 0x0040},
+{0x01D7C4, 0x0004},
+{0x01D7CC, 0x0001},
+{0x01D7CE, 0x0002},
+{0x01D800, 0x0040},
+{0x01DA00, 0x0010},
+{0x01DA37, 0x0040},
+{0x01DA3B, 0x0010},
+{0x01DA6D, 0x0040},
+{0x01DA75, 0x0010},
+{0x01DA76, 0x0040},
+{0x01DA84, 0x0010},
+{0x01DA85, 0x0040},
+{0x01DA87, 0x0020},
+{0x01DA8C, 0x0001},
+{0x01DA9B, 0x0010},
+{0x01DAA0, 0x0001},
+{0x01DAA1, 0x0010},
+{0x01DAB0, 0x0001},
+{0x01DF00, 0x0004},
+{0x01DF1F, 0x0001},
+{0x01DF25, 0x0004},
+{0x01DF2B, 0x0001},
+{0x01E000, 0x0010},
+{0x01E007, 0x0001},
+{0x01E008, 0x0010},
+{0x01E019, 0x0001},
+{0x01E01B, 0x0010},
+{0x01E022, 0x0001},
+{0x01E023, 0x0010},
+{0x01E025, 0x0001},
+{0x01E026, 0x0010},
+{0x01E02B, 0x0001},
+{0x01E030, 0x0004},
+{0x01E06E, 0x0001},
+{0x01E08F, 0x0010},
+{0x01E090, 0x0001},
+{0x01E100, 0x0004},
+{0x01E12D, 0x0001},
+{0x01E130, 0x0010},
+{0x01E137, 0x0004},
+{0x01E13E, 0x0001},
+{0x01E140, 0x0002},
+{0x01E14A, 0x0001},
+{0x01E14E, 0x0004},
+{0x01E14F, 0x0040},
+{0x01E150, 0x0001},
+{0x01E290, 0x0004},
+{0x01E2AE, 0x0010},
+{0x01E2AF, 0x0001},
+{0x01E2C0, 0x0004},
+{0x01E2EC, 0x0010},
+{0x01E2F0, 0x0002},
+{0x01E2FA, 0x0001},
+{0x01E2FF, 0x0040},
+{0x01E300, 0x0001},
+{0x01E4D0, 0x0004},
+{0x01E4EC, 0x0010},
+{0x01E4F0, 0x0002},
+{0x01E4FA, 0x0001},
+{0x01E7E0, 0x0004},
+{0x01E7E7, 0x0001},
+{0x01E7E8, 0x0004},
+{0x01E7EC, 0x0001},
+{0x01E7ED, 0x0004},
+{0x01E7EF, 0x0001},
+{0x01E7F0, 0x0004},
+{0x01E7FF, 0x0001},
+{0x01E800, 0x0004},
+{0x01E8C5, 0x0001},
+{0x01E8C7, 0x0002},
+{0x01E8D0, 0x0010},
+{0x01E8D7, 0x0001},
+{0x01E900, 0x0004},
+{0x01E944, 0x0010},
+{0x01E94B, 0x0004},
+{0x01E94C, 0x0001},
+{0x01E950, 0x0002},
+{0x01E95A, 0x0001},
+{0x01E95E, 0x0020},
+{0x01E960, 0x0001},
+{0x01EC71, 0x0002},
+{0x01ECAC, 0x0040},
+{0x01ECAD, 0x0002},
+{0x01ECB0, 0x0040},
+{0x01ECB1, 0x0002},
+{0x01ECB5, 0x0001},
+{0x01ED01, 0x0002},
+{0x01ED2E, 0x0040},
+{0x01ED2F, 0x0002},
+{0x01ED3E, 0x0001},
+{0x01EE00, 0x0004},
+{0x01EE04, 0x0001},
+{0x01EE05, 0x0004},
+{0x01EE20, 0x0001},
+{0x01EE21, 0x0004},
+{0x01EE23, 0x0001},
+{0x01EE24, 0x0004},
+{0x01EE25, 0x0001},
+{0x01EE27, 0x0004},
+{0x01EE28, 0x0001},
+{0x01EE29, 0x0004},
+{0x01EE33, 0x0001},
+{0x01EE34, 0x0004},
+{0x01EE38, 0x0001},
+{0x01EE39, 0x0004},
+{0x01EE3A, 0x0001},
+{0x01EE3B, 0x0004},
+{0x01EE3C, 0x0001},
+{0x01EE42, 0x0004},
+{0x01EE43, 0x0001},
+{0x01EE47, 0x0004},
+{0x01EE48, 0x0001},
+{0x01EE49, 0x0004},
+{0x01EE4A, 0x0001},
+{0x01EE4B, 0x0004},
+{0x01EE4C, 0x0001},
+{0x01EE4D, 0x0004},
+{0x01EE50, 0x0001},
+{0x01EE51, 0x0004},
+{0x01EE53, 0x0001},
+{0x01EE54, 0x0004},
+{0x01EE55, 0x0001},
+{0x01EE57, 0x0004},
+{0x01EE58, 0x0001},
+{0x01EE59, 0x0004},
+{0x01EE5A, 0x0001},
+{0x01EE5B, 0x0004},
+{0x01EE5C, 0x0001},
+{0x01EE5D, 0x0004},
+{0x01EE5E, 0x0001},
+{0x01EE5F, 0x0004},
+{0x01EE60, 0x0001},
+{0x01EE61, 0x0004},
+{0x01EE63, 0x0001},
+{0x01EE64, 0x0004},
+{0x01EE65, 0x0001},
+{0x01EE67, 0x0004},
+{0x01EE6B, 0x0001},
+{0x01EE6C, 0x0004},
+{0x01EE73, 0x0001},
+{0x01EE74, 0x0004},
+{0x01EE78, 0x0001},
+{0x01EE79, 0x0004},
+{0x01EE7D, 0x0001},
+{0x01EE7E, 0x0004},
+{0x01EE7F, 0x0001},
+{0x01EE80, 0x0004},
+{0x01EE8A, 0x0001},
+{0x01EE8B, 0x0004},
+{0x01EE9C, 0x0001},
+{0x01EEA1, 0x0004},
+{0x01EEA4, 0x0001},
+{0x01EEA5, 0x0004},
+{0x01EEAA, 0x0001},
+{0x01EEAB, 0x0004},
+{0x01EEBC, 0x0001},
+{0x01EEF0, 0x0040},
+{0x01EEF2, 0x0001},
+{0x01F000, 0x0040},
+{0x01F02C, 0x0001},
+{0x01F030, 0x0040},
+{0x01F094, 0x0001},
+{0x01F0A0, 0x0040},
+{0x01F0AF, 0x0001},
+{0x01F0B1, 0x0040},
+{0x01F0C0, 0x0001},
+{0x01F0C1, 0x0040},
+{0x01F0D0, 0x0001},
+{0x01F0D1, 0x0040},
+{0x01F0F6, 0x0001},
+{0x01F100, 0x0002},
+{0x01F10D, 0x0040},
+{0x01F1AE, 0x0001},
+{0x01F1E6, 0x0040},
+{0x01F203, 0x0001},
+{0x01F210, 0x0040},
+{0x01F23C, 0x0001},
+{0x01F240, 0x0040},
+{0x01F249, 0x0001},
+{0x01F250, 0x0040},
+{0x01F252, 0x0001},
+{0x01F260, 0x0040},
+{0x01F266, 0x0001},
+{0x01F300, 0x0040},
+{0x01F6D8, 0x0001},
+{0x01F6DC, 0x0040},
+{0x01F6ED, 0x0001},
+{0x01F6F0, 0x0040},
+{0x01F6FD, 0x0001},
+{0x01F700, 0x0040},
+{0x01F777, 0x0001},
+{0x01F77B, 0x0040},
+{0x01F7DA, 0x0001},
+{0x01F7E0, 0x0040},
+{0x01F7EC, 0x0001},
+{0x01F7F0, 0x0040},
+{0x01F7F1, 0x0001},
+{0x01F800, 0x0040},
+{0x01F80C, 0x0001},
+{0x01F810, 0x0040},
+{0x01F848, 0x0001},
+{0x01F850, 0x0040},
+{0x01F85A, 0x0001},
+{0x01F860, 0x0040},
+{0x01F888, 0x0001},
+{0x01F890, 0x0040},
+{0x01F8AE, 0x0001},
+{0x01F8B0, 0x0040},
+{0x01F8B2, 0x0001},
+{0x01F900, 0x0040},
+{0x01FA54, 0x0001},
+{0x01FA60, 0x0040},
+{0x01FA6E, 0x0001},
+{0x01FA70, 0x0040},
+{0x01FA7D, 0x0001},
+{0x01FA80, 0x0040},
+{0x01FA89, 0x0001},
+{0x01FA90, 0x0040},
+{0x01FABE, 0x0001},
+{0x01FABF, 0x0040},
+{0x01FAC6, 0x0001},
+{0x01FACE, 0x0040},
+{0x01FADC, 0x0001},
+{0x01FAE0, 0x0040},
+{0x01FAE9, 0x0001},
+{0x01FAF0, 0x0040},
+{0x01FAF9, 0x0001},
+{0x01FB00, 0x0040},
+{0x01FB93, 0x0001},
+{0x01FB94, 0x0040},
+{0x01FBCB, 0x0001},
+{0x01FBF0, 0x0002},
+{0x01FBFA, 0x0001},
+{0x020000, 0x0004},
+{0x02A6E0, 0x0001},
+{0x02A700, 0x0004},
+{0x02B73A, 0x0001},
+{0x02B740, 0x0004},
+{0x02B81E, 0x0001},
+{0x02B820, 0x0004},
+{0x02CEA2, 0x0001},
+{0x02CEB0, 0x0004},
+{0x02EBE1, 0x0001},
+{0x02EBF0, 0x0004},
+{0x02EE5E, 0x0001},
+{0x02F800, 0x0004},
+{0x02FA1E, 0x0001},
+{0x030000, 0x0004},
+{0x03134B, 0x0001},
+{0x031350, 0x0004},
+{0x0323B0, 0x0001},
+{0x0E0001, 0x0080},
+{0x0E0002, 0x0001},
+{0x0E0020, 0x0080},
+{0x0E0080, 0x0001},
+{0x0E0100, 0x0010},
+{0x0E01F0, 0x0001},
+{0x0F0000, 0x0080},
+{0x0FFFFE, 0x0001},
+{0x100000, 0x0080},
+{0x10FFFE, 0x0001},
+{0x110000, 0x0000},
+};
+
+const std::unordered_set<uint32_t> unicode_set_whitespace = {
+0x000009,
+0x00000A,
+0x00000B,
+0x00000C,
+0x00000D,
+0x000020,
+0x000085,
+0x0000A0,
+0x001680,
+0x002000,
+0x002001,
+0x002002,
+0x002003,
+0x002004,
+0x002005,
+0x002006,
+0x002007,
+0x002008,
+0x002009,
+0x00200A,
+0x002028,
+0x002029,
+0x00202F,
+0x00205F,
+0x003000,
+};
+
+const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase = {
+{0x000041, 0x000061},
+{0x000042, 0x000062},
+{0x000043, 0x000063},
+{0x000044, 0x000064},
+{0x000045, 0x000065},
+{0x000046, 0x000066},
+{0x000047, 0x000067},
+{0x000048, 0x000068},
+{0x000049, 0x000069},
+{0x00004A, 0x00006A},
+{0x00004B, 0x00006B},
+{0x00004C, 0x00006C},
+{0x00004D, 0x00006D},
+{0x00004E, 0x00006E},
+{0x00004F, 0x00006F},
+{0x000050, 0x000070},
+{0x000051, 0x000071},
+{0x000052, 0x000072},
+{0x000053, 0x000073},
+{0x000054, 0x000074},
+{0x000055, 0x000075},
+{0x000056, 0x000076},
+{0x000057, 0x000077},
+{0x000058, 0x000078},
+{0x000059, 0x000079},
+{0x00005A, 0x00007A},
+{0x0000C0, 0x0000E0},
+{0x0000C1, 0x0000E1},
+{0x0000C2, 0x0000E2},
+{0x0000C3, 0x0000E3},
+{0x0000C4, 0x0000E4},
+{0x0000C5, 0x0000E5},
+{0x0000C6, 0x0000E6},
+{0x0000C7, 0x0000E7},
+{0x0000C8, 0x0000E8},
+{0x0000C9, 0x0000E9},
+{0x0000CA, 0x0000EA},
+{0x0000CB, 0x0000EB},
+{0x0000CC, 0x0000EC},
+{0x0000CD, 0x0000ED},
+{0x0000CE, 0x0000EE},
+{0x0000CF, 0x0000EF},
+{0x0000D0, 0x0000F0},
+{0x0000D1, 0x0000F1},
+{0x0000D2, 0x0000F2},
+{0x0000D3, 0x0000F3},
+{0x0000D4, 0x0000F4},
+{0x0000D5, 0x0000F5},
+{0x0000D6, 0x0000F6},
+{0x0000D8, 0x0000F8},
+{0x0000D9, 0x0000F9},
+{0x0000DA, 0x0000FA},
+{0x0000DB, 0x0000FB},
+{0x0000DC, 0x0000FC},
+{0x0000DD, 0x0000FD},
+{0x0000DE, 0x0000FE},
+{0x000100, 0x000101},
+{0x000102, 0x000103},
+{0x000104, 0x000105},
+{0x000106, 0x000107},
+{0x000108, 0x000109},
+{0x00010A, 0x00010B},
+{0x00010C, 0x00010D},
+{0x00010E, 0x00010F},
+{0x000110, 0x000111},
+{0x000112, 0x000113},
+{0x000114, 0x000115},
+{0x000116, 0x000117},
+{0x000118, 0x000119},
+{0x00011A, 0x00011B},
+{0x00011C, 0x00011D},
+{0x00011E, 0x00011F},
+{0x000120, 0x000121},
+{0x000122, 0x000123},
+{0x000124, 0x000125},
+{0x000126, 0x000127},
+{0x000128, 0x000129},
+{0x00012A, 0x00012B},
+{0x00012C, 0x00012D},
+{0x00012E, 0x00012F},
+{0x000130, 0x000069},
+{0x000132, 0x000133},
+{0x000134, 0x000135},
+{0x000136, 0x000137},
+{0x000139, 0x00013A},
+{0x00013B, 0x00013C},
+{0x00013D, 0x00013E},
+{0x00013F, 0x000140},
+{0x000141, 0x000142},
+{0x000143, 0x000144},
+{0x000145, 0x000146},
+{0x000147, 0x000148},
+{0x00014A, 0x00014B},
+{0x00014C, 0x00014D},
+{0x00014E, 0x00014F},
+{0x000150, 0x000151},
+{0x000152, 0x000153},
+{0x000154, 0x000155},
+{0x000156, 0x000157},
+{0x000158, 0x000159},
+{0x00015A, 0x00015B},
+{0x00015C, 0x00015D},
+{0x00015E, 0x00015F},
+{0x000160, 0x000161},
+{0x000162, 0x000163},
+{0x000164, 0x000165},
+{0x000166, 0x000167},
+{0x000168, 0x000169},
+{0x00016A, 0x00016B},
+{0x00016C, 0x00016D},
+{0x00016E, 0x00016F},
+{0x000170, 0x000171},
+{0x000172, 0x000173},
+{0x000174, 0x000175},
+{0x000176, 0x000177},
+{0x000178, 0x0000FF},
+{0x000179, 0x00017A},
+{0x00017B, 0x00017C},
+{0x00017D, 0x00017E},
+{0x000181, 0x000253},
+{0x000182, 0x000183},
+{0x000184, 0x000185},
+{0x000186, 0x000254},
+{0x000187, 0x000188},
+{0x000189, 0x000256},
+{0x00018A, 0x000257},
+{0x00018B, 0x00018C},
+{0x00018E, 0x0001DD},
+{0x00018F, 0x000259},
+{0x000190, 0x00025B},
+{0x000191, 0x000192},
+{0x000193, 0x000260},
+{0x000194, 0x000263},
+{0x000196, 0x000269},
+{0x000197, 0x000268},
+{0x000198, 0x000199},
+{0x00019C, 0x00026F},
+{0x00019D, 0x000272},
+{0x00019F, 0x000275},
+{0x0001A0, 0x0001A1},
+{0x0001A2, 0x0001A3},
+{0x0001A4, 0x0001A5},
+{0x0001A6, 0x000280},
+{0x0001A7, 0x0001A8},
+{0x0001A9, 0x000283},
+{0x0001AC, 0x0001AD},
+{0x0001AE, 0x000288},
+{0x0001AF, 0x0001B0},
+{0x0001B1, 0x00028A},
+{0x0001B2, 0x00028B},
+{0x0001B3, 0x0001B4},
+{0x0001B5, 0x0001B6},
+{0x0001B7, 0x000292},
+{0x0001B8, 0x0001B9},
+{0x0001BC, 0x0001BD},
+{0x0001C4, 0x0001C6},
+{0x0001C5, 0x0001C6},
+{0x0001C7, 0x0001C9},
+{0x0001C8, 0x0001C9},
+{0x0001CA, 0x0001CC},
+{0x0001CB, 0x0001CC},
+{0x0001CD, 0x0001CE},
+{0x0001CF, 0x0001D0},
+{0x0001D1, 0x0001D2},
+{0x0001D3, 0x0001D4},
+{0x0001D5, 0x0001D6},
+{0x0001D7, 0x0001D8},
+{0x0001D9, 0x0001DA},
+{0x0001DB, 0x0001DC},
+{0x0001DE, 0x0001DF},
+{0x0001E0, 0x0001E1},
+{0x0001E2, 0x0001E3},
+{0x0001E4, 0x0001E5},
+{0x0001E6, 0x0001E7},
+{0x0001E8, 0x0001E9},
+{0x0001EA, 0x0001EB},
+{0x0001EC, 0x0001ED},
+{0x0001EE, 0x0001EF},
+{0x0001F1, 0x0001F3},
+{0x0001F2, 0x0001F3},
+{0x0001F4, 0x0001F5},
+{0x0001F6, 0x000195},
+{0x0001F7, 0x0001BF},
+{0x0001F8, 0x0001F9},
+{0x0001FA, 0x0001FB},
+{0x0001FC, 0x0001FD},
+{0x0001FE, 0x0001FF},
+{0x000200, 0x000201},
+{0x000202, 0x000203},
+{0x000204, 0x000205},
+{0x000206, 0x000207},
+{0x000208, 0x000209},
+{0x00020A, 0x00020B},
+{0x00020C, 0x00020D},
+{0x00020E, 0x00020F},
+{0x000210, 0x000211},
+{0x000212, 0x000213},
+{0x000214, 0x000215},
+{0x000216, 0x000217},
+{0x000218, 0x000219},
+{0x00021A, 0x00021B},
+{0x00021C, 0x00021D},
+{0x00021E, 0x00021F},
+{0x000220, 0x00019E},
+{0x000222, 0x000223},
+{0x000224, 0x000225},
+{0x000226, 0x000227},
+{0x000228, 0x000229},
+{0x00022A, 0x00022B},
+{0x00022C, 0x00022D},
+{0x00022E, 0x00022F},
+{0x000230, 0x000231},
+{0x000232, 0x000233},
+{0x00023A, 0x002C65},
+{0x00023B, 0x00023C},
+{0x00023D, 0x00019A},
+{0x00023E, 0x002C66},
+{0x000241, 0x000242},
+{0x000243, 0x000180},
+{0x000244, 0x000289},
+{0x000245, 0x00028C},
+{0x000246, 0x000247},
+{0x000248, 0x000249},
+{0x00024A, 0x00024B},
+{0x00024C, 0x00024D},
+{0x00024E, 0x00024F},
+{0x000370, 0x000371},
+{0x000372, 0x000373},
+{0x000376, 0x000377},
+{0x00037F, 0x0003F3},
+{0x000386, 0x0003AC},
+{0x000388, 0x0003AD},
+{0x000389, 0x0003AE},
+{0x00038A, 0x0003AF},
+{0x00038C, 0x0003CC},
+{0x00038E, 0x0003CD},
+{0x00038F, 0x0003CE},
+{0x000391, 0x0003B1},
+{0x000392, 0x0003B2},
+{0x000393, 0x0003B3},
+{0x000394, 0x0003B4},
+{0x000395, 0x0003B5},
+{0x000396, 0x0003B6},
+{0x000397, 0x0003B7},
+{0x000398, 0x0003B8},
+{0x000399, 0x0003B9},
+{0x00039A, 0x0003BA},
+{0x00039B, 0x0003BB},
+{0x00039C, 0x0003BC},
+{0x00039D, 0x0003BD},
+{0x00039E, 0x0003BE},
+{0x00039F, 0x0003BF},
+{0x0003A0, 0x0003C0},
+{0x0003A1, 0x0003C1},
+{0x0003A3, 0x0003C3},
+{0x0003A4, 0x0003C4},
+{0x0003A5, 0x0003C5},
+{0x0003A6, 0x0003C6},
+{0x0003A7, 0x0003C7},
+{0x0003A8, 0x0003C8},
+{0x0003A9, 0x0003C9},
+{0x0003AA, 0x0003CA},
+{0x0003AB, 0x0003CB},
+{0x0003CF, 0x0003D7},
+{0x0003D8, 0x0003D9},
+{0x0003DA, 0x0003DB},
+{0x0003DC, 0x0003DD},
+{0x0003DE, 0x0003DF},
+{0x0003E0, 0x0003E1},
+{0x0003E2, 0x0003E3},
+{0x0003E4, 0x0003E5},
+{0x0003E6, 0x0003E7},
+{0x0003E8, 0x0003E9},
+{0x0003EA, 0x0003EB},
+{0x0003EC, 0x0003ED},
+{0x0003EE, 0x0003EF},
+{0x0003F4, 0x0003B8},
+{0x0003F7, 0x0003F8},
+{0x0003F9, 0x0003F2},
+{0x0003FA, 0x0003FB},
+{0x0003FD, 0x00037B},
+{0x0003FE, 0x00037C},
+{0x0003FF, 0x00037D},
+{0x000400, 0x000450},
+{0x000401, 0x000451},
+{0x000402, 0x000452},
+{0x000403, 0x000453},
+{0x000404, 0x000454},
+{0x000405, 0x000455},
+{0x000406, 0x000456},
+{0x000407, 0x000457},
+{0x000408, 0x000458},
+{0x000409, 0x000459},
+{0x00040A, 0x00045A},
+{0x00040B, 0x00045B},
+{0x00040C, 0x00045C},
+{0x00040D, 0x00045D},
+{0x00040E, 0x00045E},
+{0x00040F, 0x00045F},
+{0x000410, 0x000430},
+{0x000411, 0x000431},
+{0x000412, 0x000432},
+{0x000413, 0x000433},
+{0x000414, 0x000434},
+{0x000415, 0x000435},
+{0x000416, 0x000436},
+{0x000417, 0x000437},
+{0x000418, 0x000438},
+{0x000419, 0x000439},
+{0x00041A, 0x00043A},
+{0x00041B, 0x00043B},
+{0x00041C, 0x00043C},
+{0x00041D, 0x00043D},
+{0x00041E, 0x00043E},
+{0x00041F, 0x00043F},
+{0x000420, 0x000440},
+{0x000421, 0x000441},
+{0x000422, 0x000442},
+{0x000423, 0x000443},
+{0x000424, 0x000444},
+{0x000425, 0x000445},
+{0x000426, 0x000446},
+{0x000427, 0x000447},
+{0x000428, 0x000448},
+{0x000429, 0x000449},
+{0x00042A, 0x00044A},
+{0x00042B, 0x00044B},
+{0x00042C, 0x00044C},
+{0x00042D, 0x00044D},
+{0x00042E, 0x00044E},
+{0x00042F, 0x00044F},
+{0x000460, 0x000461},
+{0x000462, 0x000463},
+{0x000464, 0x000465},
+{0x000466, 0x000467},
+{0x000468, 0x000469},
+{0x00046A, 0x00046B},
+{0x00046C, 0x00046D},
+{0x00046E, 0x00046F},
+{0x000470, 0x000471},
+{0x000472, 0x000473},
+{0x000474, 0x000475},
+{0x000476, 0x000477},
+{0x000478, 0x000479},
+{0x00047A, 0x00047B},
+{0x00047C, 0x00047D},
+{0x00047E, 0x00047F},
+{0x000480, 0x000481},
+{0x00048A, 0x00048B},
+{0x00048C, 0x00048D},
+{0x00048E, 0x00048F},
+{0x000490, 0x000491},
+{0x000492, 0x000493},
+{0x000494, 0x000495},
+{0x000496, 0x000497},
+{0x000498, 0x000499},
+{0x00049A, 0x00049B},
+{0x00049C, 0x00049D},
+{0x00049E, 0x00049F},
+{0x0004A0, 0x0004A1},
+{0x0004A2, 0x0004A3},
+{0x0004A4, 0x0004A5},
+{0x0004A6, 0x0004A7},
+{0x0004A8, 0x0004A9},
+{0x0004AA, 0x0004AB},
+{0x0004AC, 0x0004AD},
+{0x0004AE, 0x0004AF},
+{0x0004B0, 0x0004B1},
+{0x0004B2, 0x0004B3},
+{0x0004B4, 0x0004B5},
+{0x0004B6, 0x0004B7},
+{0x0004B8, 0x0004B9},
+{0x0004BA, 0x0004BB},
+{0x0004BC, 0x0004BD},
+{0x0004BE, 0x0004BF},
+{0x0004C0, 0x0004CF},
+{0x0004C1, 0x0004C2},
+{0x0004C3, 0x0004C4},
+{0x0004C5, 0x0004C6},
+{0x0004C7, 0x0004C8},
+{0x0004C9, 0x0004CA},
+{0x0004CB, 0x0004CC},
+{0x0004CD, 0x0004CE},
+{0x0004D0, 0x0004D1},
+{0x0004D2, 0x0004D3},
+{0x0004D4, 0x0004D5},
+{0x0004D6, 0x0004D7},
+{0x0004D8, 0x0004D9},
+{0x0004DA, 0x0004DB},
+{0x0004DC, 0x0004DD},
+{0x0004DE, 0x0004DF},
+{0x0004E0, 0x0004E1},
+{0x0004E2, 0x0004E3},
+{0x0004E4, 0x0004E5},
+{0x0004E6, 0x0004E7},
+{0x0004E8, 0x0004E9},
+{0x0004EA, 0x0004EB},
+{0x0004EC, 0x0004ED},
+{0x0004EE, 0x0004EF},
+{0x0004F0, 0x0004F1},
+{0x0004F2, 0x0004F3},
+{0x0004F4, 0x0004F5},
+{0x0004F6, 0x0004F7},
+{0x0004F8, 0x0004F9},
+{0x0004FA, 0x0004FB},
+{0x0004FC, 0x0004FD},
+{0x0004FE, 0x0004FF},
+{0x000500, 0x000501},
+{0x000502, 0x000503},
+{0x000504, 0x000505},
+{0x000506, 0x000507},
+{0x000508, 0x000509},
+{0x00050A, 0x00050B},
+{0x00050C, 0x00050D},
+{0x00050E, 0x00050F},
+{0x000510, 0x000511},
+{0x000512, 0x000513},
+{0x000514, 0x000515},
+{0x000516, 0x000517},
+{0x000518, 0x000519},
+{0x00051A, 0x00051B},
+{0x00051C, 0x00051D},
+{0x00051E, 0x00051F},
+{0x000520, 0x000521},
+{0x000522, 0x000523},
+{0x000524, 0x000525},
+{0x000526, 0x000527},
+{0x000528, 0x000529},
+{0x00052A, 0x00052B},
+{0x00052C, 0x00052D},
+{0x00052E, 0x00052F},
+{0x000531, 0x000561},
+{0x000532, 0x000562},
+{0x000533, 0x000563},
+{0x000534, 0x000564},
+{0x000535, 0x000565},
+{0x000536, 0x000566},
+{0x000537, 0x000567},
+{0x000538, 0x000568},
+{0x000539, 0x000569},
+{0x00053A, 0x00056A},
+{0x00053B, 0x00056B},
+{0x00053C, 0x00056C},
+{0x00053D, 0x00056D},
+{0x00053E, 0x00056E},
+{0x00053F, 0x00056F},
+{0x000540, 0x000570},
+{0x000541, 0x000571},
+{0x000542, 0x000572},
+{0x000543, 0x000573},
+{0x000544, 0x000574},
+{0x000545, 0x000575},
+{0x000546, 0x000576},
+{0x000547, 0x000577},
+{0x000548, 0x000578},
+{0x000549, 0x000579},
+{0x00054A, 0x00057A},
+{0x00054B, 0x00057B},
+{0x00054C, 0x00057C},
+{0x00054D, 0x00057D},
+{0x00054E, 0x00057E},
+{0x00054F, 0x00057F},
+{0x000550, 0x000580},
+{0x000551, 0x000581},
+{0x000552, 0x000582},
+{0x000553, 0x000583},
+{0x000554, 0x000584},
+{0x000555, 0x000585},
+{0x000556, 0x000586},
+{0x0010A0, 0x002D00},
+{0x0010A1, 0x002D01},
+{0x0010A2, 0x002D02},
+{0x0010A3, 0x002D03},
+{0x0010A4, 0x002D04},
+{0x0010A5, 0x002D05},
+{0x0010A6, 0x002D06},
+{0x0010A7, 0x002D07},
+{0x0010A8, 0x002D08},
+{0x0010A9, 0x002D09},
+{0x0010AA, 0x002D0A},
+{0x0010AB, 0x002D0B},
+{0x0010AC, 0x002D0C},
+{0x0010AD, 0x002D0D},
+{0x0010AE, 0x002D0E},
+{0x0010AF, 0x002D0F},
+{0x0010B0, 0x002D10},
+{0x0010B1, 0x002D11},
+{0x0010B2, 0x002D12},
+{0x0010B3, 0x002D13},
+{0x0010B4, 0x002D14},
+{0x0010B5, 0x002D15},
+{0x0010B6, 0x002D16},
+{0x0010B7, 0x002D17},
+{0x0010B8, 0x002D18},
+{0x0010B9, 0x002D19},
+{0x0010BA, 0x002D1A},
+{0x0010BB, 0x002D1B},
+{0x0010BC, 0x002D1C},
+{0x0010BD, 0x002D1D},
+{0x0010BE, 0x002D1E},
+{0x0010BF, 0x002D1F},
+{0x0010C0, 0x002D20},
+{0x0010C1, 0x002D21},
+{0x0010C2, 0x002D22},
+{0x0010C3, 0x002D23},
+{0x0010C4, 0x002D24},
+{0x0010C5, 0x002D25},
+{0x0010C7, 0x002D27},
+{0x0010CD, 0x002D2D},
+{0x0013A0, 0x00AB70},
+{0x0013A1, 0x00AB71},
+{0x0013A2, 0x00AB72},
+{0x0013A3, 0x00AB73},
+{0x0013A4, 0x00AB74},
+{0x0013A5, 0x00AB75},
+{0x0013A6, 0x00AB76},
+{0x0013A7, 0x00AB77},
+{0x0013A8, 0x00AB78},
+{0x0013A9, 0x00AB79},
+{0x0013AA, 0x00AB7A},
+{0x0013AB, 0x00AB7B},
+{0x0013AC, 0x00AB7C},
+{0x0013AD, 0x00AB7D},
+{0x0013AE, 0x00AB7E},
+{0x0013AF, 0x00AB7F},
+{0x0013B0, 0x00AB80},
+{0x0013B1, 0x00AB81},
+{0x0013B2, 0x00AB82},
+{0x0013B3, 0x00AB83},
+{0x0013B4, 0x00AB84},
+{0x0013B5, 0x00AB85},
+{0x0013B6, 0x00AB86},
+{0x0013B7, 0x00AB87},
+{0x0013B8, 0x00AB88},
+{0x0013B9, 0x00AB89},
+{0x0013BA, 0x00AB8A},
+{0x0013BB, 0x00AB8B},
+{0x0013BC, 0x00AB8C},
+{0x0013BD, 0x00AB8D},
+{0x0013BE, 0x00AB8E},
+{0x0013BF, 0x00AB8F},
+{0x0013C0, 0x00AB90},
+{0x0013C1, 0x00AB91},
+{0x0013C2, 0x00AB92},
+{0x0013C3, 0x00AB93},
+{0x0013C4, 0x00AB94},
+{0x0013C5, 0x00AB95},
+{0x0013C6, 0x00AB96},
+{0x0013C7, 0x00AB97},
+{0x0013C8, 0x00AB98},
+{0x0013C9, 0x00AB99},
+{0x0013CA, 0x00AB9A},
+{0x0013CB, 0x00AB9B},
+{0x0013CC, 0x00AB9C},
+{0x0013CD, 0x00AB9D},
+{0x0013CE, 0x00AB9E},
+{0x0013CF, 0x00AB9F},
+{0x0013D0, 0x00ABA0},
+{0x0013D1, 0x00ABA1},
+{0x0013D2, 0x00ABA2},
+{0x0013D3, 0x00ABA3},
+{0x0013D4, 0x00ABA4},
+{0x0013D5, 0x00ABA5},
+{0x0013D6, 0x00ABA6},
+{0x0013D7, 0x00ABA7},
+{0x0013D8, 0x00ABA8},
+{0x0013D9, 0x00ABA9},
+{0x0013DA, 0x00ABAA},
+{0x0013DB, 0x00ABAB},
+{0x0013DC, 0x00ABAC},
+{0x0013DD, 0x00ABAD},
+{0x0013DE, 0x00ABAE},
+{0x0013DF, 0x00ABAF},
+{0x0013E0, 0x00ABB0},
+{0x0013E1, 0x00ABB1},
+{0x0013E2, 0x00ABB2},
+{0x0013E3, 0x00ABB3},
+{0x0013E4, 0x00ABB4},
+{0x0013E5, 0x00ABB5},
+{0x0013E6, 0x00ABB6},
+{0x0013E7, 0x00ABB7},
+{0x0013E8, 0x00ABB8},
+{0x0013E9, 0x00ABB9},
+{0x0013EA, 0x00ABBA},
+{0x0013EB, 0x00ABBB},
+{0x0013EC, 0x00ABBC},
+{0x0013ED, 0x00ABBD},
+{0x0013EE, 0x00ABBE},
+{0x0013EF, 0x00ABBF},
+{0x0013F0, 0x0013F8},
+{0x0013F1, 0x0013F9},
+{0x0013F2, 0x0013FA},
+{0x0013F3, 0x0013FB},
+{0x0013F4, 0x0013FC},
+{0x0013F5, 0x0013FD},
+{0x001C90, 0x0010D0},
+{0x001C91, 0x0010D1},
+{0x001C92, 0x0010D2},
+{0x001C93, 0x0010D3},
+{0x001C94, 0x0010D4},
+{0x001C95, 0x0010D5},
+{0x001C96, 0x0010D6},
+{0x001C97, 0x0010D7},
+{0x001C98, 0x0010D8},
+{0x001C99, 0x0010D9},
+{0x001C9A, 0x0010DA},
+{0x001C9B, 0x0010DB},
+{0x001C9C, 0x0010DC},
+{0x001C9D, 0x0010DD},
+{0x001C9E, 0x0010DE},
+{0x001C9F, 0x0010DF},
+{0x001CA0, 0x0010E0},
+{0x001CA1, 0x0010E1},
+{0x001CA2, 0x0010E2},
+{0x001CA3, 0x0010E3},
+{0x001CA4, 0x0010E4},
+{0x001CA5, 0x0010E5},
+{0x001CA6, 0x0010E6},
+{0x001CA7, 0x0010E7},
+{0x001CA8, 0x0010E8},
+{0x001CA9, 0x0010E9},
+{0x001CAA, 0x0010EA},
+{0x001CAB, 0x0010EB},
+{0x001CAC, 0x0010EC},
+{0x001CAD, 0x0010ED},
+{0x001CAE, 0x0010EE},
+{0x001CAF, 0x0010EF},
+{0x001CB0, 0x0010F0},
+{0x001CB1, 0x0010F1},
+{0x001CB2, 0x0010F2},
+{0x001CB3, 0x0010F3},
+{0x001CB4, 0x0010F4},
+{0x001CB5, 0x0010F5},
+{0x001CB6, 0x0010F6},
+{0x001CB7, 0x0010F7},
+{0x001CB8, 0x0010F8},
+{0x001CB9, 0x0010F9},
+{0x001CBA, 0x0010FA},
+{0x001CBD, 0x0010FD},
+{0x001CBE, 0x0010FE},
+{0x001CBF, 0x0010FF},
+{0x001E00, 0x001E01},
+{0x001E02, 0x001E03},
+{0x001E04, 0x001E05},
+{0x001E06, 0x001E07},
+{0x001E08, 0x001E09},
+{0x001E0A, 0x001E0B},
+{0x001E0C, 0x001E0D},
+{0x001E0E, 0x001E0F},
+{0x001E10, 0x001E11},
+{0x001E12, 0x001E13},
+{0x001E14, 0x001E15},
+{0x001E16, 0x001E17},
+{0x001E18, 0x001E19},
+{0x001E1A, 0x001E1B},
+{0x001E1C, 0x001E1D},
+{0x001E1E, 0x001E1F},
+{0x001E20, 0x001E21},
+{0x001E22, 0x001E23},
+{0x001E24, 0x001E25},
+{0x001E26, 0x001E27},
+{0x001E28, 0x001E29},
+{0x001E2A, 0x001E2B},
+{0x001E2C, 0x001E2D},
+{0x001E2E, 0x001E2F},
+{0x001E30, 0x001E31},
+{0x001E32, 0x001E33},
+{0x001E34, 0x001E35},
+{0x001E36, 0x001E37},
+{0x001E38, 0x001E39},
+{0x001E3A, 0x001E3B},
+{0x001E3C, 0x001E3D},
+{0x001E3E, 0x001E3F},
+{0x001E40, 0x001E41},
+{0x001E42, 0x001E43},
+{0x001E44, 0x001E45},
+{0x001E46, 0x001E47},
+{0x001E48, 0x001E49},
+{0x001E4A, 0x001E4B},
+{0x001E4C, 0x001E4D},
+{0x001E4E, 0x001E4F},
+{0x001E50, 0x001E51},
+{0x001E52, 0x001E53},
+{0x001E54, 0x001E55},
+{0x001E56, 0x001E57},
+{0x001E58, 0x001E59},
+{0x001E5A, 0x001E5B},
+{0x001E5C, 0x001E5D},
+{0x001E5E, 0x001E5F},
+{0x001E60, 0x001E61},
+{0x001E62, 0x001E63},
+{0x001E64, 0x001E65},
+{0x001E66, 0x001E67},
+{0x001E68, 0x001E69},
+{0x001E6A, 0x001E6B},
+{0x001E6C, 0x001E6D},
+{0x001E6E, 0x001E6F},
+{0x001E70, 0x001E71},
+{0x001E72, 0x001E73},
+{0x001E74, 0x001E75},
+{0x001E76, 0x001E77},
+{0x001E78, 0x001E79},
+{0x001E7A, 0x001E7B},
+{0x001E7C, 0x001E7D},
+{0x001E7E, 0x001E7F},
+{0x001E80, 0x001E81},
+{0x001E82, 0x001E83},
+{0x001E84, 0x001E85},
+{0x001E86, 0x001E87},
+{0x001E88, 0x001E89},
+{0x001E8A, 0x001E8B},
+{0x001E8C, 0x001E8D},
+{0x001E8E, 0x001E8F},
+{0x001E90, 0x001E91},
+{0x001E92, 0x001E93},
+{0x001E94, 0x001E95},
+{0x001E9E, 0x0000DF},
+{0x001EA0, 0x001EA1},
+{0x001EA2, 0x001EA3},
+{0x001EA4, 0x001EA5},
+{0x001EA6, 0x001EA7},
+{0x001EA8, 0x001EA9},
+{0x001EAA, 0x001EAB},
+{0x001EAC, 0x001EAD},
+{0x001EAE, 0x001EAF},
+{0x001EB0, 0x001EB1},
+{0x001EB2, 0x001EB3},
+{0x001EB4, 0x001EB5},
+{0x001EB6, 0x001EB7},
+{0x001EB8, 0x001EB9},
+{0x001EBA, 0x001EBB},
+{0x001EBC, 0x001EBD},
+{0x001EBE, 0x001EBF},
+{0x001EC0, 0x001EC1},
+{0x001EC2, 0x001EC3},
+{0x001EC4, 0x001EC5},
+{0x001EC6, 0x001EC7},
+{0x001EC8, 0x001EC9},
+{0x001ECA, 0x001ECB},
+{0x001ECC, 0x001ECD},
+{0x001ECE, 0x001ECF},
+{0x001ED0, 0x001ED1},
+{0x001ED2, 0x001ED3},
+{0x001ED4, 0x001ED5},
+{0x001ED6, 0x001ED7},
+{0x001ED8, 0x001ED9},
+{0x001EDA, 0x001EDB},
+{0x001EDC, 0x001EDD},
+{0x001EDE, 0x001EDF},
+{0x001EE0, 0x001EE1},
+{0x001EE2, 0x001EE3},
+{0x001EE4, 0x001EE5},
+{0x001EE6, 0x001EE7},
+{0x001EE8, 0x001EE9},
+{0x001EEA, 0x001EEB},
+{0x001EEC, 0x001EED},
+{0x001EEE, 0x001EEF},
+{0x001EF0, 0x001EF1},
+{0x001EF2, 0x001EF3},
+{0x001EF4, 0x001EF5},
+{0x001EF6, 0x001EF7},
+{0x001EF8, 0x001EF9},
+{0x001EFA, 0x001EFB},
+{0x001EFC, 0x001EFD},
+{0x001EFE, 0x001EFF},
+{0x001F08, 0x001F00},
+{0x001F09, 0x001F01},
+{0x001F0A, 0x001F02},
+{0x001F0B, 0x001F03},
+{0x001F0C, 0x001F04},
+{0x001F0D, 0x001F05},
+{0x001F0E, 0x001F06},
+{0x001F0F, 0x001F07},
+{0x001F18, 0x001F10},
+{0x001F19, 0x001F11},
+{0x001F1A, 0x001F12},
+{0x001F1B, 0x001F13},
+{0x001F1C, 0x001F14},
+{0x001F1D, 0x001F15},
+{0x001F28, 0x001F20},
+{0x001F29, 0x001F21},
+{0x001F2A, 0x001F22},
+{0x001F2B, 0x001F23},
+{0x001F2C, 0x001F24},
+{0x001F2D, 0x001F25},
+{0x001F2E, 0x001F26},
+{0x001F2F, 0x001F27},
+{0x001F38, 0x001F30},
+{0x001F39, 0x001F31},
+{0x001F3A, 0x001F32},
+{0x001F3B, 0x001F33},
+{0x001F3C, 0x001F34},
+{0x001F3D, 0x001F35},
+{0x001F3E, 0x001F36},
+{0x001F3F, 0x001F37},
+{0x001F48, 0x001F40},
+{0x001F49, 0x001F41},
+{0x001F4A, 0x001F42},
+{0x001F4B, 0x001F43},
+{0x001F4C, 0x001F44},
+{0x001F4D, 0x001F45},
+{0x001F59, 0x001F51},
+{0x001F5B, 0x001F53},
+{0x001F5D, 0x001F55},
+{0x001F5F, 0x001F57},
+{0x001F68, 0x001F60},
+{0x001F69, 0x001F61},
+{0x001F6A, 0x001F62},
+{0x001F6B, 0x001F63},
+{0x001F6C, 0x001F64},
+{0x001F6D, 0x001F65},
+{0x001F6E, 0x001F66},
+{0x001F6F, 0x001F67},
+{0x001F88, 0x001F80},
+{0x001F89, 0x001F81},
+{0x001F8A, 0x001F82},
+{0x001F8B, 0x001F83},
+{0x001F8C, 0x001F84},
+{0x001F8D, 0x001F85},
+{0x001F8E, 0x001F86},
+{0x001F8F, 0x001F87},
+{0x001F98, 0x001F90},
+{0x001F99, 0x001F91},
+{0x001F9A, 0x001F92},
+{0x001F9B, 0x001F93},
+{0x001F9C, 0x001F94},
+{0x001F9D, 0x001F95},
+{0x001F9E, 0x001F96},
+{0x001F9F, 0x001F97},
+{0x001FA8, 0x001FA0},
+{0x001FA9, 0x001FA1},
+{0x001FAA, 0x001FA2},
+{0x001FAB, 0x001FA3},
+{0x001FAC, 0x001FA4},
+{0x001FAD, 0x001FA5},
+{0x001FAE, 0x001FA6},
+{0x001FAF, 0x001FA7},
+{0x001FB8, 0x001FB0},
+{0x001FB9, 0x001FB1},
+{0x001FBA, 0x001F70},
+{0x001FBB, 0x001F71},
+{0x001FBC, 0x001FB3},
+{0x001FC8, 0x001F72},
+{0x001FC9, 0x001F73},
+{0x001FCA, 0x001F74},
+{0x001FCB, 0x001F75},
+{0x001FCC, 0x001FC3},
+{0x001FD8, 0x001FD0},
+{0x001FD9, 0x001FD1},
+{0x001FDA, 0x001F76},
+{0x001FDB, 0x001F77},
+{0x001FE8, 0x001FE0},
+{0x001FE9, 0x001FE1},
+{0x001FEA, 0x001F7A},
+{0x001FEB, 0x001F7B},
+{0x001FEC, 0x001FE5},
+{0x001FF8, 0x001F78},
+{0x001FF9, 0x001F79},
+{0x001FFA, 0x001F7C},
+{0x001FFB, 0x001F7D},
+{0x001FFC, 0x001FF3},
+{0x002126, 0x0003C9},
+{0x00212A, 0x00006B},
+{0x00212B, 0x0000E5},
+{0x002132, 0x00214E},
+{0x002160, 0x002170},
+{0x002161, 0x002171},
+{0x002162, 0x002172},
+{0x002163, 0x002173},
+{0x002164, 0x002174},
+{0x002165, 0x002175},
+{0x002166, 0x002176},
+{0x002167, 0x002177},
+{0x002168, 0x002178},
+{0x002169, 0x002179},
+{0x00216A, 0x00217A},
+{0x00216B, 0x00217B},
+{0x00216C, 0x00217C},
+{0x00216D, 0x00217D},
+{0x00216E, 0x00217E},
+{0x00216F, 0x00217F},
+{0x002183, 0x002184},
+{0x0024B6, 0x0024D0},
+{0x0024B7, 0x0024D1},
+{0x0024B8, 0x0024D2},
+{0x0024B9, 0x0024D3},
+{0x0024BA, 0x0024D4},
+{0x0024BB, 0x0024D5},
+{0x0024BC, 0x0024D6},
+{0x0024BD, 0x0024D7},
+{0x0024BE, 0x0024D8},
+{0x0024BF, 0x0024D9},
+{0x0024C0, 0x0024DA},
+{0x0024C1, 0x0024DB},
+{0x0024C2, 0x0024DC},
+{0x0024C3, 0x0024DD},
+{0x0024C4, 0x0024DE},
+{0x0024C5, 0x0024DF},
+{0x0024C6, 0x0024E0},
+{0x0024C7, 0x0024E1},
+{0x0024C8, 0x0024E2},
+{0x0024C9, 0x0024E3},
+{0x0024CA, 0x0024E4},
+{0x0024CB, 0x0024E5},
+{0x0024CC, 0x0024E6},
+{0x0024CD, 0x0024E7},
+{0x0024CE, 0x0024E8},
+{0x0024CF, 0x0024E9},
+{0x002C00, 0x002C30},
+{0x002C01, 0x002C31},
+{0x002C02, 0x002C32},
+{0x002C03, 0x002C33},
+{0x002C04, 0x002C34},
+{0x002C05, 0x002C35},
+{0x002C06, 0x002C36},
+{0x002C07, 0x002C37},
+{0x002C08, 0x002C38},
+{0x002C09, 0x002C39},
+{0x002C0A, 0x002C3A},
+{0x002C0B, 0x002C3B},
+{0x002C0C, 0x002C3C},
+{0x002C0D, 0x002C3D},
+{0x002C0E, 0x002C3E},
+{0x002C0F, 0x002C3F},
+{0x002C10, 0x002C40},
+{0x002C11, 0x002C41},
+{0x002C12, 0x002C42},
+{0x002C13, 0x002C43},
+{0x002C14, 0x002C44},
+{0x002C15, 0x002C45},
+{0x002C16, 0x002C46},
+{0x002C17, 0x002C47},
+{0x002C18, 0x002C48},
+{0x002C19, 0x002C49},
+{0x002C1A, 0x002C4A},
+{0x002C1B, 0x002C4B},
+{0x002C1C, 0x002C4C},
+{0x002C1D, 0x002C4D},
+{0x002C1E, 0x002C4E},
+{0x002C1F, 0x002C4F},
+{0x002C20, 0x002C50},
+{0x002C21, 0x002C51},
+{0x002C22, 0x002C52},
+{0x002C23, 0x002C53},
+{0x002C24, 0x002C54},
+{0x002C25, 0x002C55},
+{0x002C26, 0x002C56},
+{0x002C27, 0x002C57},
+{0x002C28, 0x002C58},
+{0x002C29, 0x002C59},
+{0x002C2A, 0x002C5A},
+{0x002C2B, 0x002C5B},
+{0x002C2C, 0x002C5C},
+{0x002C2D, 0x002C5D},
+{0x002C2E, 0x002C5E},
+{0x002C2F, 0x002C5F},
+{0x002C60, 0x002C61},
+{0x002C62, 0x00026B},
+{0x002C63, 0x001D7D},
+{0x002C64, 0x00027D},
+{0x002C67, 0x002C68},
+{0x002C69, 0x002C6A},
+{0x002C6B, 0x002C6C},
+{0x002C6D, 0x000251},
+{0x002C6E, 0x000271},
+{0x002C6F, 0x000250},
+{0x002C70, 0x000252},
+{0x002C72, 0x002C73},
+{0x002C75, 0x002C76},
+{0x002C7E, 0x00023F},
+{0x002C7F, 0x000240},
+{0x002C80, 0x002C81},
+{0x002C82, 0x002C83},
+{0x002C84, 0x002C85},
+{0x002C86, 0x002C87},
+{0x002C88, 0x002C89},
+{0x002C8A, 0x002C8B},
+{0x002C8C, 0x002C8D},
+{0x002C8E, 0x002C8F},
+{0x002C90, 0x002C91},
+{0x002C92, 0x002C93},
+{0x002C94, 0x002C95},
+{0x002C96, 0x002C97},
+{0x002C98, 0x002C99},
+{0x002C9A, 0x002C9B},
+{0x002C9C, 0x002C9D},
+{0x002C9E, 0x002C9F},
+{0x002CA0, 0x002CA1},
+{0x002CA2, 0x002CA3},
+{0x002CA4, 0x002CA5},
+{0x002CA6, 0x002CA7},
+{0x002CA8, 0x002CA9},
+{0x002CAA, 0x002CAB},
+{0x002CAC, 0x002CAD},
+{0x002CAE, 0x002CAF},
+{0x002CB0, 0x002CB1},
+{0x002CB2, 0x002CB3},
+{0x002CB4, 0x002CB5},
+{0x002CB6, 0x002CB7},
+{0x002CB8, 0x002CB9},
+{0x002CBA, 0x002CBB},
+{0x002CBC, 0x002CBD},
+{0x002CBE, 0x002CBF},
+{0x002CC0, 0x002CC1},
+{0x002CC2, 0x002CC3},
+{0x002CC4, 0x002CC5},
+{0x002CC6, 0x002CC7},
+{0x002CC8, 0x002CC9},
+{0x002CCA, 0x002CCB},
+{0x002CCC, 0x002CCD},
+{0x002CCE, 0x002CCF},
+{0x002CD0, 0x002CD1},
+{0x002CD2, 0x002CD3},
+{0x002CD4, 0x002CD5},
+{0x002CD6, 0x002CD7},
+{0x002CD8, 0x002CD9},
+{0x002CDA, 0x002CDB},
+{0x002CDC, 0x002CDD},
+{0x002CDE, 0x002CDF},
+{0x002CE0, 0x002CE1},
+{0x002CE2, 0x002CE3},
+{0x002CEB, 0x002CEC},
+{0x002CED, 0x002CEE},
+{0x002CF2, 0x002CF3},
+{0x00A640, 0x00A641},
+{0x00A642, 0x00A643},
+{0x00A644, 0x00A645},
+{0x00A646, 0x00A647},
+{0x00A648, 0x00A649},
+{0x00A64A, 0x00A64B},
+{0x00A64C, 0x00A64D},
+{0x00A64E, 0x00A64F},
+{0x00A650, 0x00A651},
+{0x00A652, 0x00A653},
+{0x00A654, 0x00A655},
+{0x00A656, 0x00A657},
+{0x00A658, 0x00A659},
+{0x00A65A, 0x00A65B},
+{0x00A65C, 0x00A65D},
+{0x00A65E, 0x00A65F},
+{0x00A660, 0x00A661},
+{0x00A662, 0x00A663},
+{0x00A664, 0x00A665},
+{0x00A666, 0x00A667},
+{0x00A668, 0x00A669},
+{0x00A66A, 0x00A66B},
+{0x00A66C, 0x00A66D},
+{0x00A680, 0x00A681},
+{0x00A682, 0x00A683},
+{0x00A684, 0x00A685},
+{0x00A686, 0x00A687},
+{0x00A688, 0x00A689},
+{0x00A68A, 0x00A68B},
+{0x00A68C, 0x00A68D},
+{0x00A68E, 0x00A68F},
+{0x00A690, 0x00A691},
+{0x00A692, 0x00A693},
+{0x00A694, 0x00A695},
+{0x00A696, 0x00A697},
+{0x00A698, 0x00A699},
+{0x00A69A, 0x00A69B},
+{0x00A722, 0x00A723},
+{0x00A724, 0x00A725},
+{0x00A726, 0x00A727},
+{0x00A728, 0x00A729},
+{0x00A72A, 0x00A72B},
+{0x00A72C, 0x00A72D},
+{0x00A72E, 0x00A72F},
+{0x00A732, 0x00A733},
+{0x00A734, 0x00A735},
+{0x00A736, 0x00A737},
+{0x00A738, 0x00A739},
+{0x00A73A, 0x00A73B},
+{0x00A73C, 0x00A73D},
+{0x00A73E, 0x00A73F},
+{0x00A740, 0x00A741},
+{0x00A742, 0x00A743},
+{0x00A744, 0x00A745},
+{0x00A746, 0x00A747},
+{0x00A748, 0x00A749},
+{0x00A74A, 0x00A74B},
+{0x00A74C, 0x00A74D},
+{0x00A74E, 0x00A74F},
+{0x00A750, 0x00A751},
+{0x00A752, 0x00A753},
+{0x00A754, 0x00A755},
+{0x00A756, 0x00A757},
+{0x00A758, 0x00A759},
+{0x00A75A, 0x00A75B},
+{0x00A75C, 0x00A75D},
+{0x00A75E, 0x00A75F},
+{0x00A760, 0x00A761},
+{0x00A762, 0x00A763},
+{0x00A764, 0x00A765},
+{0x00A766, 0x00A767},
+{0x00A768, 0x00A769},
+{0x00A76A, 0x00A76B},
+{0x00A76C, 0x00A76D},
+{0x00A76E, 0x00A76F},
+{0x00A779, 0x00A77A},
+{0x00A77B, 0x00A77C},
+{0x00A77D, 0x001D79},
+{0x00A77E, 0x00A77F},
+{0x00A780, 0x00A781},
+{0x00A782, 0x00A783},
+{0x00A784, 0x00A785},
+{0x00A786, 0x00A787},
+{0x00A78B, 0x00A78C},
+{0x00A78D, 0x000265},
+{0x00A790, 0x00A791},
+{0x00A792, 0x00A793},
+{0x00A796, 0x00A797},
+{0x00A798, 0x00A799},
+{0x00A79A, 0x00A79B},
+{0x00A79C, 0x00A79D},
+{0x00A79E, 0x00A79F},
+{0x00A7A0, 0x00A7A1},
+{0x00A7A2, 0x00A7A3},
+{0x00A7A4, 0x00A7A5},
+{0x00A7A6, 0x00A7A7},
+{0x00A7A8, 0x00A7A9},
+{0x00A7AA, 0x000266},
+{0x00A7AB, 0x00025C},
+{0x00A7AC, 0x000261},
+{0x00A7AD, 0x00026C},
+{0x00A7AE, 0x00026A},
+{0x00A7B0, 0x00029E},
+{0x00A7B1, 0x000287},
+{0x00A7B2, 0x00029D},
+{0x00A7B3, 0x00AB53},
+{0x00A7B4, 0x00A7B5},
+{0x00A7B6, 0x00A7B7},
+{0x00A7B8, 0x00A7B9},
+{0x00A7BA, 0x00A7BB},
+{0x00A7BC, 0x00A7BD},
+{0x00A7BE, 0x00A7BF},
+{0x00A7C0, 0x00A7C1},
+{0x00A7C2, 0x00A7C3},
+{0x00A7C4, 0x00A794},
+{0x00A7C5, 0x000282},
+{0x00A7C6, 0x001D8E},
+{0x00A7C7, 0x00A7C8},
+{0x00A7C9, 0x00A7CA},
+{0x00A7D0, 0x00A7D1},
+{0x00A7D6, 0x00A7D7},
+{0x00A7D8, 0x00A7D9},
+{0x00A7F5, 0x00A7F6},
+{0x00FF21, 0x00FF41},
+{0x00FF22, 0x00FF42},
+{0x00FF23, 0x00FF43},
+{0x00FF24, 0x00FF44},
+{0x00FF25, 0x00FF45},
+{0x00FF26, 0x00FF46},
+{0x00FF27, 0x00FF47},
+{0x00FF28, 0x00FF48},
+{0x00FF29, 0x00FF49},
+{0x00FF2A, 0x00FF4A},
+{0x00FF2B, 0x00FF4B},
+{0x00FF2C, 0x00FF4C},
+{0x00FF2D, 0x00FF4D},
+{0x00FF2E, 0x00FF4E},
+{0x00FF2F, 0x00FF4F},
+{0x00FF30, 0x00FF50},
+{0x00FF31, 0x00FF51},
+{0x00FF32, 0x00FF52},
+{0x00FF33, 0x00FF53},
+{0x00FF34, 0x00FF54},
+{0x00FF35, 0x00FF55},
+{0x00FF36, 0x00FF56},
+{0x00FF37, 0x00FF57},
+{0x00FF38, 0x00FF58},
+{0x00FF39, 0x00FF59},
+{0x00FF3A, 0x00FF5A},
+{0x010400, 0x010428},
+{0x010401, 0x010429},
+{0x010402, 0x01042A},
+{0x010403, 0x01042B},
+{0x010404, 0x01042C},
+{0x010405, 0x01042D},
+{0x010406, 0x01042E},
+{0x010407, 0x01042F},
+{0x010408, 0x010430},
+{0x010409, 0x010431},
+{0x01040A, 0x010432},
+{0x01040B, 0x010433},
+{0x01040C, 0x010434},
+{0x01040D, 0x010435},
+{0x01040E, 0x010436},
+{0x01040F, 0x010437},
+{0x010410, 0x010438},
+{0x010411, 0x010439},
+{0x010412, 0x01043A},
+{0x010413, 0x01043B},
+{0x010414, 0x01043C},
+{0x010415, 0x01043D},
+{0x010416, 0x01043E},
+{0x010417, 0x01043F},
+{0x010418, 0x010440},
+{0x010419, 0x010441},
+{0x01041A, 0x010442},
+{0x01041B, 0x010443},
+{0x01041C, 0x010444},
+{0x01041D, 0x010445},
+{0x01041E, 0x010446},
+{0x01041F, 0x010447},
+{0x010420, 0x010448},
+{0x010421, 0x010449},
+{0x010422, 0x01044A},
+{0x010423, 0x01044B},
+{0x010424, 0x01044C},
+{0x010425, 0x01044D},
+{0x010426, 0x01044E},
+{0x010427, 0x01044F},
+{0x0104B0, 0x0104D8},
+{0x0104B1, 0x0104D9},
+{0x0104B2, 0x0104DA},
+{0x0104B3, 0x0104DB},
+{0x0104B4, 0x0104DC},
+{0x0104B5, 0x0104DD},
+{0x0104B6, 0x0104DE},
+{0x0104B7, 0x0104DF},
+{0x0104B8, 0x0104E0},
+{0x0104B9, 0x0104E1},
+{0x0104BA, 0x0104E2},
+{0x0104BB, 0x0104E3},
+{0x0104BC, 0x0104E4},
+{0x0104BD, 0x0104E5},
+{0x0104BE, 0x0104E6},
+{0x0104BF, 0x0104E7},
+{0x0104C0, 0x0104E8},
+{0x0104C1, 0x0104E9},
+{0x0104C2, 0x0104EA},
+{0x0104C3, 0x0104EB},
+{0x0104C4, 0x0104EC},
+{0x0104C5, 0x0104ED},
+{0x0104C6, 0x0104EE},
+{0x0104C7, 0x0104EF},
+{0x0104C8, 0x0104F0},
+{0x0104C9, 0x0104F1},
+{0x0104CA, 0x0104F2},
+{0x0104CB, 0x0104F3},
+{0x0104CC, 0x0104F4},
+{0x0104CD, 0x0104F5},
+{0x0104CE, 0x0104F6},
+{0x0104CF, 0x0104F7},
+{0x0104D0, 0x0104F8},
+{0x0104D1, 0x0104F9},
+{0x0104D2, 0x0104FA},
+{0x0104D3, 0x0104FB},
+{0x010570, 0x010597},
+{0x010571, 0x010598},
+{0x010572, 0x010599},
+{0x010573, 0x01059A},
+{0x010574, 0x01059B},
+{0x010575, 0x01059C},
+{0x010576, 0x01059D},
+{0x010577, 0x01059E},
+{0x010578, 0x01059F},
+{0x010579, 0x0105A0},
+{0x01057A, 0x0105A1},
+{0x01057C, 0x0105A3},
+{0x01057D, 0x0105A4},
+{0x01057E, 0x0105A5},
+{0x01057F, 0x0105A6},
+{0x010580, 0x0105A7},
+{0x010581, 0x0105A8},
+{0x010582, 0x0105A9},
+{0x010583, 0x0105AA},
+{0x010584, 0x0105AB},
+{0x010585, 0x0105AC},
+{0x010586, 0x0105AD},
+{0x010587, 0x0105AE},
+{0x010588, 0x0105AF},
+{0x010589, 0x0105B0},
+{0x01058A, 0x0105B1},
+{0x01058C, 0x0105B3},
+{0x01058D, 0x0105B4},
+{0x01058E, 0x0105B5},
+{0x01058F, 0x0105B6},
+{0x010590, 0x0105B7},
+{0x010591, 0x0105B8},
+{0x010592, 0x0105B9},
+{0x010594, 0x0105BB},
+{0x010595, 0x0105BC},
+{0x010C80, 0x010CC0},
+{0x010C81, 0x010CC1},
+{0x010C82, 0x010CC2},
+{0x010C83, 0x010CC3},
+{0x010C84, 0x010CC4},
+{0x010C85, 0x010CC5},
+{0x010C86, 0x010CC6},
+{0x010C87, 0x010CC7},
+{0x010C88, 0x010CC8},
+{0x010C89, 0x010CC9},
+{0x010C8A, 0x010CCA},
+{0x010C8B, 0x010CCB},
+{0x010C8C, 0x010CCC},
+{0x010C8D, 0x010CCD},
+{0x010C8E, 0x010CCE},
+{0x010C8F, 0x010CCF},
+{0x010C90, 0x010CD0},
+{0x010C91, 0x010CD1},
+{0x010C92, 0x010CD2},
+{0x010C93, 0x010CD3},
+{0x010C94, 0x010CD4},
+{0x010C95, 0x010CD5},
+{0x010C96, 0x010CD6},
+{0x010C97, 0x010CD7},
+{0x010C98, 0x010CD8},
+{0x010C99, 0x010CD9},
+{0x010C9A, 0x010CDA},
+{0x010C9B, 0x010CDB},
+{0x010C9C, 0x010CDC},
+{0x010C9D, 0x010CDD},
+{0x010C9E, 0x010CDE},
+{0x010C9F, 0x010CDF},
+{0x010CA0, 0x010CE0},
+{0x010CA1, 0x010CE1},
+{0x010CA2, 0x010CE2},
+{0x010CA3, 0x010CE3},
+{0x010CA4, 0x010CE4},
+{0x010CA5, 0x010CE5},
+{0x010CA6, 0x010CE6},
+{0x010CA7, 0x010CE7},
+{0x010CA8, 0x010CE8},
+{0x010CA9, 0x010CE9},
+{0x010CAA, 0x010CEA},
+{0x010CAB, 0x010CEB},
+{0x010CAC, 0x010CEC},
+{0x010CAD, 0x010CED},
+{0x010CAE, 0x010CEE},
+{0x010CAF, 0x010CEF},
+{0x010CB0, 0x010CF0},
+{0x010CB1, 0x010CF1},
+{0x010CB2, 0x010CF2},
+{0x0118A0, 0x0118C0},
+{0x0118A1, 0x0118C1},
+{0x0118A2, 0x0118C2},
+{0x0118A3, 0x0118C3},
+{0x0118A4, 0x0118C4},
+{0x0118A5, 0x0118C5},
+{0x0118A6, 0x0118C6},
+{0x0118A7, 0x0118C7},
+{0x0118A8, 0x0118C8},
+{0x0118A9, 0x0118C9},
+{0x0118AA, 0x0118CA},
+{0x0118AB, 0x0118CB},
+{0x0118AC, 0x0118CC},
+{0x0118AD, 0x0118CD},
+{0x0118AE, 0x0118CE},
+{0x0118AF, 0x0118CF},
+{0x0118B0, 0x0118D0},
+{0x0118B1, 0x0118D1},
+{0x0118B2, 0x0118D2},
+{0x0118B3, 0x0118D3},
+{0x0118B4, 0x0118D4},
+{0x0118B5, 0x0118D5},
+{0x0118B6, 0x0118D6},
+{0x0118B7, 0x0118D7},
+{0x0118B8, 0x0118D8},
+{0x0118B9, 0x0118D9},
+{0x0118BA, 0x0118DA},
+{0x0118BB, 0x0118DB},
+{0x0118BC, 0x0118DC},
+{0x0118BD, 0x0118DD},
+{0x0118BE, 0x0118DE},
+{0x0118BF, 0x0118DF},
+{0x016E40, 0x016E60},
+{0x016E41, 0x016E61},
+{0x016E42, 0x016E62},
+{0x016E43, 0x016E63},
+{0x016E44, 0x016E64},
+{0x016E45, 0x016E65},
+{0x016E46, 0x016E66},
+{0x016E47, 0x016E67},
+{0x016E48, 0x016E68},
+{0x016E49, 0x016E69},
+{0x016E4A, 0x016E6A},
+{0x016E4B, 0x016E6B},
+{0x016E4C, 0x016E6C},
+{0x016E4D, 0x016E6D},
+{0x016E4E, 0x016E6E},
+{0x016E4F, 0x016E6F},
+{0x016E50, 0x016E70},
+{0x016E51, 0x016E71},
+{0x016E52, 0x016E72},
+{0x016E53, 0x016E73},
+{0x016E54, 0x016E74},
+{0x016E55, 0x016E75},
+{0x016E56, 0x016E76},
+{0x016E57, 0x016E77},
+{0x016E58, 0x016E78},
+{0x016E59, 0x016E79},
+{0x016E5A, 0x016E7A},
+{0x016E5B, 0x016E7B},
+{0x016E5C, 0x016E7C},
+{0x016E5D, 0x016E7D},
+{0x016E5E, 0x016E7E},
+{0x016E5F, 0x016E7F},
+{0x01E900, 0x01E922},
+{0x01E901, 0x01E923},
+{0x01E902, 0x01E924},
+{0x01E903, 0x01E925},
+{0x01E904, 0x01E926},
+{0x01E905, 0x01E927},
+{0x01E906, 0x01E928},
+{0x01E907, 0x01E929},
+{0x01E908, 0x01E92A},
+{0x01E909, 0x01E92B},
+{0x01E90A, 0x01E92C},
+{0x01E90B, 0x01E92D},
+{0x01E90C, 0x01E92E},
+{0x01E90D, 0x01E92F},
+{0x01E90E, 0x01E930},
+{0x01E90F, 0x01E931},
+{0x01E910, 0x01E932},
+{0x01E911, 0x01E933},
+{0x01E912, 0x01E934},
+{0x01E913, 0x01E935},
+{0x01E914, 0x01E936},
+{0x01E915, 0x01E937},
+{0x01E916, 0x01E938},
+{0x01E917, 0x01E939},
+{0x01E918, 0x01E93A},
+{0x01E919, 0x01E93B},
+{0x01E91A, 0x01E93C},
+{0x01E91B, 0x01E93D},
+{0x01E91C, 0x01E93E},
+{0x01E91D, 0x01E93F},
+{0x01E91E, 0x01E940},
+{0x01E91F, 0x01E941},
+{0x01E920, 0x01E942},
+{0x01E921, 0x01E943},
+};
+
+const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase = {
+{0x000061, 0x000041},
+{0x000062, 0x000042},
+{0x000063, 0x000043},
+{0x000064, 0x000044},
+{0x000065, 0x000045},
+{0x000066, 0x000046},
+{0x000067, 0x000047},
+{0x000068, 0x000048},
+{0x000069, 0x000049},
+{0x00006A, 0x00004A},
+{0x00006B, 0x00004B},
+{0x00006C, 0x00004C},
+{0x00006D, 0x00004D},
+{0x00006E, 0x00004E},
+{0x00006F, 0x00004F},
+{0x000070, 0x000050},
+{0x000071, 0x000051},
+{0x000072, 0x000052},
+{0x000073, 0x000053},
+{0x000074, 0x000054},
+{0x000075, 0x000055},
+{0x000076, 0x000056},
+{0x000077, 0x000057},
+{0x000078, 0x000058},
+{0x000079, 0x000059},
+{0x00007A, 0x00005A},
+{0x0000B5, 0x00039C},
+{0x0000E0, 0x0000C0},
+{0x0000E1, 0x0000C1},
+{0x0000E2, 0x0000C2},
+{0x0000E3, 0x0000C3},
+{0x0000E4, 0x0000C4},
+{0x0000E5, 0x0000C5},
+{0x0000E6, 0x0000C6},
+{0x0000E7, 0x0000C7},
+{0x0000E8, 0x0000C8},
+{0x0000E9, 0x0000C9},
+{0x0000EA, 0x0000CA},
+{0x0000EB, 0x0000CB},
+{0x0000EC, 0x0000CC},
+{0x0000ED, 0x0000CD},
+{0x0000EE, 0x0000CE},
+{0x0000EF, 0x0000CF},
+{0x0000F0, 0x0000D0},
+{0x0000F1, 0x0000D1},
+{0x0000F2, 0x0000D2},
+{0x0000F3, 0x0000D3},
+{0x0000F4, 0x0000D4},
+{0x0000F5, 0x0000D5},
+{0x0000F6, 0x0000D6},
+{0x0000F8, 0x0000D8},
+{0x0000F9, 0x0000D9},
+{0x0000FA, 0x0000DA},
+{0x0000FB, 0x0000DB},
+{0x0000FC, 0x0000DC},
+{0x0000FD, 0x0000DD},
+{0x0000FE, 0x0000DE},
+{0x0000FF, 0x000178},
+{0x000101, 0x000100},
+{0x000103, 0x000102},
+{0x000105, 0x000104},
+{0x000107, 0x000106},
+{0x000109, 0x000108},
+{0x00010B, 0x00010A},
+{0x00010D, 0x00010C},
+{0x00010F, 0x00010E},
+{0x000111, 0x000110},
+{0x000113, 0x000112},
+{0x000115, 0x000114},
+{0x000117, 0x000116},
+{0x000119, 0x000118},
+{0x00011B, 0x00011A},
+{0x00011D, 0x00011C},
+{0x00011F, 0x00011E},
+{0x000121, 0x000120},
+{0x000123, 0x000122},
+{0x000125, 0x000124},
+{0x000127, 0x000126},
+{0x000129, 0x000128},
+{0x00012B, 0x00012A},
+{0x00012D, 0x00012C},
+{0x00012F, 0x00012E},
+{0x000131, 0x000049},
+{0x000133, 0x000132},
+{0x000135, 0x000134},
+{0x000137, 0x000136},
+{0x00013A, 0x000139},
+{0x00013C, 0x00013B},
+{0x00013E, 0x00013D},
+{0x000140, 0x00013F},
+{0x000142, 0x000141},
+{0x000144, 0x000143},
+{0x000146, 0x000145},
+{0x000148, 0x000147},
+{0x00014B, 0x00014A},
+{0x00014D, 0x00014C},
+{0x00014F, 0x00014E},
+{0x000151, 0x000150},
+{0x000153, 0x000152},
+{0x000155, 0x000154},
+{0x000157, 0x000156},
+{0x000159, 0x000158},
+{0x00015B, 0x00015A},
+{0x00015D, 0x00015C},
+{0x00015F, 0x00015E},
+{0x000161, 0x000160},
+{0x000163, 0x000162},
+{0x000165, 0x000164},
+{0x000167, 0x000166},
+{0x000169, 0x000168},
+{0x00016B, 0x00016A},
+{0x00016D, 0x00016C},
+{0x00016F, 0x00016E},
+{0x000171, 0x000170},
+{0x000173, 0x000172},
+{0x000175, 0x000174},
+{0x000177, 0x000176},
+{0x00017A, 0x000179},
+{0x00017C, 0x00017B},
+{0x00017E, 0x00017D},
+{0x00017F, 0x000053},
+{0x000180, 0x000243},
+{0x000183, 0x000182},
+{0x000185, 0x000184},
+{0x000188, 0x000187},
+{0x00018C, 0x00018B},
+{0x000192, 0x000191},
+{0x000195, 0x0001F6},
+{0x000199, 0x000198},
+{0x00019A, 0x00023D},
+{0x00019E, 0x000220},
+{0x0001A1, 0x0001A0},
+{0x0001A3, 0x0001A2},
+{0x0001A5, 0x0001A4},
+{0x0001A8, 0x0001A7},
+{0x0001AD, 0x0001AC},
+{0x0001B0, 0x0001AF},
+{0x0001B4, 0x0001B3},
+{0x0001B6, 0x0001B5},
+{0x0001B9, 0x0001B8},
+{0x0001BD, 0x0001BC},
+{0x0001BF, 0x0001F7},
+{0x0001C5, 0x0001C4},
+{0x0001C6, 0x0001C4},
+{0x0001C8, 0x0001C7},
+{0x0001C9, 0x0001C7},
+{0x0001CB, 0x0001CA},
+{0x0001CC, 0x0001CA},
+{0x0001CE, 0x0001CD},
+{0x0001D0, 0x0001CF},
+{0x0001D2, 0x0001D1},
+{0x0001D4, 0x0001D3},
+{0x0001D6, 0x0001D5},
+{0x0001D8, 0x0001D7},
+{0x0001DA, 0x0001D9},
+{0x0001DC, 0x0001DB},
+{0x0001DD, 0x00018E},
+{0x0001DF, 0x0001DE},
+{0x0001E1, 0x0001E0},
+{0x0001E3, 0x0001E2},
+{0x0001E5, 0x0001E4},
+{0x0001E7, 0x0001E6},
+{0x0001E9, 0x0001E8},
+{0x0001EB, 0x0001EA},
+{0x0001ED, 0x0001EC},
+{0x0001EF, 0x0001EE},
+{0x0001F2, 0x0001F1},
+{0x0001F3, 0x0001F1},
+{0x0001F5, 0x0001F4},
+{0x0001F9, 0x0001F8},
+{0x0001FB, 0x0001FA},
+{0x0001FD, 0x0001FC},
+{0x0001FF, 0x0001FE},
+{0x000201, 0x000200},
+{0x000203, 0x000202},
+{0x000205, 0x000204},
+{0x000207, 0x000206},
+{0x000209, 0x000208},
+{0x00020B, 0x00020A},
+{0x00020D, 0x00020C},
+{0x00020F, 0x00020E},
+{0x000211, 0x000210},
+{0x000213, 0x000212},
+{0x000215, 0x000214},
+{0x000217, 0x000216},
+{0x000219, 0x000218},
+{0x00021B, 0x00021A},
+{0x00021D, 0x00021C},
+{0x00021F, 0x00021E},
+{0x000223, 0x000222},
+{0x000225, 0x000224},
+{0x000227, 0x000226},
+{0x000229, 0x000228},
+{0x00022B, 0x00022A},
+{0x00022D, 0x00022C},
+{0x00022F, 0x00022E},
+{0x000231, 0x000230},
+{0x000233, 0x000232},
+{0x00023C, 0x00023B},
+{0x00023F, 0x002C7E},
+{0x000240, 0x002C7F},
+{0x000242, 0x000241},
+{0x000247, 0x000246},
+{0x000249, 0x000248},
+{0x00024B, 0x00024A},
+{0x00024D, 0x00024C},
+{0x00024F, 0x00024E},
+{0x000250, 0x002C6F},
+{0x000251, 0x002C6D},
+{0x000252, 0x002C70},
+{0x000253, 0x000181},
+{0x000254, 0x000186},
+{0x000256, 0x000189},
+{0x000257, 0x00018A},
+{0x000259, 0x00018F},
+{0x00025B, 0x000190},
+{0x00025C, 0x00A7AB},
+{0x000260, 0x000193},
+{0x000261, 0x00A7AC},
+{0x000263, 0x000194},
+{0x000265, 0x00A78D},
+{0x000266, 0x00A7AA},
+{0x000268, 0x000197},
+{0x000269, 0x000196},
+{0x00026A, 0x00A7AE},
+{0x00026B, 0x002C62},
+{0x00026C, 0x00A7AD},
+{0x00026F, 0x00019C},
+{0x000271, 0x002C6E},
+{0x000272, 0x00019D},
+{0x000275, 0x00019F},
+{0x00027D, 0x002C64},
+{0x000280, 0x0001A6},
+{0x000282, 0x00A7C5},
+{0x000283, 0x0001A9},
+{0x000287, 0x00A7B1},
+{0x000288, 0x0001AE},
+{0x000289, 0x000244},
+{0x00028A, 0x0001B1},
+{0x00028B, 0x0001B2},
+{0x00028C, 0x000245},
+{0x000292, 0x0001B7},
+{0x00029D, 0x00A7B2},
+{0x00029E, 0x00A7B0},
+{0x000345, 0x000399},
+{0x000371, 0x000370},
+{0x000373, 0x000372},
+{0x000377, 0x000376},
+{0x00037B, 0x0003FD},
+{0x00037C, 0x0003FE},
+{0x00037D, 0x0003FF},
+{0x0003AC, 0x000386},
+{0x0003AD, 0x000388},
+{0x0003AE, 0x000389},
+{0x0003AF, 0x00038A},
+{0x0003B1, 0x000391},
+{0x0003B2, 0x000392},
+{0x0003B3, 0x000393},
+{0x0003B4, 0x000394},
+{0x0003B5, 0x000395},
+{0x0003B6, 0x000396},
+{0x0003B7, 0x000397},
+{0x0003B8, 0x000398},
+{0x0003B9, 0x000399},
+{0x0003BA, 0x00039A},
+{0x0003BB, 0x00039B},
+{0x0003BC, 0x00039C},
+{0x0003BD, 0x00039D},
+{0x0003BE, 0x00039E},
+{0x0003BF, 0x00039F},
+{0x0003C0, 0x0003A0},
+{0x0003C1, 0x0003A1},
+{0x0003C2, 0x0003A3},
+{0x0003C3, 0x0003A3},
+{0x0003C4, 0x0003A4},
+{0x0003C5, 0x0003A5},
+{0x0003C6, 0x0003A6},
+{0x0003C7, 0x0003A7},
+{0x0003C8, 0x0003A8},
+{0x0003C9, 0x0003A9},
+{0x0003CA, 0x0003AA},
+{0x0003CB, 0x0003AB},
+{0x0003CC, 0x00038C},
+{0x0003CD, 0x00038E},
+{0x0003CE, 0x00038F},
+{0x0003D0, 0x000392},
+{0x0003D1, 0x000398},
+{0x0003D5, 0x0003A6},
+{0x0003D6, 0x0003A0},
+{0x0003D7, 0x0003CF},
+{0x0003D9, 0x0003D8},
+{0x0003DB, 0x0003DA},
+{0x0003DD, 0x0003DC},
+{0x0003DF, 0x0003DE},
+{0x0003E1, 0x0003E0},
+{0x0003E3, 0x0003E2},
+{0x0003E5, 0x0003E4},
+{0x0003E7, 0x0003E6},
+{0x0003E9, 0x0003E8},
+{0x0003EB, 0x0003EA},
+{0x0003ED, 0x0003EC},
+{0x0003EF, 0x0003EE},
+{0x0003F0, 0x00039A},
+{0x0003F1, 0x0003A1},
+{0x0003F2, 0x0003F9},
+{0x0003F3, 0x00037F},
+{0x0003F5, 0x000395},
+{0x0003F8, 0x0003F7},
+{0x0003FB, 0x0003FA},
+{0x000430, 0x000410},
+{0x000431, 0x000411},
+{0x000432, 0x000412},
+{0x000433, 0x000413},
+{0x000434, 0x000414},
+{0x000435, 0x000415},
+{0x000436, 0x000416},
+{0x000437, 0x000417},
+{0x000438, 0x000418},
+{0x000439, 0x000419},
+{0x00043A, 0x00041A},
+{0x00043B, 0x00041B},
+{0x00043C, 0x00041C},
+{0x00043D, 0x00041D},
+{0x00043E, 0x00041E},
+{0x00043F, 0x00041F},
+{0x000440, 0x000420},
+{0x000441, 0x000421},
+{0x000442, 0x000422},
+{0x000443, 0x000423},
+{0x000444, 0x000424},
+{0x000445, 0x000425},
+{0x000446, 0x000426},
+{0x000447, 0x000427},
+{0x000448, 0x000428},
+{0x000449, 0x000429},
+{0x00044A, 0x00042A},
+{0x00044B, 0x00042B},
+{0x00044C, 0x00042C},
+{0x00044D, 0x00042D},
+{0x00044E, 0x00042E},
+{0x00044F, 0x00042F},
+{0x000450, 0x000400},
+{0x000451, 0x000401},
+{0x000452, 0x000402},
+{0x000453, 0x000403},
+{0x000454, 0x000404},
+{0x000455, 0x000405},
+{0x000456, 0x000406},
+{0x000457, 0x000407},
+{0x000458, 0x000408},
+{0x000459, 0x000409},
+{0x00045A, 0x00040A},
+{0x00045B, 0x00040B},
+{0x00045C, 0x00040C},
+{0x00045D, 0x00040D},
+{0x00045E, 0x00040E},
+{0x00045F, 0x00040F},
+{0x000461, 0x000460},
+{0x000463, 0x000462},
+{0x000465, 0x000464},
+{0x000467, 0x000466},
+{0x000469, 0x000468},
+{0x00046B, 0x00046A},
+{0x00046D, 0x00046C},
+{0x00046F, 0x00046E},
+{0x000471, 0x000470},
+{0x000473, 0x000472},
+{0x000475, 0x000474},
+{0x000477, 0x000476},
+{0x000479, 0x000478},
+{0x00047B, 0x00047A},
+{0x00047D, 0x00047C},
+{0x00047F, 0x00047E},
+{0x000481, 0x000480},
+{0x00048B, 0x00048A},
+{0x00048D, 0x00048C},
+{0x00048F, 0x00048E},
+{0x000491, 0x000490},
+{0x000493, 0x000492},
+{0x000495, 0x000494},
+{0x000497, 0x000496},
+{0x000499, 0x000498},
+{0x00049B, 0x00049A},
+{0x00049D, 0x00049C},
+{0x00049F, 0x00049E},
+{0x0004A1, 0x0004A0},
+{0x0004A3, 0x0004A2},
+{0x0004A5, 0x0004A4},
+{0x0004A7, 0x0004A6},
+{0x0004A9, 0x0004A8},
+{0x0004AB, 0x0004AA},
+{0x0004AD, 0x0004AC},
+{0x0004AF, 0x0004AE},
+{0x0004B1, 0x0004B0},
+{0x0004B3, 0x0004B2},
+{0x0004B5, 0x0004B4},
+{0x0004B7, 0x0004B6},
+{0x0004B9, 0x0004B8},
+{0x0004BB, 0x0004BA},
+{0x0004BD, 0x0004BC},
+{0x0004BF, 0x0004BE},
+{0x0004C2, 0x0004C1},
+{0x0004C4, 0x0004C3},
+{0x0004C6, 0x0004C5},
+{0x0004C8, 0x0004C7},
+{0x0004CA, 0x0004C9},
+{0x0004CC, 0x0004CB},
+{0x0004CE, 0x0004CD},
+{0x0004CF, 0x0004C0},
+{0x0004D1, 0x0004D0},
+{0x0004D3, 0x0004D2},
+{0x0004D5, 0x0004D4},
+{0x0004D7, 0x0004D6},
+{0x0004D9, 0x0004D8},
+{0x0004DB, 0x0004DA},
+{0x0004DD, 0x0004DC},
+{0x0004DF, 0x0004DE},
+{0x0004E1, 0x0004E0},
+{0x0004E3, 0x0004E2},
+{0x0004E5, 0x0004E4},
+{0x0004E7, 0x0004E6},
+{0x0004E9, 0x0004E8},
+{0x0004EB, 0x0004EA},
+{0x0004ED, 0x0004EC},
+{0x0004EF, 0x0004EE},
+{0x0004F1, 0x0004F0},
+{0x0004F3, 0x0004F2},
+{0x0004F5, 0x0004F4},
+{0x0004F7, 0x0004F6},
+{0x0004F9, 0x0004F8},
+{0x0004FB, 0x0004FA},
+{0x0004FD, 0x0004FC},
+{0x0004FF, 0x0004FE},
+{0x000501, 0x000500},
+{0x000503, 0x000502},
+{0x000505, 0x000504},
+{0x000507, 0x000506},
+{0x000509, 0x000508},
+{0x00050B, 0x00050A},
+{0x00050D, 0x00050C},
+{0x00050F, 0x00050E},
+{0x000511, 0x000510},
+{0x000513, 0x000512},
+{0x000515, 0x000514},
+{0x000517, 0x000516},
+{0x000519, 0x000518},
+{0x00051B, 0x00051A},
+{0x00051D, 0x00051C},
+{0x00051F, 0x00051E},
+{0x000521, 0x000520},
+{0x000523, 0x000522},
+{0x000525, 0x000524},
+{0x000527, 0x000526},
+{0x000529, 0x000528},
+{0x00052B, 0x00052A},
+{0x00052D, 0x00052C},
+{0x00052F, 0x00052E},
+{0x000561, 0x000531},
+{0x000562, 0x000532},
+{0x000563, 0x000533},
+{0x000564, 0x000534},
+{0x000565, 0x000535},
+{0x000566, 0x000536},
+{0x000567, 0x000537},
+{0x000568, 0x000538},
+{0x000569, 0x000539},
+{0x00056A, 0x00053A},
+{0x00056B, 0x00053B},
+{0x00056C, 0x00053C},
+{0x00056D, 0x00053D},
+{0x00056E, 0x00053E},
+{0x00056F, 0x00053F},
+{0x000570, 0x000540},
+{0x000571, 0x000541},
+{0x000572, 0x000542},
+{0x000573, 0x000543},
+{0x000574, 0x000544},
+{0x000575, 0x000545},
+{0x000576, 0x000546},
+{0x000577, 0x000547},
+{0x000578, 0x000548},
+{0x000579, 0x000549},
+{0x00057A, 0x00054A},
+{0x00057B, 0x00054B},
+{0x00057C, 0x00054C},
+{0x00057D, 0x00054D},
+{0x00057E, 0x00054E},
+{0x00057F, 0x00054F},
+{0x000580, 0x000550},
+{0x000581, 0x000551},
+{0x000582, 0x000552},
+{0x000583, 0x000553},
+{0x000584, 0x000554},
+{0x000585, 0x000555},
+{0x000586, 0x000556},
+{0x0010D0, 0x001C90},
+{0x0010D1, 0x001C91},
+{0x0010D2, 0x001C92},
+{0x0010D3, 0x001C93},
+{0x0010D4, 0x001C94},
+{0x0010D5, 0x001C95},
+{0x0010D6, 0x001C96},
+{0x0010D7, 0x001C97},
+{0x0010D8, 0x001C98},
+{0x0010D9, 0x001C99},
+{0x0010DA, 0x001C9A},
+{0x0010DB, 0x001C9B},
+{0x0010DC, 0x001C9C},
+{0x0010DD, 0x001C9D},
+{0x0010DE, 0x001C9E},
+{0x0010DF, 0x001C9F},
+{0x0010E0, 0x001CA0},
+{0x0010E1, 0x001CA1},
+{0x0010E2, 0x001CA2},
+{0x0010E3, 0x001CA3},
+{0x0010E4, 0x001CA4},
+{0x0010E5, 0x001CA5},
+{0x0010E6, 0x001CA6},
+{0x0010E7, 0x001CA7},
+{0x0010E8, 0x001CA8},
+{0x0010E9, 0x001CA9},
+{0x0010EA, 0x001CAA},
+{0x0010EB, 0x001CAB},
+{0x0010EC, 0x001CAC},
+{0x0010ED, 0x001CAD},
+{0x0010EE, 0x001CAE},
+{0x0010EF, 0x001CAF},
+{0x0010F0, 0x001CB0},
+{0x0010F1, 0x001CB1},
+{0x0010F2, 0x001CB2},
+{0x0010F3, 0x001CB3},
+{0x0010F4, 0x001CB4},
+{0x0010F5, 0x001CB5},
+{0x0010F6, 0x001CB6},
+{0x0010F7, 0x001CB7},
+{0x0010F8, 0x001CB8},
+{0x0010F9, 0x001CB9},
+{0x0010FA, 0x001CBA},
+{0x0010FD, 0x001CBD},
+{0x0010FE, 0x001CBE},
+{0x0010FF, 0x001CBF},
+{0x0013F8, 0x0013F0},
+{0x0013F9, 0x0013F1},
+{0x0013FA, 0x0013F2},
+{0x0013FB, 0x0013F3},
+{0x0013FC, 0x0013F4},
+{0x0013FD, 0x0013F5},
+{0x001C80, 0x000412},
+{0x001C81, 0x000414},
+{0x001C82, 0x00041E},
+{0x001C83, 0x000421},
+{0x001C84, 0x000422},
+{0x001C85, 0x000422},
+{0x001C86, 0x00042A},
+{0x001C87, 0x000462},
+{0x001C88, 0x00A64A},
+{0x001D79, 0x00A77D},
+{0x001D7D, 0x002C63},
+{0x001D8E, 0x00A7C6},
+{0x001E01, 0x001E00},
+{0x001E03, 0x001E02},
+{0x001E05, 0x001E04},
+{0x001E07, 0x001E06},
+{0x001E09, 0x001E08},
+{0x001E0B, 0x001E0A},
+{0x001E0D, 0x001E0C},
+{0x001E0F, 0x001E0E},
+{0x001E11, 0x001E10},
+{0x001E13, 0x001E12},
+{0x001E15, 0x001E14},
+{0x001E17, 0x001E16},
+{0x001E19, 0x001E18},
+{0x001E1B, 0x001E1A},
+{0x001E1D, 0x001E1C},
+{0x001E1F, 0x001E1E},
+{0x001E21, 0x001E20},
+{0x001E23, 0x001E22},
+{0x001E25, 0x001E24},
+{0x001E27, 0x001E26},
+{0x001E29, 0x001E28},
+{0x001E2B, 0x001E2A},
+{0x001E2D, 0x001E2C},
+{0x001E2F, 0x001E2E},
+{0x001E31, 0x001E30},
+{0x001E33, 0x001E32},
+{0x001E35, 0x001E34},
+{0x001E37, 0x001E36},
+{0x001E39, 0x001E38},
+{0x001E3B, 0x001E3A},
+{0x001E3D, 0x001E3C},
+{0x001E3F, 0x001E3E},
+{0x001E41, 0x001E40},
+{0x001E43, 0x001E42},
+{0x001E45, 0x001E44},
+{0x001E47, 0x001E46},
+{0x001E49, 0x001E48},
+{0x001E4B, 0x001E4A},
+{0x001E4D, 0x001E4C},
+{0x001E4F, 0x001E4E},
+{0x001E51, 0x001E50},
+{0x001E53, 0x001E52},
+{0x001E55, 0x001E54},
+{0x001E57, 0x001E56},
+{0x001E59, 0x001E58},
+{0x001E5B, 0x001E5A},
+{0x001E5D, 0x001E5C},
+{0x001E5F, 0x001E5E},
+{0x001E61, 0x001E60},
+{0x001E63, 0x001E62},
+{0x001E65, 0x001E64},
+{0x001E67, 0x001E66},
+{0x001E69, 0x001E68},
+{0x001E6B, 0x001E6A},
+{0x001E6D, 0x001E6C},
+{0x001E6F, 0x001E6E},
+{0x001E71, 0x001E70},
+{0x001E73, 0x001E72},
+{0x001E75, 0x001E74},
+{0x001E77, 0x001E76},
+{0x001E79, 0x001E78},
+{0x001E7B, 0x001E7A},
+{0x001E7D, 0x001E7C},
+{0x001E7F, 0x001E7E},
+{0x001E81, 0x001E80},
+{0x001E83, 0x001E82},
+{0x001E85, 0x001E84},
+{0x001E87, 0x001E86},
+{0x001E89, 0x001E88},
+{0x001E8B, 0x001E8A},
+{0x001E8D, 0x001E8C},
+{0x001E8F, 0x001E8E},
+{0x001E91, 0x001E90},
+{0x001E93, 0x001E92},
+{0x001E95, 0x001E94},
+{0x001E9B, 0x001E60},
+{0x001EA1, 0x001EA0},
+{0x001EA3, 0x001EA2},
+{0x001EA5, 0x001EA4},
+{0x001EA7, 0x001EA6},
+{0x001EA9, 0x001EA8},
+{0x001EAB, 0x001EAA},
+{0x001EAD, 0x001EAC},
+{0x001EAF, 0x001EAE},
+{0x001EB1, 0x001EB0},
+{0x001EB3, 0x001EB2},
+{0x001EB5, 0x001EB4},
+{0x001EB7, 0x001EB6},
+{0x001EB9, 0x001EB8},
+{0x001EBB, 0x001EBA},
+{0x001EBD, 0x001EBC},
+{0x001EBF, 0x001EBE},
+{0x001EC1, 0x001EC0},
+{0x001EC3, 0x001EC2},
+{0x001EC5, 0x001EC4},
+{0x001EC7, 0x001EC6},
+{0x001EC9, 0x001EC8},
+{0x001ECB, 0x001ECA},
+{0x001ECD, 0x001ECC},
+{0x001ECF, 0x001ECE},
+{0x001ED1, 0x001ED0},
+{0x001ED3, 0x001ED2},
+{0x001ED5, 0x001ED4},
+{0x001ED7, 0x001ED6},
+{0x001ED9, 0x001ED8},
+{0x001EDB, 0x001EDA},
+{0x001EDD, 0x001EDC},
+{0x001EDF, 0x001EDE},
+{0x001EE1, 0x001EE0},
+{0x001EE3, 0x001EE2},
+{0x001EE5, 0x001EE4},
+{0x001EE7, 0x001EE6},
+{0x001EE9, 0x001EE8},
+{0x001EEB, 0x001EEA},
+{0x001EED, 0x001EEC},
+{0x001EEF, 0x001EEE},
+{0x001EF1, 0x001EF0},
+{0x001EF3, 0x001EF2},
+{0x001EF5, 0x001EF4},
+{0x001EF7, 0x001EF6},
+{0x001EF9, 0x001EF8},
+{0x001EFB, 0x001EFA},
+{0x001EFD, 0x001EFC},
+{0x001EFF, 0x001EFE},
+{0x001F00, 0x001F08},
+{0x001F01, 0x001F09},
+{0x001F02, 0x001F0A},
+{0x001F03, 0x001F0B},
+{0x001F04, 0x001F0C},
+{0x001F05, 0x001F0D},
+{0x001F06, 0x001F0E},
+{0x001F07, 0x001F0F},
+{0x001F10, 0x001F18},
+{0x001F11, 0x001F19},
+{0x001F12, 0x001F1A},
+{0x001F13, 0x001F1B},
+{0x001F14, 0x001F1C},
+{0x001F15, 0x001F1D},
+{0x001F20, 0x001F28},
+{0x001F21, 0x001F29},
+{0x001F22, 0x001F2A},
+{0x001F23, 0x001F2B},
+{0x001F24, 0x001F2C},
+{0x001F25, 0x001F2D},
+{0x001F26, 0x001F2E},
+{0x001F27, 0x001F2F},
+{0x001F30, 0x001F38},
+{0x001F31, 0x001F39},
+{0x001F32, 0x001F3A},
+{0x001F33, 0x001F3B},
+{0x001F34, 0x001F3C},
+{0x001F35, 0x001F3D},
+{0x001F36, 0x001F3E},
+{0x001F37, 0x001F3F},
+{0x001F40, 0x001F48},
+{0x001F41, 0x001F49},
+{0x001F42, 0x001F4A},
+{0x001F43, 0x001F4B},
+{0x001F44, 0x001F4C},
+{0x001F45, 0x001F4D},
+{0x001F51, 0x001F59},
+{0x001F53, 0x001F5B},
+{0x001F55, 0x001F5D},
+{0x001F57, 0x001F5F},
+{0x001F60, 0x001F68},
+{0x001F61, 0x001F69},
+{0x001F62, 0x001F6A},
+{0x001F63, 0x001F6B},
+{0x001F64, 0x001F6C},
+{0x001F65, 0x001F6D},
+{0x001F66, 0x001F6E},
+{0x001F67, 0x001F6F},
+{0x001F70, 0x001FBA},
+{0x001F71, 0x001FBB},
+{0x001F72, 0x001FC8},
+{0x001F73, 0x001FC9},
+{0x001F74, 0x001FCA},
+{0x001F75, 0x001FCB},
+{0x001F76, 0x001FDA},
+{0x001F77, 0x001FDB},
+{0x001F78, 0x001FF8},
+{0x001F79, 0x001FF9},
+{0x001F7A, 0x001FEA},
+{0x001F7B, 0x001FEB},
+{0x001F7C, 0x001FFA},
+{0x001F7D, 0x001FFB},
+{0x001F80, 0x001F88},
+{0x001F81, 0x001F89},
+{0x001F82, 0x001F8A},
+{0x001F83, 0x001F8B},
+{0x001F84, 0x001F8C},
+{0x001F85, 0x001F8D},
+{0x001F86, 0x001F8E},
+{0x001F87, 0x001F8F},
+{0x001F90, 0x001F98},
+{0x001F91, 0x001F99},
+{0x001F92, 0x001F9A},
+{0x001F93, 0x001F9B},
+{0x001F94, 0x001F9C},
+{0x001F95, 0x001F9D},
+{0x001F96, 0x001F9E},
+{0x001F97, 0x001F9F},
+{0x001FA0, 0x001FA8},
+{0x001FA1, 0x001FA9},
+{0x001FA2, 0x001FAA},
+{0x001FA3, 0x001FAB},
+{0x001FA4, 0x001FAC},
+{0x001FA5, 0x001FAD},
+{0x001FA6, 0x001FAE},
+{0x001FA7, 0x001FAF},
+{0x001FB0, 0x001FB8},
+{0x001FB1, 0x001FB9},
+{0x001FB3, 0x001FBC},
+{0x001FBE, 0x000399},
+{0x001FC3, 0x001FCC},
+{0x001FD0, 0x001FD8},
+{0x001FD1, 0x001FD9},
+{0x001FE0, 0x001FE8},
+{0x001FE1, 0x001FE9},
+{0x001FE5, 0x001FEC},
+{0x001FF3, 0x001FFC},
+{0x00214E, 0x002132},
+{0x002170, 0x002160},
+{0x002171, 0x002161},
+{0x002172, 0x002162},
+{0x002173, 0x002163},
+{0x002174, 0x002164},
+{0x002175, 0x002165},
+{0x002176, 0x002166},
+{0x002177, 0x002167},
+{0x002178, 0x002168},
+{0x002179, 0x002169},
+{0x00217A, 0x00216A},
+{0x00217B, 0x00216B},
+{0x00217C, 0x00216C},
+{0x00217D, 0x00216D},
+{0x00217E, 0x00216E},
+{0x00217F, 0x00216F},
+{0x002184, 0x002183},
+{0x0024D0, 0x0024B6},
+{0x0024D1, 0x0024B7},
+{0x0024D2, 0x0024B8},
+{0x0024D3, 0x0024B9},
+{0x0024D4, 0x0024BA},
+{0x0024D5, 0x0024BB},
+{0x0024D6, 0x0024BC},
+{0x0024D7, 0x0024BD},
+{0x0024D8, 0x0024BE},
+{0x0024D9, 0x0024BF},
+{0x0024DA, 0x0024C0},
+{0x0024DB, 0x0024C1},
+{0x0024DC, 0x0024C2},
+{0x0024DD, 0x0024C3},
+{0x0024DE, 0x0024C4},
+{0x0024DF, 0x0024C5},
+{0x0024E0, 0x0024C6},
+{0x0024E1, 0x0024C7},
+{0x0024E2, 0x0024C8},
+{0x0024E3, 0x0024C9},
+{0x0024E4, 0x0024CA},
+{0x0024E5, 0x0024CB},
+{0x0024E6, 0x0024CC},
+{0x0024E7, 0x0024CD},
+{0x0024E8, 0x0024CE},
+{0x0024E9, 0x0024CF},
+{0x002C30, 0x002C00},
+{0x002C31, 0x002C01},
+{0x002C32, 0x002C02},
+{0x002C33, 0x002C03},
+{0x002C34, 0x002C04},
+{0x002C35, 0x002C05},
+{0x002C36, 0x002C06},
+{0x002C37, 0x002C07},
+{0x002C38, 0x002C08},
+{0x002C39, 0x002C09},
+{0x002C3A, 0x002C0A},
+{0x002C3B, 0x002C0B},
+{0x002C3C, 0x002C0C},
+{0x002C3D, 0x002C0D},
+{0x002C3E, 0x002C0E},
+{0x002C3F, 0x002C0F},
+{0x002C40, 0x002C10},
+{0x002C41, 0x002C11},
+{0x002C42, 0x002C12},
+{0x002C43, 0x002C13},
+{0x002C44, 0x002C14},
+{0x002C45, 0x002C15},
+{0x002C46, 0x002C16},
+{0x002C47, 0x002C17},
+{0x002C48, 0x002C18},
+{0x002C49, 0x002C19},
+{0x002C4A, 0x002C1A},
+{0x002C4B, 0x002C1B},
+{0x002C4C, 0x002C1C},
+{0x002C4D, 0x002C1D},
+{0x002C4E, 0x002C1E},
+{0x002C4F, 0x002C1F},
+{0x002C50, 0x002C20},
+{0x002C51, 0x002C21},
+{0x002C52, 0x002C22},
+{0x002C53, 0x002C23},
+{0x002C54, 0x002C24},
+{0x002C55, 0x002C25},
+{0x002C56, 0x002C26},
+{0x002C57, 0x002C27},
+{0x002C58, 0x002C28},
+{0x002C59, 0x002C29},
+{0x002C5A, 0x002C2A},
+{0x002C5B, 0x002C2B},
+{0x002C5C, 0x002C2C},
+{0x002C5D, 0x002C2D},
+{0x002C5E, 0x002C2E},
+{0x002C5F, 0x002C2F},
+{0x002C61, 0x002C60},
+{0x002C65, 0x00023A},
+{0x002C66, 0x00023E},
+{0x002C68, 0x002C67},
+{0x002C6A, 0x002C69},
+{0x002C6C, 0x002C6B},
+{0x002C73, 0x002C72},
+{0x002C76, 0x002C75},
+{0x002C81, 0x002C80},
+{0x002C83, 0x002C82},
+{0x002C85, 0x002C84},
+{0x002C87, 0x002C86},
+{0x002C89, 0x002C88},
+{0x002C8B, 0x002C8A},
+{0x002C8D, 0x002C8C},
+{0x002C8F, 0x002C8E},
+{0x002C91, 0x002C90},
+{0x002C93, 0x002C92},
+{0x002C95, 0x002C94},
+{0x002C97, 0x002C96},
+{0x002C99, 0x002C98},
+{0x002C9B, 0x002C9A},
+{0x002C9D, 0x002C9C},
+{0x002C9F, 0x002C9E},
+{0x002CA1, 0x002CA0},
+{0x002CA3, 0x002CA2},
+{0x002CA5, 0x002CA4},
+{0x002CA7, 0x002CA6},
+{0x002CA9, 0x002CA8},
+{0x002CAB, 0x002CAA},
+{0x002CAD, 0x002CAC},
+{0x002CAF, 0x002CAE},
+{0x002CB1, 0x002CB0},
+{0x002CB3, 0x002CB2},
+{0x002CB5, 0x002CB4},
+{0x002CB7, 0x002CB6},
+{0x002CB9, 0x002CB8},
+{0x002CBB, 0x002CBA},
+{0x002CBD, 0x002CBC},
+{0x002CBF, 0x002CBE},
+{0x002CC1, 0x002CC0},
+{0x002CC3, 0x002CC2},
+{0x002CC5, 0x002CC4},
+{0x002CC7, 0x002CC6},
+{0x002CC9, 0x002CC8},
+{0x002CCB, 0x002CCA},
+{0x002CCD, 0x002CCC},
+{0x002CCF, 0x002CCE},
+{0x002CD1, 0x002CD0},
+{0x002CD3, 0x002CD2},
+{0x002CD5, 0x002CD4},
+{0x002CD7, 0x002CD6},
+{0x002CD9, 0x002CD8},
+{0x002CDB, 0x002CDA},
+{0x002CDD, 0x002CDC},
+{0x002CDF, 0x002CDE},
+{0x002CE1, 0x002CE0},
+{0x002CE3, 0x002CE2},
+{0x002CEC, 0x002CEB},
+{0x002CEE, 0x002CED},
+{0x002CF3, 0x002CF2},
+{0x002D00, 0x0010A0},
+{0x002D01, 0x0010A1},
+{0x002D02, 0x0010A2},
+{0x002D03, 0x0010A3},
+{0x002D04, 0x0010A4},
+{0x002D05, 0x0010A5},
+{0x002D06, 0x0010A6},
+{0x002D07, 0x0010A7},
+{0x002D08, 0x0010A8},
+{0x002D09, 0x0010A9},
+{0x002D0A, 0x0010AA},
+{0x002D0B, 0x0010AB},
+{0x002D0C, 0x0010AC},
+{0x002D0D, 0x0010AD},
+{0x002D0E, 0x0010AE},
+{0x002D0F, 0x0010AF},
+{0x002D10, 0x0010B0},
+{0x002D11, 0x0010B1},
+{0x002D12, 0x0010B2},
+{0x002D13, 0x0010B3},
+{0x002D14, 0x0010B4},
+{0x002D15, 0x0010B5},
+{0x002D16, 0x0010B6},
+{0x002D17, 0x0010B7},
+{0x002D18, 0x0010B8},
+{0x002D19, 0x0010B9},
+{0x002D1A, 0x0010BA},
+{0x002D1B, 0x0010BB},
+{0x002D1C, 0x0010BC},
+{0x002D1D, 0x0010BD},
+{0x002D1E, 0x0010BE},
+{0x002D1F, 0x0010BF},
+{0x002D20, 0x0010C0},
+{0x002D21, 0x0010C1},
+{0x002D22, 0x0010C2},
+{0x002D23, 0x0010C3},
+{0x002D24, 0x0010C4},
+{0x002D25, 0x0010C5},
+{0x002D27, 0x0010C7},
+{0x002D2D, 0x0010CD},
+{0x00A641, 0x00A640},
+{0x00A643, 0x00A642},
+{0x00A645, 0x00A644},
+{0x00A647, 0x00A646},
+{0x00A649, 0x00A648},
+{0x00A64B, 0x00A64A},
+{0x00A64D, 0x00A64C},
+{0x00A64F, 0x00A64E},
+{0x00A651, 0x00A650},
+{0x00A653, 0x00A652},
+{0x00A655, 0x00A654},
+{0x00A657, 0x00A656},
+{0x00A659, 0x00A658},
+{0x00A65B, 0x00A65A},
+{0x00A65D, 0x00A65C},
+{0x00A65F, 0x00A65E},
+{0x00A661, 0x00A660},
+{0x00A663, 0x00A662},
+{0x00A665, 0x00A664},
+{0x00A667, 0x00A666},
+{0x00A669, 0x00A668},
+{0x00A66B, 0x00A66A},
+{0x00A66D, 0x00A66C},
+{0x00A681, 0x00A680},
+{0x00A683, 0x00A682},
+{0x00A685, 0x00A684},
+{0x00A687, 0x00A686},
+{0x00A689, 0x00A688},
+{0x00A68B, 0x00A68A},
+{0x00A68D, 0x00A68C},
+{0x00A68F, 0x00A68E},
+{0x00A691, 0x00A690},
+{0x00A693, 0x00A692},
+{0x00A695, 0x00A694},
+{0x00A697, 0x00A696},
+{0x00A699, 0x00A698},
+{0x00A69B, 0x00A69A},
+{0x00A723, 0x00A722},
+{0x00A725, 0x00A724},
+{0x00A727, 0x00A726},
+{0x00A729, 0x00A728},
+{0x00A72B, 0x00A72A},
+{0x00A72D, 0x00A72C},
+{0x00A72F, 0x00A72E},
+{0x00A733, 0x00A732},
+{0x00A735, 0x00A734},
+{0x00A737, 0x00A736},
+{0x00A739, 0x00A738},
+{0x00A73B, 0x00A73A},
+{0x00A73D, 0x00A73C},
+{0x00A73F, 0x00A73E},
+{0x00A741, 0x00A740},
+{0x00A743, 0x00A742},
+{0x00A745, 0x00A744},
+{0x00A747, 0x00A746},
+{0x00A749, 0x00A748},
+{0x00A74B, 0x00A74A},
+{0x00A74D, 0x00A74C},
+{0x00A74F, 0x00A74E},
+{0x00A751, 0x00A750},
+{0x00A753, 0x00A752},
+{0x00A755, 0x00A754},
+{0x00A757, 0x00A756},
+{0x00A759, 0x00A758},
+{0x00A75B, 0x00A75A},
+{0x00A75D, 0x00A75C},
+{0x00A75F, 0x00A75E},
+{0x00A761, 0x00A760},
+{0x00A763, 0x00A762},
+{0x00A765, 0x00A764},
+{0x00A767, 0x00A766},
+{0x00A769, 0x00A768},
+{0x00A76B, 0x00A76A},
+{0x00A76D, 0x00A76C},
+{0x00A76F, 0x00A76E},
+{0x00A77A, 0x00A779},
+{0x00A77C, 0x00A77B},
+{0x00A77F, 0x00A77E},
+{0x00A781, 0x00A780},
+{0x00A783, 0x00A782},
+{0x00A785, 0x00A784},
+{0x00A787, 0x00A786},
+{0x00A78C, 0x00A78B},
+{0x00A791, 0x00A790},
+{0x00A793, 0x00A792},
+{0x00A794, 0x00A7C4},
+{0x00A797, 0x00A796},
+{0x00A799, 0x00A798},
+{0x00A79B, 0x00A79A},
+{0x00A79D, 0x00A79C},
+{0x00A79F, 0x00A79E},
+{0x00A7A1, 0x00A7A0},
+{0x00A7A3, 0x00A7A2},
+{0x00A7A5, 0x00A7A4},
+{0x00A7A7, 0x00A7A6},
+{0x00A7A9, 0x00A7A8},
+{0x00A7B5, 0x00A7B4},
+{0x00A7B7, 0x00A7B6},
+{0x00A7B9, 0x00A7B8},
+{0x00A7BB, 0x00A7BA},
+{0x00A7BD, 0x00A7BC},
+{0x00A7BF, 0x00A7BE},
+{0x00A7C1, 0x00A7C0},
+{0x00A7C3, 0x00A7C2},
+{0x00A7C8, 0x00A7C7},
+{0x00A7CA, 0x00A7C9},
+{0x00A7D1, 0x00A7D0},
+{0x00A7D7, 0x00A7D6},
+{0x00A7D9, 0x00A7D8},
+{0x00A7F6, 0x00A7F5},
+{0x00AB53, 0x00A7B3},
+{0x00AB70, 0x0013A0},
+{0x00AB71, 0x0013A1},
+{0x00AB72, 0x0013A2},
+{0x00AB73, 0x0013A3},
+{0x00AB74, 0x0013A4},
+{0x00AB75, 0x0013A5},
+{0x00AB76, 0x0013A6},
+{0x00AB77, 0x0013A7},
+{0x00AB78, 0x0013A8},
+{0x00AB79, 0x0013A9},
+{0x00AB7A, 0x0013AA},
+{0x00AB7B, 0x0013AB},
+{0x00AB7C, 0x0013AC},
+{0x00AB7D, 0x0013AD},
+{0x00AB7E, 0x0013AE},
+{0x00AB7F, 0x0013AF},
+{0x00AB80, 0x0013B0},
+{0x00AB81, 0x0013B1},
+{0x00AB82, 0x0013B2},
+{0x00AB83, 0x0013B3},
+{0x00AB84, 0x0013B4},
+{0x00AB85, 0x0013B5},
+{0x00AB86, 0x0013B6},
+{0x00AB87, 0x0013B7},
+{0x00AB88, 0x0013B8},
+{0x00AB89, 0x0013B9},
+{0x00AB8A, 0x0013BA},
+{0x00AB8B, 0x0013BB},
+{0x00AB8C, 0x0013BC},
+{0x00AB8D, 0x0013BD},
+{0x00AB8E, 0x0013BE},
+{0x00AB8F, 0x0013BF},
+{0x00AB90, 0x0013C0},
+{0x00AB91, 0x0013C1},
+{0x00AB92, 0x0013C2},
+{0x00AB93, 0x0013C3},
+{0x00AB94, 0x0013C4},
+{0x00AB95, 0x0013C5},
+{0x00AB96, 0x0013C6},
+{0x00AB97, 0x0013C7},
+{0x00AB98, 0x0013C8},
+{0x00AB99, 0x0013C9},
+{0x00AB9A, 0x0013CA},
+{0x00AB9B, 0x0013CB},
+{0x00AB9C, 0x0013CC},
+{0x00AB9D, 0x0013CD},
+{0x00AB9E, 0x0013CE},
+{0x00AB9F, 0x0013CF},
+{0x00ABA0, 0x0013D0},
+{0x00ABA1, 0x0013D1},
+{0x00ABA2, 0x0013D2},
+{0x00ABA3, 0x0013D3},
+{0x00ABA4, 0x0013D4},
+{0x00ABA5, 0x0013D5},
+{0x00ABA6, 0x0013D6},
+{0x00ABA7, 0x0013D7},
+{0x00ABA8, 0x0013D8},
+{0x00ABA9, 0x0013D9},
+{0x00ABAA, 0x0013DA},
+{0x00ABAB, 0x0013DB},
+{0x00ABAC, 0x0013DC},
+{0x00ABAD, 0x0013DD},
+{0x00ABAE, 0x0013DE},
+{0x00ABAF, 0x0013DF},
+{0x00ABB0, 0x0013E0},
+{0x00ABB1, 0x0013E1},
+{0x00ABB2, 0x0013E2},
+{0x00ABB3, 0x0013E3},
+{0x00ABB4, 0x0013E4},
+{0x00ABB5, 0x0013E5},
+{0x00ABB6, 0x0013E6},
+{0x00ABB7, 0x0013E7},
+{0x00ABB8, 0x0013E8},
+{0x00ABB9, 0x0013E9},
+{0x00ABBA, 0x0013EA},
+{0x00ABBB, 0x0013EB},
+{0x00ABBC, 0x0013EC},
+{0x00ABBD, 0x0013ED},
+{0x00ABBE, 0x0013EE},
+{0x00ABBF, 0x0013EF},
+{0x00FF41, 0x00FF21},
+{0x00FF42, 0x00FF22},
+{0x00FF43, 0x00FF23},
+{0x00FF44, 0x00FF24},
+{0x00FF45, 0x00FF25},
+{0x00FF46, 0x00FF26},
+{0x00FF47, 0x00FF27},
+{0x00FF48, 0x00FF28},
+{0x00FF49, 0x00FF29},
+{0x00FF4A, 0x00FF2A},
+{0x00FF4B, 0x00FF2B},
+{0x00FF4C, 0x00FF2C},
+{0x00FF4D, 0x00FF2D},
+{0x00FF4E, 0x00FF2E},
+{0x00FF4F, 0x00FF2F},
+{0x00FF50, 0x00FF30},
+{0x00FF51, 0x00FF31},
+{0x00FF52, 0x00FF32},
+{0x00FF53, 0x00FF33},
+{0x00FF54, 0x00FF34},
+{0x00FF55, 0x00FF35},
+{0x00FF56, 0x00FF36},
+{0x00FF57, 0x00FF37},
+{0x00FF58, 0x00FF38},
+{0x00FF59, 0x00FF39},
+{0x00FF5A, 0x00FF3A},
+{0x010428, 0x010400},
+{0x010429, 0x010401},
+{0x01042A, 0x010402},
+{0x01042B, 0x010403},
+{0x01042C, 0x010404},
+{0x01042D, 0x010405},
+{0x01042E, 0x010406},
+{0x01042F, 0x010407},
+{0x010430, 0x010408},
+{0x010431, 0x010409},
+{0x010432, 0x01040A},
+{0x010433, 0x01040B},
+{0x010434, 0x01040C},
+{0x010435, 0x01040D},
+{0x010436, 0x01040E},
+{0x010437, 0x01040F},
+{0x010438, 0x010410},
+{0x010439, 0x010411},
+{0x01043A, 0x010412},
+{0x01043B, 0x010413},
+{0x01043C, 0x010414},
+{0x01043D, 0x010415},
+{0x01043E, 0x010416},
+{0x01043F, 0x010417},
+{0x010440, 0x010418},
+{0x010441, 0x010419},
+{0x010442, 0x01041A},
+{0x010443, 0x01041B},
+{0x010444, 0x01041C},
+{0x010445, 0x01041D},
+{0x010446, 0x01041E},
+{0x010447, 0x01041F},
+{0x010448, 0x010420},
+{0x010449, 0x010421},
+{0x01044A, 0x010422},
+{0x01044B, 0x010423},
+{0x01044C, 0x010424},
+{0x01044D, 0x010425},
+{0x01044E, 0x010426},
+{0x01044F, 0x010427},
+{0x0104D8, 0x0104B0},
+{0x0104D9, 0x0104B1},
+{0x0104DA, 0x0104B2},
+{0x0104DB, 0x0104B3},
+{0x0104DC, 0x0104B4},
+{0x0104DD, 0x0104B5},
+{0x0104DE, 0x0104B6},
+{0x0104DF, 0x0104B7},
+{0x0104E0, 0x0104B8},
+{0x0104E1, 0x0104B9},
+{0x0104E2, 0x0104BA},
+{0x0104E3, 0x0104BB},
+{0x0104E4, 0x0104BC},
+{0x0104E5, 0x0104BD},
+{0x0104E6, 0x0104BE},
+{0x0104E7, 0x0104BF},
+{0x0104E8, 0x0104C0},
+{0x0104E9, 0x0104C1},
+{0x0104EA, 0x0104C2},
+{0x0104EB, 0x0104C3},
+{0x0104EC, 0x0104C4},
+{0x0104ED, 0x0104C5},
+{0x0104EE, 0x0104C6},
+{0x0104EF, 0x0104C7},
+{0x0104F0, 0x0104C8},
+{0x0104F1, 0x0104C9},
+{0x0104F2, 0x0104CA},
+{0x0104F3, 0x0104CB},
+{0x0104F4, 0x0104CC},
+{0x0104F5, 0x0104CD},
+{0x0104F6, 0x0104CE},
+{0x0104F7, 0x0104CF},
+{0x0104F8, 0x0104D0},
+{0x0104F9, 0x0104D1},
+{0x0104FA, 0x0104D2},
+{0x0104FB, 0x0104D3},
+{0x010597, 0x010570},
+{0x010598, 0x010571},
+{0x010599, 0x010572},
+{0x01059A, 0x010573},
+{0x01059B, 0x010574},
+{0x01059C, 0x010575},
+{0x01059D, 0x010576},
+{0x01059E, 0x010577},
+{0x01059F, 0x010578},
+{0x0105A0, 0x010579},
+{0x0105A1, 0x01057A},
+{0x0105A3, 0x01057C},
+{0x0105A4, 0x01057D},
+{0x0105A5, 0x01057E},
+{0x0105A6, 0x01057F},
+{0x0105A7, 0x010580},
+{0x0105A8, 0x010581},
+{0x0105A9, 0x010582},
+{0x0105AA, 0x010583},
+{0x0105AB, 0x010584},
+{0x0105AC, 0x010585},
+{0x0105AD, 0x010586},
+{0x0105AE, 0x010587},
+{0x0105AF, 0x010588},
+{0x0105B0, 0x010589},
+{0x0105B1, 0x01058A},
+{0x0105B3, 0x01058C},
+{0x0105B4, 0x01058D},
+{0x0105B5, 0x01058E},
+{0x0105B6, 0x01058F},
+{0x0105B7, 0x010590},
+{0x0105B8, 0x010591},
+{0x0105B9, 0x010592},
+{0x0105BB, 0x010594},
+{0x0105BC, 0x010595},
+{0x010CC0, 0x010C80},
+{0x010CC1, 0x010C81},
+{0x010CC2, 0x010C82},
+{0x010CC3, 0x010C83},
+{0x010CC4, 0x010C84},
+{0x010CC5, 0x010C85},
+{0x010CC6, 0x010C86},
+{0x010CC7, 0x010C87},
+{0x010CC8, 0x010C88},
+{0x010CC9, 0x010C89},
+{0x010CCA, 0x010C8A},
+{0x010CCB, 0x010C8B},
+{0x010CCC, 0x010C8C},
+{0x010CCD, 0x010C8D},
+{0x010CCE, 0x010C8E},
+{0x010CCF, 0x010C8F},
+{0x010CD0, 0x010C90},
+{0x010CD1, 0x010C91},
+{0x010CD2, 0x010C92},
+{0x010CD3, 0x010C93},
+{0x010CD4, 0x010C94},
+{0x010CD5, 0x010C95},
+{0x010CD6, 0x010C96},
+{0x010CD7, 0x010C97},
+{0x010CD8, 0x010C98},
+{0x010CD9, 0x010C99},
+{0x010CDA, 0x010C9A},
+{0x010CDB, 0x010C9B},
+{0x010CDC, 0x010C9C},
+{0x010CDD, 0x010C9D},
+{0x010CDE, 0x010C9E},
+{0x010CDF, 0x010C9F},
+{0x010CE0, 0x010CA0},
+{0x010CE1, 0x010CA1},
+{0x010CE2, 0x010CA2},
+{0x010CE3, 0x010CA3},
+{0x010CE4, 0x010CA4},
+{0x010CE5, 0x010CA5},
+{0x010CE6, 0x010CA6},
+{0x010CE7, 0x010CA7},
+{0x010CE8, 0x010CA8},
+{0x010CE9, 0x010CA9},
+{0x010CEA, 0x010CAA},
+{0x010CEB, 0x010CAB},
+{0x010CEC, 0x010CAC},
+{0x010CED, 0x010CAD},
+{0x010CEE, 0x010CAE},
+{0x010CEF, 0x010CAF},
+{0x010CF0, 0x010CB0},
+{0x010CF1, 0x010CB1},
+{0x010CF2, 0x010CB2},
+{0x0118C0, 0x0118A0},
+{0x0118C1, 0x0118A1},
+{0x0118C2, 0x0118A2},
+{0x0118C3, 0x0118A3},
+{0x0118C4, 0x0118A4},
+{0x0118C5, 0x0118A5},
+{0x0118C6, 0x0118A6},
+{0x0118C7, 0x0118A7},
+{0x0118C8, 0x0118A8},
+{0x0118C9, 0x0118A9},
+{0x0118CA, 0x0118AA},
+{0x0118CB, 0x0118AB},
+{0x0118CC, 0x0118AC},
+{0x0118CD, 0x0118AD},
+{0x0118CE, 0x0118AE},
+{0x0118CF, 0x0118AF},
+{0x0118D0, 0x0118B0},
+{0x0118D1, 0x0118B1},
+{0x0118D2, 0x0118B2},
+{0x0118D3, 0x0118B3},
+{0x0118D4, 0x0118B4},
+{0x0118D5, 0x0118B5},
+{0x0118D6, 0x0118B6},
+{0x0118D7, 0x0118B7},
+{0x0118D8, 0x0118B8},
+{0x0118D9, 0x0118B9},
+{0x0118DA, 0x0118BA},
+{0x0118DB, 0x0118BB},
+{0x0118DC, 0x0118BC},
+{0x0118DD, 0x0118BD},
+{0x0118DE, 0x0118BE},
+{0x0118DF, 0x0118BF},
+{0x016E60, 0x016E40},
+{0x016E61, 0x016E41},
+{0x016E62, 0x016E42},
+{0x016E63, 0x016E43},
+{0x016E64, 0x016E44},
+{0x016E65, 0x016E45},
+{0x016E66, 0x016E46},
+{0x016E67, 0x016E47},
+{0x016E68, 0x016E48},
+{0x016E69, 0x016E49},
+{0x016E6A, 0x016E4A},
+{0x016E6B, 0x016E4B},
+{0x016E6C, 0x016E4C},
+{0x016E6D, 0x016E4D},
+{0x016E6E, 0x016E4E},
+{0x016E6F, 0x016E4F},
+{0x016E70, 0x016E50},
+{0x016E71, 0x016E51},
+{0x016E72, 0x016E52},
+{0x016E73, 0x016E53},
+{0x016E74, 0x016E54},
+{0x016E75, 0x016E55},
+{0x016E76, 0x016E56},
+{0x016E77, 0x016E57},
+{0x016E78, 0x016E58},
+{0x016E79, 0x016E59},
+{0x016E7A, 0x016E5A},
+{0x016E7B, 0x016E5B},
+{0x016E7C, 0x016E5C},
+{0x016E7D, 0x016E5D},
+{0x016E7E, 0x016E5E},
+{0x016E7F, 0x016E5F},
+{0x01E922, 0x01E900},
+{0x01E923, 0x01E901},
+{0x01E924, 0x01E902},
+{0x01E925, 0x01E903},
+{0x01E926, 0x01E904},
+{0x01E927, 0x01E905},
+{0x01E928, 0x01E906},
+{0x01E929, 0x01E907},
+{0x01E92A, 0x01E908},
+{0x01E92B, 0x01E909},
+{0x01E92C, 0x01E90A},
+{0x01E92D, 0x01E90B},
+{0x01E92E, 0x01E90C},
+{0x01E92F, 0x01E90D},
+{0x01E930, 0x01E90E},
+{0x01E931, 0x01E90F},
+{0x01E932, 0x01E910},
+{0x01E933, 0x01E911},
+{0x01E934, 0x01E912},
+{0x01E935, 0x01E913},
+{0x01E936, 0x01E914},
+{0x01E937, 0x01E915},
+{0x01E938, 0x01E916},
+{0x01E939, 0x01E917},
+{0x01E93A, 0x01E918},
+{0x01E93B, 0x01E919},
+{0x01E93C, 0x01E91A},
+{0x01E93D, 0x01E91B},
+{0x01E93E, 0x01E91C},
+{0x01E93F, 0x01E91D},
+{0x01E940, 0x01E91E},
+{0x01E941, 0x01E91F},
+{0x01E942, 0x01E920},
+{0x01E943, 0x01E921},
+};
+
+const std::vector<range_nfd> unicode_ranges_nfd = { // start, last, nfd
+{0x000000, 0x000000, 0x000000},
+{0x0000C0, 0x0000C5, 0x000041},
+{0x0000C7, 0x0000C7, 0x000043},
+{0x0000C8, 0x0000CB, 0x000045},
+{0x0000CC, 0x0000CF, 0x000049},
+{0x0000D1, 0x0000D1, 0x00004E},
+{0x0000D2, 0x0000D6, 0x00004F},
+{0x0000D9, 0x0000DC, 0x000055},
+{0x0000DD, 0x0000DD, 0x000059},
+{0x0000E0, 0x0000E5, 0x000061},
+{0x0000E7, 0x0000E7, 0x000063},
+{0x0000E8, 0x0000EB, 0x000065},
+{0x0000EC, 0x0000EF, 0x000069},
+{0x0000F1, 0x0000F1, 0x00006E},
+{0x0000F2, 0x0000F6, 0x00006F},
+{0x0000F9, 0x0000FC, 0x000075},
+{0x0000FD, 0x0000FD, 0x000079},
+{0x0000FF, 0x0000FF, 0x000079},
+{0x000100, 0x000100, 0x000041},
+{0x000101, 0x000101, 0x000061},
+{0x000102, 0x000102, 0x000041},
+{0x000103, 0x000103, 0x000061},
+{0x000104, 0x000104, 0x000041},
+{0x000105, 0x000105, 0x000061},
+{0x000106, 0x000106, 0x000043},
+{0x000107, 0x000107, 0x000063},
+{0x000108, 0x000108, 0x000043},
+{0x000109, 0x000109, 0x000063},
+{0x00010A, 0x00010A, 0x000043},
+{0x00010B, 0x00010B, 0x000063},
+{0x00010C, 0x00010C, 0x000043},
+{0x00010D, 0x00010D, 0x000063},
+{0x00010E, 0x00010E, 0x000044},
+{0x00010F, 0x00010F, 0x000064},
+{0x000112, 0x000112, 0x000045},
+{0x000113, 0x000113, 0x000065},
+{0x000114, 0x000114, 0x000045},
+{0x000115, 0x000115, 0x000065},
+{0x000116, 0x000116, 0x000045},
+{0x000117, 0x000117, 0x000065},
+{0x000118, 0x000118, 0x000045},
+{0x000119, 0x000119, 0x000065},
+{0x00011A, 0x00011A, 0x000045},
+{0x00011B, 0x00011B, 0x000065},
+{0x00011C, 0x00011C, 0x000047},
+{0x00011D, 0x00011D, 0x000067},
+{0x00011E, 0x00011E, 0x000047},
+{0x00011F, 0x00011F, 0x000067},
+{0x000120, 0x000120, 0x000047},
+{0x000121, 0x000121, 0x000067},
+{0x000122, 0x000122, 0x000047},
+{0x000123, 0x000123, 0x000067},
+{0x000124, 0x000124, 0x000048},
+{0x000125, 0x000125, 0x000068},
+{0x000128, 0x000128, 0x000049},
+{0x000129, 0x000129, 0x000069},
+{0x00012A, 0x00012A, 0x000049},
+{0x00012B, 0x00012B, 0x000069},
+{0x00012C, 0x00012C, 0x000049},
+{0x00012D, 0x00012D, 0x000069},
+{0x00012E, 0x00012E, 0x000049},
+{0x00012F, 0x00012F, 0x000069},
+{0x000130, 0x000130, 0x000049},
+{0x000134, 0x000134, 0x00004A},
+{0x000135, 0x000135, 0x00006A},
+{0x000136, 0x000136, 0x00004B},
+{0x000137, 0x000137, 0x00006B},
+{0x000139, 0x000139, 0x00004C},
+{0x00013A, 0x00013A, 0x00006C},
+{0x00013B, 0x00013B, 0x00004C},
+{0x00013C, 0x00013C, 0x00006C},
+{0x00013D, 0x00013D, 0x00004C},
+{0x00013E, 0x00013E, 0x00006C},
+{0x000143, 0x000143, 0x00004E},
+{0x000144, 0x000144, 0x00006E},
+{0x000145, 0x000145, 0x00004E},
+{0x000146, 0x000146, 0x00006E},
+{0x000147, 0x000147, 0x00004E},
+{0x000148, 0x000148, 0x00006E},
+{0x00014C, 0x00014C, 0x00004F},
+{0x00014D, 0x00014D, 0x00006F},
+{0x00014E, 0x00014E, 0x00004F},
+{0x00014F, 0x00014F, 0x00006F},
+{0x000150, 0x000150, 0x00004F},
+{0x000151, 0x000151, 0x00006F},
+{0x000154, 0x000154, 0x000052},
+{0x000155, 0x000155, 0x000072},
+{0x000156, 0x000156, 0x000052},
+{0x000157, 0x000157, 0x000072},
+{0x000158, 0x000158, 0x000052},
+{0x000159, 0x000159, 0x000072},
+{0x00015A, 0x00015A, 0x000053},
+{0x00015B, 0x00015B, 0x000073},
+{0x00015C, 0x00015C, 0x000053},
+{0x00015D, 0x00015D, 0x000073},
+{0x00015E, 0x00015E, 0x000053},
+{0x00015F, 0x00015F, 0x000073},
+{0x000160, 0x000160, 0x000053},
+{0x000161, 0x000161, 0x000073},
+{0x000162, 0x000162, 0x000054},
+{0x000163, 0x000163, 0x000074},
+{0x000164, 0x000164, 0x000054},
+{0x000165, 0x000165, 0x000074},
+{0x000168, 0x000168, 0x000055},
+{0x000169, 0x000169, 0x000075},
+{0x00016A, 0x00016A, 0x000055},
+{0x00016B, 0x00016B, 0x000075},
+{0x00016C, 0x00016C, 0x000055},
+{0x00016D, 0x00016D, 0x000075},
+{0x00016E, 0x00016E, 0x000055},
+{0x00016F, 0x00016F, 0x000075},
+{0x000170, 0x000170, 0x000055},
+{0x000171, 0x000171, 0x000075},
+{0x000172, 0x000172, 0x000055},
+{0x000173, 0x000173, 0x000075},
+{0x000174, 0x000174, 0x000057},
+{0x000175, 0x000175, 0x000077},
+{0x000176, 0x000176, 0x000059},
+{0x000177, 0x000177, 0x000079},
+{0x000178, 0x000178, 0x000059},
+{0x000179, 0x000179, 0x00005A},
+{0x00017A, 0x00017A, 0x00007A},
+{0x00017B, 0x00017B, 0x00005A},
+{0x00017C, 0x00017C, 0x00007A},
+{0x00017D, 0x00017D, 0x00005A},
+{0x00017E, 0x00017E, 0x00007A},
+{0x0001A0, 0x0001A0, 0x00004F},
+{0x0001A1, 0x0001A1, 0x00006F},
+{0x0001AF, 0x0001AF, 0x000055},
+{0x0001B0, 0x0001B0, 0x000075},
+{0x0001CD, 0x0001CD, 0x000041},
+{0x0001CE, 0x0001CE, 0x000061},
+{0x0001CF, 0x0001CF, 0x000049},
+{0x0001D0, 0x0001D0, 0x000069},
+{0x0001D1, 0x0001D1, 0x00004F},
+{0x0001D2, 0x0001D2, 0x00006F},
+{0x0001D3, 0x0001D3, 0x000055},
+{0x0001D4, 0x0001D4, 0x000075},
+{0x0001D5, 0x0001D5, 0x000055},
+{0x0001D6, 0x0001D6, 0x000075},
+{0x0001D7, 0x0001D7, 0x000055},
+{0x0001D8, 0x0001D8, 0x000075},
+{0x0001D9, 0x0001D9, 0x000055},
+{0x0001DA, 0x0001DA, 0x000075},
+{0x0001DB, 0x0001DB, 0x000055},
+{0x0001DC, 0x0001DC, 0x000075},
+{0x0001DE, 0x0001DE, 0x000041},
+{0x0001DF, 0x0001DF, 0x000061},
+{0x0001E0, 0x0001E0, 0x000041},
+{0x0001E1, 0x0001E1, 0x000061},
+{0x0001E2, 0x0001E2, 0x0000C6},
+{0x0001E3, 0x0001E3, 0x0000E6},
+{0x0001E6, 0x0001E6, 0x000047},
+{0x0001E7, 0x0001E7, 0x000067},
+{0x0001E8, 0x0001E8, 0x00004B},
+{0x0001E9, 0x0001E9, 0x00006B},
+{0x0001EA, 0x0001EA, 0x00004F},
+{0x0001EB, 0x0001EB, 0x00006F},
+{0x0001EC, 0x0001EC, 0x00004F},
+{0x0001ED, 0x0001ED, 0x00006F},
+{0x0001EE, 0x0001EE, 0x0001B7},
+{0x0001EF, 0x0001EF, 0x000292},
+{0x0001F0, 0x0001F0, 0x00006A},
+{0x0001F4, 0x0001F4, 0x000047},
+{0x0001F5, 0x0001F5, 0x000067},
+{0x0001F8, 0x0001F8, 0x00004E},
+{0x0001F9, 0x0001F9, 0x00006E},
+{0x0001FA, 0x0001FA, 0x000041},
+{0x0001FB, 0x0001FB, 0x000061},
+{0x0001FC, 0x0001FC, 0x0000C6},
+{0x0001FD, 0x0001FD, 0x0000E6},
+{0x0001FE, 0x0001FE, 0x0000D8},
+{0x0001FF, 0x0001FF, 0x0000F8},
+{0x000200, 0x000200, 0x000041},
+{0x000201, 0x000201, 0x000061},
+{0x000202, 0x000202, 0x000041},
+{0x000203, 0x000203, 0x000061},
+{0x000204, 0x000204, 0x000045},
+{0x000205, 0x000205, 0x000065},
+{0x000206, 0x000206, 0x000045},
+{0x000207, 0x000207, 0x000065},
+{0x000208, 0x000208, 0x000049},
+{0x000209, 0x000209, 0x000069},
+{0x00020A, 0x00020A, 0x000049},
+{0x00020B, 0x00020B, 0x000069},
+{0x00020C, 0x00020C, 0x00004F},
+{0x00020D, 0x00020D, 0x00006F},
+{0x00020E, 0x00020E, 0x00004F},
+{0x00020F, 0x00020F, 0x00006F},
+{0x000210, 0x000210, 0x000052},
+{0x000211, 0x000211, 0x000072},
+{0x000212, 0x000212, 0x000052},
+{0x000213, 0x000213, 0x000072},
+{0x000214, 0x000214, 0x000055},
+{0x000215, 0x000215, 0x000075},
+{0x000216, 0x000216, 0x000055},
+{0x000217, 0x000217, 0x000075},
+{0x000218, 0x000218, 0x000053},
+{0x000219, 0x000219, 0x000073},
+{0x00021A, 0x00021A, 0x000054},
+{0x00021B, 0x00021B, 0x000074},
+{0x00021E, 0x00021E, 0x000048},
+{0x00021F, 0x00021F, 0x000068},
+{0x000226, 0x000226, 0x000041},
+{0x000227, 0x000227, 0x000061},
+{0x000228, 0x000228, 0x000045},
+{0x000229, 0x000229, 0x000065},
+{0x00022A, 0x00022A, 0x00004F},
+{0x00022B, 0x00022B, 0x00006F},
+{0x00022C, 0x00022C, 0x00004F},
+{0x00022D, 0x00022D, 0x00006F},
+{0x00022E, 0x00022E, 0x00004F},
+{0x00022F, 0x00022F, 0x00006F},
+{0x000230, 0x000230, 0x00004F},
+{0x000231, 0x000231, 0x00006F},
+{0x000232, 0x000232, 0x000059},
+{0x000233, 0x000233, 0x000079},
+{0x000340, 0x000340, 0x000300},
+{0x000341, 0x000341, 0x000301},
+{0x000343, 0x000343, 0x000313},
+{0x000344, 0x000344, 0x000308},
+{0x000374, 0x000374, 0x0002B9},
+{0x00037E, 0x00037E, 0x00003B},
+{0x000385, 0x000385, 0x0000A8},
+{0x000386, 0x000386, 0x000391},
+{0x000387, 0x000387, 0x0000B7},
+{0x000388, 0x000388, 0x000395},
+{0x000389, 0x000389, 0x000397},
+{0x00038A, 0x00038A, 0x000399},
+{0x00038C, 0x00038C, 0x00039F},
+{0x00038E, 0x00038E, 0x0003A5},
+{0x00038F, 0x00038F, 0x0003A9},
+{0x000390, 0x000390, 0x0003B9},
+{0x0003AA, 0x0003AA, 0x000399},
+{0x0003AB, 0x0003AB, 0x0003A5},
+{0x0003AC, 0x0003AC, 0x0003B1},
+{0x0003AD, 0x0003AD, 0x0003B5},
+{0x0003AE, 0x0003AE, 0x0003B7},
+{0x0003AF, 0x0003AF, 0x0003B9},
+{0x0003B0, 0x0003B0, 0x0003C5},
+{0x0003CA, 0x0003CA, 0x0003B9},
+{0x0003CB, 0x0003CB, 0x0003C5},
+{0x0003CC, 0x0003CC, 0x0003BF},
+{0x0003CD, 0x0003CD, 0x0003C5},
+{0x0003CE, 0x0003CE, 0x0003C9},
+{0x0003D3, 0x0003D4, 0x0003D2},
+{0x000400, 0x000401, 0x000415},
+{0x000403, 0x000403, 0x000413},
+{0x000407, 0x000407, 0x000406},
+{0x00040C, 0x00040C, 0x00041A},
+{0x00040D, 0x00040D, 0x000418},
+{0x00040E, 0x00040E, 0x000423},
+{0x000419, 0x000419, 0x000418},
+{0x000439, 0x000439, 0x000438},
+{0x000450, 0x000451, 0x000435},
+{0x000453, 0x000453, 0x000433},
+{0x000457, 0x000457, 0x000456},
+{0x00045C, 0x00045C, 0x00043A},
+{0x00045D, 0x00045D, 0x000438},
+{0x00045E, 0x00045E, 0x000443},
+{0x000476, 0x000476, 0x000474},
+{0x000477, 0x000477, 0x000475},
+{0x0004C1, 0x0004C1, 0x000416},
+{0x0004C2, 0x0004C2, 0x000436},
+{0x0004D0, 0x0004D0, 0x000410},
+{0x0004D1, 0x0004D1, 0x000430},
+{0x0004D2, 0x0004D2, 0x000410},
+{0x0004D3, 0x0004D3, 0x000430},
+{0x0004D6, 0x0004D6, 0x000415},
+{0x0004D7, 0x0004D7, 0x000435},
+{0x0004DA, 0x0004DA, 0x0004D8},
+{0x0004DB, 0x0004DB, 0x0004D9},
+{0x0004DC, 0x0004DC, 0x000416},
+{0x0004DD, 0x0004DD, 0x000436},
+{0x0004DE, 0x0004DE, 0x000417},
+{0x0004DF, 0x0004DF, 0x000437},
+{0x0004E2, 0x0004E2, 0x000418},
+{0x0004E3, 0x0004E3, 0x000438},
+{0x0004E4, 0x0004E4, 0x000418},
+{0x0004E5, 0x0004E5, 0x000438},
+{0x0004E6, 0x0004E6, 0x00041E},
+{0x0004E7, 0x0004E7, 0x00043E},
+{0x0004EA, 0x0004EA, 0x0004E8},
+{0x0004EB, 0x0004EB, 0x0004E9},
+{0x0004EC, 0x0004EC, 0x00042D},
+{0x0004ED, 0x0004ED, 0x00044D},
+{0x0004EE, 0x0004EE, 0x000423},
+{0x0004EF, 0x0004EF, 0x000443},
+{0x0004F0, 0x0004F0, 0x000423},
+{0x0004F1, 0x0004F1, 0x000443},
+{0x0004F2, 0x0004F2, 0x000423},
+{0x0004F3, 0x0004F3, 0x000443},
+{0x0004F4, 0x0004F4, 0x000427},
+{0x0004F5, 0x0004F5, 0x000447},
+{0x0004F8, 0x0004F8, 0x00042B},
+{0x0004F9, 0x0004F9, 0x00044B},
+{0x000622, 0x000623, 0x000627},
+{0x000624, 0x000624, 0x000648},
+{0x000625, 0x000625, 0x000627},
+{0x000626, 0x000626, 0x00064A},
+{0x0006C0, 0x0006C0, 0x0006D5},
+{0x0006C2, 0x0006C2, 0x0006C1},
+{0x0006D3, 0x0006D3, 0x0006D2},
+{0x000929, 0x000929, 0x000928},
+{0x000931, 0x000931, 0x000930},
+{0x000934, 0x000934, 0x000933},
+{0x000958, 0x000958, 0x000915},
+{0x000959, 0x000959, 0x000916},
+{0x00095A, 0x00095A, 0x000917},
+{0x00095B, 0x00095B, 0x00091C},
+{0x00095C, 0x00095C, 0x000921},
+{0x00095D, 0x00095D, 0x000922},
+{0x00095E, 0x00095E, 0x00092B},
+{0x00095F, 0x00095F, 0x00092F},
+{0x0009CB, 0x0009CC, 0x0009C7},
+{0x0009DC, 0x0009DC, 0x0009A1},
+{0x0009DD, 0x0009DD, 0x0009A2},
+{0x0009DF, 0x0009DF, 0x0009AF},
+{0x000A33, 0x000A33, 0x000A32},
+{0x000A36, 0x000A36, 0x000A38},
+{0x000A59, 0x000A59, 0x000A16},
+{0x000A5A, 0x000A5A, 0x000A17},
+{0x000A5B, 0x000A5B, 0x000A1C},
+{0x000A5E, 0x000A5E, 0x000A2B},
+{0x000B48, 0x000B48, 0x000B47},
+{0x000B4B, 0x000B4C, 0x000B47},
+{0x000B5C, 0x000B5C, 0x000B21},
+{0x000B5D, 0x000B5D, 0x000B22},
+{0x000B94, 0x000B94, 0x000B92},
+{0x000BCA, 0x000BCA, 0x000BC6},
+{0x000BCB, 0x000BCB, 0x000BC7},
+{0x000BCC, 0x000BCC, 0x000BC6},
+{0x000C48, 0x000C48, 0x000C46},
+{0x000CC0, 0x000CC0, 0x000CBF},
+{0x000CC7, 0x000CC8, 0x000CC6},
+{0x000CCA, 0x000CCB, 0x000CC6},
+{0x000D4A, 0x000D4A, 0x000D46},
+{0x000D4B, 0x000D4B, 0x000D47},
+{0x000D4C, 0x000D4C, 0x000D46},
+{0x000DDA, 0x000DDA, 0x000DD9},
+{0x000DDC, 0x000DDE, 0x000DD9},
+{0x000F43, 0x000F43, 0x000F42},
+{0x000F4D, 0x000F4D, 0x000F4C},
+{0x000F52, 0x000F52, 0x000F51},
+{0x000F57, 0x000F57, 0x000F56},
+{0x000F5C, 0x000F5C, 0x000F5B},
+{0x000F69, 0x000F69, 0x000F40},
+{0x000F73, 0x000F73, 0x000F71},
+{0x000F75, 0x000F75, 0x000F71},
+{0x000F76, 0x000F76, 0x000FB2},
+{0x000F78, 0x000F78, 0x000FB3},
+{0x000F81, 0x000F81, 0x000F71},
+{0x000F93, 0x000F93, 0x000F92},
+{0x000F9D, 0x000F9D, 0x000F9C},
+{0x000FA2, 0x000FA2, 0x000FA1},
+{0x000FA7, 0x000FA7, 0x000FA6},
+{0x000FAC, 0x000FAC, 0x000FAB},
+{0x000FB9, 0x000FB9, 0x000F90},
+{0x001026, 0x001026, 0x001025},
+{0x001B06, 0x001B06, 0x001B05},
+{0x001B08, 0x001B08, 0x001B07},
+{0x001B0A, 0x001B0A, 0x001B09},
+{0x001B0C, 0x001B0C, 0x001B0B},
+{0x001B0E, 0x001B0E, 0x001B0D},
+{0x001B12, 0x001B12, 0x001B11},
+{0x001B3B, 0x001B3B, 0x001B3A},
+{0x001B3D, 0x001B3D, 0x001B3C},
+{0x001B40, 0x001B40, 0x001B3E},
+{0x001B41, 0x001B41, 0x001B3F},
+{0x001B43, 0x001B43, 0x001B42},
+{0x001E00, 0x001E00, 0x000041},
+{0x001E01, 0x001E01, 0x000061},
+{0x001E02, 0x001E02, 0x000042},
+{0x001E03, 0x001E03, 0x000062},
+{0x001E04, 0x001E04, 0x000042},
+{0x001E05, 0x001E05, 0x000062},
+{0x001E06, 0x001E06, 0x000042},
+{0x001E07, 0x001E07, 0x000062},
+{0x001E08, 0x001E08, 0x000043},
+{0x001E09, 0x001E09, 0x000063},
+{0x001E0A, 0x001E0A, 0x000044},
+{0x001E0B, 0x001E0B, 0x000064},
+{0x001E0C, 0x001E0C, 0x000044},
+{0x001E0D, 0x001E0D, 0x000064},
+{0x001E0E, 0x001E0E, 0x000044},
+{0x001E0F, 0x001E0F, 0x000064},
+{0x001E10, 0x001E10, 0x000044},
+{0x001E11, 0x001E11, 0x000064},
+{0x001E12, 0x001E12, 0x000044},
+{0x001E13, 0x001E13, 0x000064},
+{0x001E14, 0x001E14, 0x000045},
+{0x001E15, 0x001E15, 0x000065},
+{0x001E16, 0x001E16, 0x000045},
+{0x001E17, 0x001E17, 0x000065},
+{0x001E18, 0x001E18, 0x000045},
+{0x001E19, 0x001E19, 0x000065},
+{0x001E1A, 0x001E1A, 0x000045},
+{0x001E1B, 0x001E1B, 0x000065},
+{0x001E1C, 0x001E1C, 0x000045},
+{0x001E1D, 0x001E1D, 0x000065},
+{0x001E1E, 0x001E1E, 0x000046},
+{0x001E1F, 0x001E1F, 0x000066},
+{0x001E20, 0x001E20, 0x000047},
+{0x001E21, 0x001E21, 0x000067},
+{0x001E22, 0x001E22, 0x000048},
+{0x001E23, 0x001E23, 0x000068},
+{0x001E24, 0x001E24, 0x000048},
+{0x001E25, 0x001E25, 0x000068},
+{0x001E26, 0x001E26, 0x000048},
+{0x001E27, 0x001E27, 0x000068},
+{0x001E28, 0x001E28, 0x000048},
+{0x001E29, 0x001E29, 0x000068},
+{0x001E2A, 0x001E2A, 0x000048},
+{0x001E2B, 0x001E2B, 0x000068},
+{0x001E2C, 0x001E2C, 0x000049},
+{0x001E2D, 0x001E2D, 0x000069},
+{0x001E2E, 0x001E2E, 0x000049},
+{0x001E2F, 0x001E2F, 0x000069},
+{0x001E30, 0x001E30, 0x00004B},
+{0x001E31, 0x001E31, 0x00006B},
+{0x001E32, 0x001E32, 0x00004B},
+{0x001E33, 0x001E33, 0x00006B},
+{0x001E34, 0x001E34, 0x00004B},
+{0x001E35, 0x001E35, 0x00006B},
+{0x001E36, 0x001E36, 0x00004C},
+{0x001E37, 0x001E37, 0x00006C},
+{0x001E38, 0x001E38, 0x00004C},
+{0x001E39, 0x001E39, 0x00006C},
+{0x001E3A, 0x001E3A, 0x00004C},
+{0x001E3B, 0x001E3B, 0x00006C},
+{0x001E3C, 0x001E3C, 0x00004C},
+{0x001E3D, 0x001E3D, 0x00006C},
+{0x001E3E, 0x001E3E, 0x00004D},
+{0x001E3F, 0x001E3F, 0x00006D},
+{0x001E40, 0x001E40, 0x00004D},
+{0x001E41, 0x001E41, 0x00006D},
+{0x001E42, 0x001E42, 0x00004D},
+{0x001E43, 0x001E43, 0x00006D},
+{0x001E44, 0x001E44, 0x00004E},
+{0x001E45, 0x001E45, 0x00006E},
+{0x001E46, 0x001E46, 0x00004E},
+{0x001E47, 0x001E47, 0x00006E},
+{0x001E48, 0x001E48, 0x00004E},
+{0x001E49, 0x001E49, 0x00006E},
+{0x001E4A, 0x001E4A, 0x00004E},
+{0x001E4B, 0x001E4B, 0x00006E},
+{0x001E4C, 0x001E4C, 0x00004F},
+{0x001E4D, 0x001E4D, 0x00006F},
+{0x001E4E, 0x001E4E, 0x00004F},
+{0x001E4F, 0x001E4F, 0x00006F},
+{0x001E50, 0x001E50, 0x00004F},
+{0x001E51, 0x001E51, 0x00006F},
+{0x001E52, 0x001E52, 0x00004F},
+{0x001E53, 0x001E53, 0x00006F},
+{0x001E54, 0x001E54, 0x000050},
+{0x001E55, 0x001E55, 0x000070},
+{0x001E56, 0x001E56, 0x000050},
+{0x001E57, 0x001E57, 0x000070},
+{0x001E58, 0x001E58, 0x000052},
+{0x001E59, 0x001E59, 0x000072},
+{0x001E5A, 0x001E5A, 0x000052},
+{0x001E5B, 0x001E5B, 0x000072},
+{0x001E5C, 0x001E5C, 0x000052},
+{0x001E5D, 0x001E5D, 0x000072},
+{0x001E5E, 0x001E5E, 0x000052},
+{0x001E5F, 0x001E5F, 0x000072},
+{0x001E60, 0x001E60, 0x000053},
+{0x001E61, 0x001E61, 0x000073},
+{0x001E62, 0x001E62, 0x000053},
+{0x001E63, 0x001E63, 0x000073},
+{0x001E64, 0x001E64, 0x000053},
+{0x001E65, 0x001E65, 0x000073},
+{0x001E66, 0x001E66, 0x000053},
+{0x001E67, 0x001E67, 0x000073},
+{0x001E68, 0x001E68, 0x000053},
+{0x001E69, 0x001E69, 0x000073},
+{0x001E6A, 0x001E6A, 0x000054},
+{0x001E6B, 0x001E6B, 0x000074},
+{0x001E6C, 0x001E6C, 0x000054},
+{0x001E6D, 0x001E6D, 0x000074},
+{0x001E6E, 0x001E6E, 0x000054},
+{0x001E6F, 0x001E6F, 0x000074},
+{0x001E70, 0x001E70, 0x000054},
+{0x001E71, 0x001E71, 0x000074},
+{0x001E72, 0x001E72, 0x000055},
+{0x001E73, 0x001E73, 0x000075},
+{0x001E74, 0x001E74, 0x000055},
+{0x001E75, 0x001E75, 0x000075},
+{0x001E76, 0x001E76, 0x000055},
+{0x001E77, 0x001E77, 0x000075},
+{0x001E78, 0x001E78, 0x000055},
+{0x001E79, 0x001E79, 0x000075},
+{0x001E7A, 0x001E7A, 0x000055},
+{0x001E7B, 0x001E7B, 0x000075},
+{0x001E7C, 0x001E7C, 0x000056},
+{0x001E7D, 0x001E7D, 0x000076},
+{0x001E7E, 0x001E7E, 0x000056},
+{0x001E7F, 0x001E7F, 0x000076},
+{0x001E80, 0x001E80, 0x000057},
+{0x001E81, 0x001E81, 0x000077},
+{0x001E82, 0x001E82, 0x000057},
+{0x001E83, 0x001E83, 0x000077},
+{0x001E84, 0x001E84, 0x000057},
+{0x001E85, 0x001E85, 0x000077},
+{0x001E86, 0x001E86, 0x000057},
+{0x001E87, 0x001E87, 0x000077},
+{0x001E88, 0x001E88, 0x000057},
+{0x001E89, 0x001E89, 0x000077},
+{0x001E8A, 0x001E8A, 0x000058},
+{0x001E8B, 0x001E8B, 0x000078},
+{0x001E8C, 0x001E8C, 0x000058},
+{0x001E8D, 0x001E8D, 0x000078},
+{0x001E8E, 0x001E8E, 0x000059},
+{0x001E8F, 0x001E8F, 0x000079},
+{0x001E90, 0x001E90, 0x00005A},
+{0x001E91, 0x001E91, 0x00007A},
+{0x001E92, 0x001E92, 0x00005A},
+{0x001E93, 0x001E93, 0x00007A},
+{0x001E94, 0x001E94, 0x00005A},
+{0x001E95, 0x001E95, 0x00007A},
+{0x001E96, 0x001E96, 0x000068},
+{0x001E97, 0x001E97, 0x000074},
+{0x001E98, 0x001E98, 0x000077},
+{0x001E99, 0x001E99, 0x000079},
+{0x001E9B, 0x001E9B, 0x00017F},
+{0x001EA0, 0x001EA0, 0x000041},
+{0x001EA1, 0x001EA1, 0x000061},
+{0x001EA2, 0x001EA2, 0x000041},
+{0x001EA3, 0x001EA3, 0x000061},
+{0x001EA4, 0x001EA4, 0x000041},
+{0x001EA5, 0x001EA5, 0x000061},
+{0x001EA6, 0x001EA6, 0x000041},
+{0x001EA7, 0x001EA7, 0x000061},
+{0x001EA8, 0x001EA8, 0x000041},
+{0x001EA9, 0x001EA9, 0x000061},
+{0x001EAA, 0x001EAA, 0x000041},
+{0x001EAB, 0x001EAB, 0x000061},
+{0x001EAC, 0x001EAC, 0x000041},
+{0x001EAD, 0x001EAD, 0x000061},
+{0x001EAE, 0x001EAE, 0x000041},
+{0x001EAF, 0x001EAF, 0x000061},
+{0x001EB0, 0x001EB0, 0x000041},
+{0x001EB1, 0x001EB1, 0x000061},
+{0x001EB2, 0x001EB2, 0x000041},
+{0x001EB3, 0x001EB3, 0x000061},
+{0x001EB4, 0x001EB4, 0x000041},
+{0x001EB5, 0x001EB5, 0x000061},
+{0x001EB6, 0x001EB6, 0x000041},
+{0x001EB7, 0x001EB7, 0x000061},
+{0x001EB8, 0x001EB8, 0x000045},
+{0x001EB9, 0x001EB9, 0x000065},
+{0x001EBA, 0x001EBA, 0x000045},
+{0x001EBB, 0x001EBB, 0x000065},
+{0x001EBC, 0x001EBC, 0x000045},
+{0x001EBD, 0x001EBD, 0x000065},
+{0x001EBE, 0x001EBE, 0x000045},
+{0x001EBF, 0x001EBF, 0x000065},
+{0x001EC0, 0x001EC0, 0x000045},
+{0x001EC1, 0x001EC1, 0x000065},
+{0x001EC2, 0x001EC2, 0x000045},
+{0x001EC3, 0x001EC3, 0x000065},
+{0x001EC4, 0x001EC4, 0x000045},
+{0x001EC5, 0x001EC5, 0x000065},
+{0x001EC6, 0x001EC6, 0x000045},
+{0x001EC7, 0x001EC7, 0x000065},
+{0x001EC8, 0x001EC8, 0x000049},
+{0x001EC9, 0x001EC9, 0x000069},
+{0x001ECA, 0x001ECA, 0x000049},
+{0x001ECB, 0x001ECB, 0x000069},
+{0x001ECC, 0x001ECC, 0x00004F},
+{0x001ECD, 0x001ECD, 0x00006F},
+{0x001ECE, 0x001ECE, 0x00004F},
+{0x001ECF, 0x001ECF, 0x00006F},
+{0x001ED0, 0x001ED0, 0x00004F},
+{0x001ED1, 0x001ED1, 0x00006F},
+{0x001ED2, 0x001ED2, 0x00004F},
+{0x001ED3, 0x001ED3, 0x00006F},
+{0x001ED4, 0x001ED4, 0x00004F},
+{0x001ED5, 0x001ED5, 0x00006F},
+{0x001ED6, 0x001ED6, 0x00004F},
+{0x001ED7, 0x001ED7, 0x00006F},
+{0x001ED8, 0x001ED8, 0x00004F},
+{0x001ED9, 0x001ED9, 0x00006F},
+{0x001EDA, 0x001EDA, 0x00004F},
+{0x001EDB, 0x001EDB, 0x00006F},
+{0x001EDC, 0x001EDC, 0x00004F},
+{0x001EDD, 0x001EDD, 0x00006F},
+{0x001EDE, 0x001EDE, 0x00004F},
+{0x001EDF, 0x001EDF, 0x00006F},
+{0x001EE0, 0x001EE0, 0x00004F},
+{0x001EE1, 0x001EE1, 0x00006F},
+{0x001EE2, 0x001EE2, 0x00004F},
+{0x001EE3, 0x001EE3, 0x00006F},
+{0x001EE4, 0x001EE4, 0x000055},
+{0x001EE5, 0x001EE5, 0x000075},
+{0x001EE6, 0x001EE6, 0x000055},
+{0x001EE7, 0x001EE7, 0x000075},
+{0x001EE8, 0x001EE8, 0x000055},
+{0x001EE9, 0x001EE9, 0x000075},
+{0x001EEA, 0x001EEA, 0x000055},
+{0x001EEB, 0x001EEB, 0x000075},
+{0x001EEC, 0x001EEC, 0x000055},
+{0x001EED, 0x001EED, 0x000075},
+{0x001EEE, 0x001EEE, 0x000055},
+{0x001EEF, 0x001EEF, 0x000075},
+{0x001EF0, 0x001EF0, 0x000055},
+{0x001EF1, 0x001EF1, 0x000075},
+{0x001EF2, 0x001EF2, 0x000059},
+{0x001EF3, 0x001EF3, 0x000079},
+{0x001EF4, 0x001EF4, 0x000059},
+{0x001EF5, 0x001EF5, 0x000079},
+{0x001EF6, 0x001EF6, 0x000059},
+{0x001EF7, 0x001EF7, 0x000079},
+{0x001EF8, 0x001EF8, 0x000059},
+{0x001EF9, 0x001EF9, 0x000079},
+{0x001F00, 0x001F07, 0x0003B1},
+{0x001F08, 0x001F0F, 0x000391},
+{0x001F10, 0x001F15, 0x0003B5},
+{0x001F18, 0x001F1D, 0x000395},
+{0x001F20, 0x001F27, 0x0003B7},
+{0x001F28, 0x001F2F, 0x000397},
+{0x001F30, 0x001F37, 0x0003B9},
+{0x001F38, 0x001F3F, 0x000399},
+{0x001F40, 0x001F45, 0x0003BF},
+{0x001F48, 0x001F4D, 0x00039F},
+{0x001F50, 0x001F57, 0x0003C5},
+{0x001F59, 0x001F59, 0x0003A5},
+{0x001F5B, 0x001F5B, 0x0003A5},
+{0x001F5D, 0x001F5D, 0x0003A5},
+{0x001F5F, 0x001F5F, 0x0003A5},
+{0x001F60, 0x001F67, 0x0003C9},
+{0x001F68, 0x001F6F, 0x0003A9},
+{0x001F70, 0x001F71, 0x0003B1},
+{0x001F72, 0x001F73, 0x0003B5},
+{0x001F74, 0x001F75, 0x0003B7},
+{0x001F76, 0x001F77, 0x0003B9},
+{0x001F78, 0x001F79, 0x0003BF},
+{0x001F7A, 0x001F7B, 0x0003C5},
+{0x001F7C, 0x001F7D, 0x0003C9},
+{0x001F80, 0x001F87, 0x0003B1},
+{0x001F88, 0x001F8F, 0x000391},
+{0x001F90, 0x001F97, 0x0003B7},
+{0x001F98, 0x001F9F, 0x000397},
+{0x001FA0, 0x001FA7, 0x0003C9},
+{0x001FA8, 0x001FAF, 0x0003A9},
+{0x001FB0, 0x001FB4, 0x0003B1},
+{0x001FB6, 0x001FB7, 0x0003B1},
+{0x001FB8, 0x001FBC, 0x000391},
+{0x001FBE, 0x001FBE, 0x0003B9},
+{0x001FC1, 0x001FC1, 0x0000A8},
+{0x001FC2, 0x001FC4, 0x0003B7},
+{0x001FC6, 0x001FC7, 0x0003B7},
+{0x001FC8, 0x001FC9, 0x000395},
+{0x001FCA, 0x001FCC, 0x000397},
+{0x001FCD, 0x001FCF, 0x001FBF},
+{0x001FD0, 0x001FD3, 0x0003B9},
+{0x001FD6, 0x001FD7, 0x0003B9},
+{0x001FD8, 0x001FDB, 0x000399},
+{0x001FDD, 0x001FDF, 0x001FFE},
+{0x001FE0, 0x001FE3, 0x0003C5},
+{0x001FE4, 0x001FE5, 0x0003C1},
+{0x001FE6, 0x001FE7, 0x0003C5},
+{0x001FE8, 0x001FEB, 0x0003A5},
+{0x001FEC, 0x001FEC, 0x0003A1},
+{0x001FED, 0x001FEE, 0x0000A8},
+{0x001FEF, 0x001FEF, 0x000060},
+{0x001FF2, 0x001FF4, 0x0003C9},
+{0x001FF6, 0x001FF7, 0x0003C9},
+{0x001FF8, 0x001FF9, 0x00039F},
+{0x001FFA, 0x001FFC, 0x0003A9},
+{0x001FFD, 0x001FFD, 0x0000B4},
+{0x002000, 0x002000, 0x002002},
+{0x002001, 0x002001, 0x002003},
+{0x002126, 0x002126, 0x0003A9},
+{0x00212A, 0x00212A, 0x00004B},
+{0x00212B, 0x00212B, 0x000041},
+{0x00219A, 0x00219A, 0x002190},
+{0x00219B, 0x00219B, 0x002192},
+{0x0021AE, 0x0021AE, 0x002194},
+{0x0021CD, 0x0021CD, 0x0021D0},
+{0x0021CE, 0x0021CE, 0x0021D4},
+{0x0021CF, 0x0021CF, 0x0021D2},
+{0x002204, 0x002204, 0x002203},
+{0x002209, 0x002209, 0x002208},
+{0x00220C, 0x00220C, 0x00220B},
+{0x002224, 0x002224, 0x002223},
+{0x002226, 0x002226, 0x002225},
+{0x002241, 0x002241, 0x00223C},
+{0x002244, 0x002244, 0x002243},
+{0x002247, 0x002247, 0x002245},
+{0x002249, 0x002249, 0x002248},
+{0x002260, 0x002260, 0x00003D},
+{0x002262, 0x002262, 0x002261},
+{0x00226D, 0x00226D, 0x00224D},
+{0x00226E, 0x00226E, 0x00003C},
+{0x00226F, 0x00226F, 0x00003E},
+{0x002270, 0x002270, 0x002264},
+{0x002271, 0x002271, 0x002265},
+{0x002274, 0x002274, 0x002272},
+{0x002275, 0x002275, 0x002273},
+{0x002278, 0x002278, 0x002276},
+{0x002279, 0x002279, 0x002277},
+{0x002280, 0x002280, 0x00227A},
+{0x002281, 0x002281, 0x00227B},
+{0x002284, 0x002284, 0x002282},
+{0x002285, 0x002285, 0x002283},
+{0x002288, 0x002288, 0x002286},
+{0x002289, 0x002289, 0x002287},
+{0x0022AC, 0x0022AC, 0x0022A2},
+{0x0022AD, 0x0022AD, 0x0022A8},
+{0x0022AE, 0x0022AE, 0x0022A9},
+{0x0022AF, 0x0022AF, 0x0022AB},
+{0x0022E0, 0x0022E0, 0x00227C},
+{0x0022E1, 0x0022E1, 0x00227D},
+{0x0022E2, 0x0022E2, 0x002291},
+{0x0022E3, 0x0022E3, 0x002292},
+{0x0022EA, 0x0022EA, 0x0022B2},
+{0x0022EB, 0x0022EB, 0x0022B3},
+{0x0022EC, 0x0022EC, 0x0022B4},
+{0x0022ED, 0x0022ED, 0x0022B5},
+{0x002329, 0x002329, 0x003008},
+{0x00232A, 0x00232A, 0x003009},
+{0x002ADC, 0x002ADC, 0x002ADD},
+{0x00304C, 0x00304C, 0x00304B},
+{0x00304E, 0x00304E, 0x00304D},
+{0x003050, 0x003050, 0x00304F},
+{0x003052, 0x003052, 0x003051},
+{0x003054, 0x003054, 0x003053},
+{0x003056, 0x003056, 0x003055},
+{0x003058, 0x003058, 0x003057},
+{0x00305A, 0x00305A, 0x003059},
+{0x00305C, 0x00305C, 0x00305B},
+{0x00305E, 0x00305E, 0x00305D},
+{0x003060, 0x003060, 0x00305F},
+{0x003062, 0x003062, 0x003061},
+{0x003065, 0x003065, 0x003064},
+{0x003067, 0x003067, 0x003066},
+{0x003069, 0x003069, 0x003068},
+{0x003070, 0x003071, 0x00306F},
+{0x003073, 0x003074, 0x003072},
+{0x003076, 0x003077, 0x003075},
+{0x003079, 0x00307A, 0x003078},
+{0x00307C, 0x00307D, 0x00307B},
+{0x003094, 0x003094, 0x003046},
+{0x00309E, 0x00309E, 0x00309D},
+{0x0030AC, 0x0030AC, 0x0030AB},
+{0x0030AE, 0x0030AE, 0x0030AD},
+{0x0030B0, 0x0030B0, 0x0030AF},
+{0x0030B2, 0x0030B2, 0x0030B1},
+{0x0030B4, 0x0030B4, 0x0030B3},
+{0x0030B6, 0x0030B6, 0x0030B5},
+{0x0030B8, 0x0030B8, 0x0030B7},
+{0x0030BA, 0x0030BA, 0x0030B9},
+{0x0030BC, 0x0030BC, 0x0030BB},
+{0x0030BE, 0x0030BE, 0x0030BD},
+{0x0030C0, 0x0030C0, 0x0030BF},
+{0x0030C2, 0x0030C2, 0x0030C1},
+{0x0030C5, 0x0030C5, 0x0030C4},
+{0x0030C7, 0x0030C7, 0x0030C6},
+{0x0030C9, 0x0030C9, 0x0030C8},
+{0x0030D0, 0x0030D1, 0x0030CF},
+{0x0030D3, 0x0030D4, 0x0030D2},
+{0x0030D6, 0x0030D7, 0x0030D5},
+{0x0030D9, 0x0030DA, 0x0030D8},
+{0x0030DC, 0x0030DD, 0x0030DB},
+{0x0030F4, 0x0030F4, 0x0030A6},
+{0x0030F7, 0x0030F7, 0x0030EF},
+{0x0030F8, 0x0030F8, 0x0030F0},
+{0x0030F9, 0x0030F9, 0x0030F1},
+{0x0030FA, 0x0030FA, 0x0030F2},
+{0x0030FE, 0x0030FE, 0x0030FD},
+{0x00AC00, 0x00AE4B, 0x001100},
+{0x00AE4C, 0x00B097, 0x001101},
+{0x00B098, 0x00B2E3, 0x001102},
+{0x00B2E4, 0x00B52F, 0x001103},
+{0x00B530, 0x00B77B, 0x001104},
+{0x00B77C, 0x00B9C7, 0x001105},
+{0x00B9C8, 0x00BC13, 0x001106},
+{0x00BC14, 0x00BE5F, 0x001107},
+{0x00BE60, 0x00C0AB, 0x001108},
+{0x00C0AC, 0x00C2F7, 0x001109},
+{0x00C2F8, 0x00C543, 0x00110A},
+{0x00C544, 0x00C78F, 0x00110B},
+{0x00C790, 0x00C9DB, 0x00110C},
+{0x00C9DC, 0x00CC27, 0x00110D},
+{0x00CC28, 0x00CE73, 0x00110E},
+{0x00CE74, 0x00D0BF, 0x00110F},
+{0x00D0C0, 0x00D30B, 0x001110},
+{0x00D30C, 0x00D557, 0x001111},
+{0x00D558, 0x00D7A3, 0x001112},
+{0x00F900, 0x00F900, 0x008C48},
+{0x00F901, 0x00F901, 0x0066F4},
+{0x00F902, 0x00F902, 0x008ECA},
+{0x00F903, 0x00F903, 0x008CC8},
+{0x00F904, 0x00F904, 0x006ED1},
+{0x00F905, 0x00F905, 0x004E32},
+{0x00F906, 0x00F906, 0x0053E5},
+{0x00F907, 0x00F908, 0x009F9C},
+{0x00F909, 0x00F909, 0x005951},
+{0x00F90A, 0x00F90A, 0x0091D1},
+{0x00F90B, 0x00F90B, 0x005587},
+{0x00F90C, 0x00F90C, 0x005948},
+{0x00F90D, 0x00F90D, 0x0061F6},
+{0x00F90E, 0x00F90E, 0x007669},
+{0x00F90F, 0x00F90F, 0x007F85},
+{0x00F910, 0x00F910, 0x00863F},
+{0x00F911, 0x00F911, 0x0087BA},
+{0x00F912, 0x00F912, 0x0088F8},
+{0x00F913, 0x00F913, 0x00908F},
+{0x00F914, 0x00F914, 0x006A02},
+{0x00F915, 0x00F915, 0x006D1B},
+{0x00F916, 0x00F916, 0x0070D9},
+{0x00F917, 0x00F917, 0x0073DE},
+{0x00F918, 0x00F918, 0x00843D},
+{0x00F919, 0x00F919, 0x00916A},
+{0x00F91A, 0x00F91A, 0x0099F1},
+{0x00F91B, 0x00F91B, 0x004E82},
+{0x00F91C, 0x00F91C, 0x005375},
+{0x00F91D, 0x00F91D, 0x006B04},
+{0x00F91E, 0x00F91E, 0x00721B},
+{0x00F91F, 0x00F91F, 0x00862D},
+{0x00F920, 0x00F920, 0x009E1E},
+{0x00F921, 0x00F921, 0x005D50},
+{0x00F922, 0x00F922, 0x006FEB},
+{0x00F923, 0x00F923, 0x0085CD},
+{0x00F924, 0x00F924, 0x008964},
+{0x00F925, 0x00F925, 0x0062C9},
+{0x00F926, 0x00F926, 0x0081D8},
+{0x00F927, 0x00F927, 0x00881F},
+{0x00F928, 0x00F928, 0x005ECA},
+{0x00F929, 0x00F929, 0x006717},
+{0x00F92A, 0x00F92A, 0x006D6A},
+{0x00F92B, 0x00F92B, 0x0072FC},
+{0x00F92C, 0x00F92C, 0x0090CE},
+{0x00F92D, 0x00F92D, 0x004F86},
+{0x00F92E, 0x00F92E, 0x0051B7},
+{0x00F92F, 0x00F92F, 0x0052DE},
+{0x00F930, 0x00F930, 0x0064C4},
+{0x00F931, 0x00F931, 0x006AD3},
+{0x00F932, 0x00F932, 0x007210},
+{0x00F933, 0x00F933, 0x0076E7},
+{0x00F934, 0x00F934, 0x008001},
+{0x00F935, 0x00F935, 0x008606},
+{0x00F936, 0x00F936, 0x00865C},
+{0x00F937, 0x00F937, 0x008DEF},
+{0x00F938, 0x00F938, 0x009732},
+{0x00F939, 0x00F939, 0x009B6F},
+{0x00F93A, 0x00F93A, 0x009DFA},
+{0x00F93B, 0x00F93B, 0x00788C},
+{0x00F93C, 0x00F93C, 0x00797F},
+{0x00F93D, 0x00F93D, 0x007DA0},
+{0x00F93E, 0x00F93E, 0x0083C9},
+{0x00F93F, 0x00F93F, 0x009304},
+{0x00F940, 0x00F940, 0x009E7F},
+{0x00F941, 0x00F941, 0x008AD6},
+{0x00F942, 0x00F942, 0x0058DF},
+{0x00F943, 0x00F943, 0x005F04},
+{0x00F944, 0x00F944, 0x007C60},
+{0x00F945, 0x00F945, 0x00807E},
+{0x00F946, 0x00F946, 0x007262},
+{0x00F947, 0x00F947, 0x0078CA},
+{0x00F948, 0x00F948, 0x008CC2},
+{0x00F949, 0x00F949, 0x0096F7},
+{0x00F94A, 0x00F94A, 0x0058D8},
+{0x00F94B, 0x00F94B, 0x005C62},
+{0x00F94C, 0x00F94C, 0x006A13},
+{0x00F94D, 0x00F94D, 0x006DDA},
+{0x00F94E, 0x00F94E, 0x006F0F},
+{0x00F94F, 0x00F94F, 0x007D2F},
+{0x00F950, 0x00F950, 0x007E37},
+{0x00F951, 0x00F951, 0x00964B},
+{0x00F952, 0x00F952, 0x0052D2},
+{0x00F953, 0x00F953, 0x00808B},
+{0x00F954, 0x00F954, 0x0051DC},
+{0x00F955, 0x00F955, 0x0051CC},
+{0x00F956, 0x00F956, 0x007A1C},
+{0x00F957, 0x00F957, 0x007DBE},
+{0x00F958, 0x00F958, 0x0083F1},
+{0x00F959, 0x00F959, 0x009675},
+{0x00F95A, 0x00F95A, 0x008B80},
+{0x00F95B, 0x00F95B, 0x0062CF},
+{0x00F95C, 0x00F95C, 0x006A02},
+{0x00F95D, 0x00F95D, 0x008AFE},
+{0x00F95E, 0x00F95E, 0x004E39},
+{0x00F95F, 0x00F95F, 0x005BE7},
+{0x00F960, 0x00F960, 0x006012},
+{0x00F961, 0x00F961, 0x007387},
+{0x00F962, 0x00F962, 0x007570},
+{0x00F963, 0x00F963, 0x005317},
+{0x00F964, 0x00F964, 0x0078FB},
+{0x00F965, 0x00F965, 0x004FBF},
+{0x00F966, 0x00F966, 0x005FA9},
+{0x00F967, 0x00F967, 0x004E0D},
+{0x00F968, 0x00F968, 0x006CCC},
+{0x00F969, 0x00F969, 0x006578},
+{0x00F96A, 0x00F96A, 0x007D22},
+{0x00F96B, 0x00F96B, 0x0053C3},
+{0x00F96C, 0x00F96C, 0x00585E},
+{0x00F96D, 0x00F96D, 0x007701},
+{0x00F96E, 0x00F96E, 0x008449},
+{0x00F96F, 0x00F96F, 0x008AAA},
+{0x00F970, 0x00F970, 0x006BBA},
+{0x00F971, 0x00F971, 0x008FB0},
+{0x00F972, 0x00F972, 0x006C88},
+{0x00F973, 0x00F973, 0x0062FE},
+{0x00F974, 0x00F974, 0x0082E5},
+{0x00F975, 0x00F975, 0x0063A0},
+{0x00F976, 0x00F976, 0x007565},
+{0x00F977, 0x00F977, 0x004EAE},
+{0x00F978, 0x00F978, 0x005169},
+{0x00F979, 0x00F979, 0x0051C9},
+{0x00F97A, 0x00F97A, 0x006881},
+{0x00F97B, 0x00F97B, 0x007CE7},
+{0x00F97C, 0x00F97C, 0x00826F},
+{0x00F97D, 0x00F97D, 0x008AD2},
+{0x00F97E, 0x00F97E, 0x0091CF},
+{0x00F97F, 0x00F97F, 0x0052F5},
+{0x00F980, 0x00F980, 0x005442},
+{0x00F981, 0x00F981, 0x005973},
+{0x00F982, 0x00F982, 0x005EEC},
+{0x00F983, 0x00F983, 0x0065C5},
+{0x00F984, 0x00F984, 0x006FFE},
+{0x00F985, 0x00F985, 0x00792A},
+{0x00F986, 0x00F986, 0x0095AD},
+{0x00F987, 0x00F987, 0x009A6A},
+{0x00F988, 0x00F988, 0x009E97},
+{0x00F989, 0x00F989, 0x009ECE},
+{0x00F98A, 0x00F98A, 0x00529B},
+{0x00F98B, 0x00F98B, 0x0066C6},
+{0x00F98C, 0x00F98C, 0x006B77},
+{0x00F98D, 0x00F98D, 0x008F62},
+{0x00F98E, 0x00F98E, 0x005E74},
+{0x00F98F, 0x00F98F, 0x006190},
+{0x00F990, 0x00F990, 0x006200},
+{0x00F991, 0x00F991, 0x00649A},
+{0x00F992, 0x00F992, 0x006F23},
+{0x00F993, 0x00F993, 0x007149},
+{0x00F994, 0x00F994, 0x007489},
+{0x00F995, 0x00F995, 0x0079CA},
+{0x00F996, 0x00F996, 0x007DF4},
+{0x00F997, 0x00F997, 0x00806F},
+{0x00F998, 0x00F998, 0x008F26},
+{0x00F999, 0x00F999, 0x0084EE},
+{0x00F99A, 0x00F99A, 0x009023},
+{0x00F99B, 0x00F99B, 0x00934A},
+{0x00F99C, 0x00F99C, 0x005217},
+{0x00F99D, 0x00F99D, 0x0052A3},
+{0x00F99E, 0x00F99E, 0x0054BD},
+{0x00F99F, 0x00F99F, 0x0070C8},
+{0x00F9A0, 0x00F9A0, 0x0088C2},
+{0x00F9A1, 0x00F9A1, 0x008AAA},
+{0x00F9A2, 0x00F9A2, 0x005EC9},
+{0x00F9A3, 0x00F9A3, 0x005FF5},
+{0x00F9A4, 0x00F9A4, 0x00637B},
+{0x00F9A5, 0x00F9A5, 0x006BAE},
+{0x00F9A6, 0x00F9A6, 0x007C3E},
+{0x00F9A7, 0x00F9A7, 0x007375},
+{0x00F9A8, 0x00F9A8, 0x004EE4},
+{0x00F9A9, 0x00F9A9, 0x0056F9},
+{0x00F9AA, 0x00F9AA, 0x005BE7},
+{0x00F9AB, 0x00F9AB, 0x005DBA},
+{0x00F9AC, 0x00F9AC, 0x00601C},
+{0x00F9AD, 0x00F9AD, 0x0073B2},
+{0x00F9AE, 0x00F9AE, 0x007469},
+{0x00F9AF, 0x00F9AF, 0x007F9A},
+{0x00F9B0, 0x00F9B0, 0x008046},
+{0x00F9B1, 0x00F9B1, 0x009234},
+{0x00F9B2, 0x00F9B2, 0x0096F6},
+{0x00F9B3, 0x00F9B3, 0x009748},
+{0x00F9B4, 0x00F9B4, 0x009818},
+{0x00F9B5, 0x00F9B5, 0x004F8B},
+{0x00F9B6, 0x00F9B6, 0x0079AE},
+{0x00F9B7, 0x00F9B7, 0x0091B4},
+{0x00F9B8, 0x00F9B8, 0x0096B8},
+{0x00F9B9, 0x00F9B9, 0x0060E1},
+{0x00F9BA, 0x00F9BA, 0x004E86},
+{0x00F9BB, 0x00F9BB, 0x0050DA},
+{0x00F9BC, 0x00F9BC, 0x005BEE},
+{0x00F9BD, 0x00F9BD, 0x005C3F},
+{0x00F9BE, 0x00F9BE, 0x006599},
+{0x00F9BF, 0x00F9BF, 0x006A02},
+{0x00F9C0, 0x00F9C0, 0x0071CE},
+{0x00F9C1, 0x00F9C1, 0x007642},
+{0x00F9C2, 0x00F9C2, 0x0084FC},
+{0x00F9C3, 0x00F9C3, 0x00907C},
+{0x00F9C4, 0x00F9C4, 0x009F8D},
+{0x00F9C5, 0x00F9C5, 0x006688},
+{0x00F9C6, 0x00F9C6, 0x00962E},
+{0x00F9C7, 0x00F9C7, 0x005289},
+{0x00F9C8, 0x00F9C8, 0x00677B},
+{0x00F9C9, 0x00F9C9, 0x0067F3},
+{0x00F9CA, 0x00F9CA, 0x006D41},
+{0x00F9CB, 0x00F9CB, 0x006E9C},
+{0x00F9CC, 0x00F9CC, 0x007409},
+{0x00F9CD, 0x00F9CD, 0x007559},
+{0x00F9CE, 0x00F9CE, 0x00786B},
+{0x00F9CF, 0x00F9CF, 0x007D10},
+{0x00F9D0, 0x00F9D0, 0x00985E},
+{0x00F9D1, 0x00F9D1, 0x00516D},
+{0x00F9D2, 0x00F9D2, 0x00622E},
+{0x00F9D3, 0x00F9D3, 0x009678},
+{0x00F9D4, 0x00F9D4, 0x00502B},
+{0x00F9D5, 0x00F9D5, 0x005D19},
+{0x00F9D6, 0x00F9D6, 0x006DEA},
+{0x00F9D7, 0x00F9D7, 0x008F2A},
+{0x00F9D8, 0x00F9D8, 0x005F8B},
+{0x00F9D9, 0x00F9D9, 0x006144},
+{0x00F9DA, 0x00F9DA, 0x006817},
+{0x00F9DB, 0x00F9DB, 0x007387},
+{0x00F9DC, 0x00F9DC, 0x009686},
+{0x00F9DD, 0x00F9DD, 0x005229},
+{0x00F9DE, 0x00F9DE, 0x00540F},
+{0x00F9DF, 0x00F9DF, 0x005C65},
+{0x00F9E0, 0x00F9E0, 0x006613},
+{0x00F9E1, 0x00F9E1, 0x00674E},
+{0x00F9E2, 0x00F9E2, 0x0068A8},
+{0x00F9E3, 0x00F9E3, 0x006CE5},
+{0x00F9E4, 0x00F9E4, 0x007406},
+{0x00F9E5, 0x00F9E5, 0x0075E2},
+{0x00F9E6, 0x00F9E6, 0x007F79},
+{0x00F9E7, 0x00F9E7, 0x0088CF},
+{0x00F9E8, 0x00F9E8, 0x0088E1},
+{0x00F9E9, 0x00F9E9, 0x0091CC},
+{0x00F9EA, 0x00F9EA, 0x0096E2},
+{0x00F9EB, 0x00F9EB, 0x00533F},
+{0x00F9EC, 0x00F9EC, 0x006EBA},
+{0x00F9ED, 0x00F9ED, 0x00541D},
+{0x00F9EE, 0x00F9EE, 0x0071D0},
+{0x00F9EF, 0x00F9EF, 0x007498},
+{0x00F9F0, 0x00F9F0, 0x0085FA},
+{0x00F9F1, 0x00F9F1, 0x0096A3},
+{0x00F9F2, 0x00F9F2, 0x009C57},
+{0x00F9F3, 0x00F9F3, 0x009E9F},
+{0x00F9F4, 0x00F9F4, 0x006797},
+{0x00F9F5, 0x00F9F5, 0x006DCB},
+{0x00F9F6, 0x00F9F6, 0x0081E8},
+{0x00F9F7, 0x00F9F7, 0x007ACB},
+{0x00F9F8, 0x00F9F8, 0x007B20},
+{0x00F9F9, 0x00F9F9, 0x007C92},
+{0x00F9FA, 0x00F9FA, 0x0072C0},
+{0x00F9FB, 0x00F9FB, 0x007099},
+{0x00F9FC, 0x00F9FC, 0x008B58},
+{0x00F9FD, 0x00F9FD, 0x004EC0},
+{0x00F9FE, 0x00F9FE, 0x008336},
+{0x00F9FF, 0x00F9FF, 0x00523A},
+{0x00FA00, 0x00FA00, 0x005207},
+{0x00FA01, 0x00FA01, 0x005EA6},
+{0x00FA02, 0x00FA02, 0x0062D3},
+{0x00FA03, 0x00FA03, 0x007CD6},
+{0x00FA04, 0x00FA04, 0x005B85},
+{0x00FA05, 0x00FA05, 0x006D1E},
+{0x00FA06, 0x00FA06, 0x0066B4},
+{0x00FA07, 0x00FA07, 0x008F3B},
+{0x00FA08, 0x00FA08, 0x00884C},
+{0x00FA09, 0x00FA09, 0x00964D},
+{0x00FA0A, 0x00FA0A, 0x00898B},
+{0x00FA0B, 0x00FA0B, 0x005ED3},
+{0x00FA0C, 0x00FA0C, 0x005140},
+{0x00FA0D, 0x00FA0D, 0x0055C0},
+{0x00FA10, 0x00FA10, 0x00585A},
+{0x00FA12, 0x00FA12, 0x006674},
+{0x00FA15, 0x00FA15, 0x0051DE},
+{0x00FA16, 0x00FA16, 0x00732A},
+{0x00FA17, 0x00FA17, 0x0076CA},
+{0x00FA18, 0x00FA18, 0x00793C},
+{0x00FA19, 0x00FA19, 0x00795E},
+{0x00FA1A, 0x00FA1A, 0x007965},
+{0x00FA1B, 0x00FA1B, 0x00798F},
+{0x00FA1C, 0x00FA1C, 0x009756},
+{0x00FA1D, 0x00FA1D, 0x007CBE},
+{0x00FA1E, 0x00FA1E, 0x007FBD},
+{0x00FA20, 0x00FA20, 0x008612},
+{0x00FA22, 0x00FA22, 0x008AF8},
+{0x00FA25, 0x00FA25, 0x009038},
+{0x00FA26, 0x00FA26, 0x0090FD},
+{0x00FA2A, 0x00FA2A, 0x0098EF},
+{0x00FA2B, 0x00FA2B, 0x0098FC},
+{0x00FA2C, 0x00FA2C, 0x009928},
+{0x00FA2D, 0x00FA2D, 0x009DB4},
+{0x00FA2E, 0x00FA2E, 0x0090DE},
+{0x00FA2F, 0x00FA2F, 0x0096B7},
+{0x00FA30, 0x00FA30, 0x004FAE},
+{0x00FA31, 0x00FA31, 0x0050E7},
+{0x00FA32, 0x00FA32, 0x00514D},
+{0x00FA33, 0x00FA33, 0x0052C9},
+{0x00FA34, 0x00FA34, 0x0052E4},
+{0x00FA35, 0x00FA35, 0x005351},
+{0x00FA36, 0x00FA36, 0x00559D},
+{0x00FA37, 0x00FA37, 0x005606},
+{0x00FA38, 0x00FA38, 0x005668},
+{0x00FA39, 0x00FA39, 0x005840},
+{0x00FA3A, 0x00FA3A, 0x0058A8},
+{0x00FA3B, 0x00FA3B, 0x005C64},
+{0x00FA3C, 0x00FA3C, 0x005C6E},
+{0x00FA3D, 0x00FA3D, 0x006094},
+{0x00FA3E, 0x00FA3E, 0x006168},
+{0x00FA3F, 0x00FA3F, 0x00618E},
+{0x00FA40, 0x00FA40, 0x0061F2},
+{0x00FA41, 0x00FA41, 0x00654F},
+{0x00FA42, 0x00FA42, 0x0065E2},
+{0x00FA43, 0x00FA43, 0x006691},
+{0x00FA44, 0x00FA44, 0x006885},
+{0x00FA45, 0x00FA45, 0x006D77},
+{0x00FA46, 0x00FA46, 0x006E1A},
+{0x00FA47, 0x00FA47, 0x006F22},
+{0x00FA48, 0x00FA48, 0x00716E},
+{0x00FA49, 0x00FA49, 0x00722B},
+{0x00FA4A, 0x00FA4A, 0x007422},
+{0x00FA4B, 0x00FA4B, 0x007891},
+{0x00FA4C, 0x00FA4C, 0x00793E},
+{0x00FA4D, 0x00FA4D, 0x007949},
+{0x00FA4E, 0x00FA4E, 0x007948},
+{0x00FA4F, 0x00FA4F, 0x007950},
+{0x00FA50, 0x00FA50, 0x007956},
+{0x00FA51, 0x00FA51, 0x00795D},
+{0x00FA52, 0x00FA52, 0x00798D},
+{0x00FA53, 0x00FA53, 0x00798E},
+{0x00FA54, 0x00FA54, 0x007A40},
+{0x00FA55, 0x00FA55, 0x007A81},
+{0x00FA56, 0x00FA56, 0x007BC0},
+{0x00FA57, 0x00FA57, 0x007DF4},
+{0x00FA58, 0x00FA58, 0x007E09},
+{0x00FA59, 0x00FA59, 0x007E41},
+{0x00FA5A, 0x00FA5A, 0x007F72},
+{0x00FA5B, 0x00FA5B, 0x008005},
+{0x00FA5C, 0x00FA5C, 0x0081ED},
+{0x00FA5D, 0x00FA5E, 0x008279},
+{0x00FA5F, 0x00FA5F, 0x008457},
+{0x00FA60, 0x00FA60, 0x008910},
+{0x00FA61, 0x00FA61, 0x008996},
+{0x00FA62, 0x00FA62, 0x008B01},
+{0x00FA63, 0x00FA63, 0x008B39},
+{0x00FA64, 0x00FA64, 0x008CD3},
+{0x00FA65, 0x00FA65, 0x008D08},
+{0x00FA66, 0x00FA66, 0x008FB6},
+{0x00FA67, 0x00FA67, 0x009038},
+{0x00FA68, 0x00FA68, 0x0096E3},
+{0x00FA69, 0x00FA69, 0x0097FF},
+{0x00FA6A, 0x00FA6A, 0x00983B},
+{0x00FA6B, 0x00FA6B, 0x006075},
+{0x00FA6C, 0x00FA6C, 0x0242EE},
+{0x00FA6D, 0x00FA6D, 0x008218},
+{0x00FA70, 0x00FA70, 0x004E26},
+{0x00FA71, 0x00FA71, 0x0051B5},
+{0x00FA72, 0x00FA72, 0x005168},
+{0x00FA73, 0x00FA73, 0x004F80},
+{0x00FA74, 0x00FA74, 0x005145},
+{0x00FA75, 0x00FA75, 0x005180},
+{0x00FA76, 0x00FA76, 0x0052C7},
+{0x00FA77, 0x00FA77, 0x0052FA},
+{0x00FA78, 0x00FA78, 0x00559D},
+{0x00FA79, 0x00FA79, 0x005555},
+{0x00FA7A, 0x00FA7A, 0x005599},
+{0x00FA7B, 0x00FA7B, 0x0055E2},
+{0x00FA7C, 0x00FA7C, 0x00585A},
+{0x00FA7D, 0x00FA7D, 0x0058B3},
+{0x00FA7E, 0x00FA7E, 0x005944},
+{0x00FA7F, 0x00FA7F, 0x005954},
+{0x00FA80, 0x00FA80, 0x005A62},
+{0x00FA81, 0x00FA81, 0x005B28},
+{0x00FA82, 0x00FA82, 0x005ED2},
+{0x00FA83, 0x00FA83, 0x005ED9},
+{0x00FA84, 0x00FA84, 0x005F69},
+{0x00FA85, 0x00FA85, 0x005FAD},
+{0x00FA86, 0x00FA86, 0x0060D8},
+{0x00FA87, 0x00FA87, 0x00614E},
+{0x00FA88, 0x00FA88, 0x006108},
+{0x00FA89, 0x00FA89, 0x00618E},
+{0x00FA8A, 0x00FA8A, 0x006160},
+{0x00FA8B, 0x00FA8B, 0x0061F2},
+{0x00FA8C, 0x00FA8C, 0x006234},
+{0x00FA8D, 0x00FA8D, 0x0063C4},
+{0x00FA8E, 0x00FA8E, 0x00641C},
+{0x00FA8F, 0x00FA8F, 0x006452},
+{0x00FA90, 0x00FA90, 0x006556},
+{0x00FA91, 0x00FA91, 0x006674},
+{0x00FA92, 0x00FA92, 0x006717},
+{0x00FA93, 0x00FA93, 0x00671B},
+{0x00FA94, 0x00FA94, 0x006756},
+{0x00FA95, 0x00FA95, 0x006B79},
+{0x00FA96, 0x00FA96, 0x006BBA},
+{0x00FA97, 0x00FA97, 0x006D41},
+{0x00FA98, 0x00FA98, 0x006EDB},
+{0x00FA99, 0x00FA99, 0x006ECB},
+{0x00FA9A, 0x00FA9A, 0x006F22},
+{0x00FA9B, 0x00FA9B, 0x00701E},
+{0x00FA9C, 0x00FA9C, 0x00716E},
+{0x00FA9D, 0x00FA9D, 0x0077A7},
+{0x00FA9E, 0x00FA9E, 0x007235},
+{0x00FA9F, 0x00FA9F, 0x0072AF},
+{0x00FAA0, 0x00FAA0, 0x00732A},
+{0x00FAA1, 0x00FAA1, 0x007471},
+{0x00FAA2, 0x00FAA2, 0x007506},
+{0x00FAA3, 0x00FAA3, 0x00753B},
+{0x00FAA4, 0x00FAA4, 0x00761D},
+{0x00FAA5, 0x00FAA5, 0x00761F},
+{0x00FAA6, 0x00FAA6, 0x0076CA},
+{0x00FAA7, 0x00FAA7, 0x0076DB},
+{0x00FAA8, 0x00FAA8, 0x0076F4},
+{0x00FAA9, 0x00FAA9, 0x00774A},
+{0x00FAAA, 0x00FAAA, 0x007740},
+{0x00FAAB, 0x00FAAB, 0x0078CC},
+{0x00FAAC, 0x00FAAC, 0x007AB1},
+{0x00FAAD, 0x00FAAD, 0x007BC0},
+{0x00FAAE, 0x00FAAE, 0x007C7B},
+{0x00FAAF, 0x00FAAF, 0x007D5B},
+{0x00FAB0, 0x00FAB0, 0x007DF4},
+{0x00FAB1, 0x00FAB1, 0x007F3E},
+{0x00FAB2, 0x00FAB2, 0x008005},
+{0x00FAB3, 0x00FAB3, 0x008352},
+{0x00FAB4, 0x00FAB4, 0x0083EF},
+{0x00FAB5, 0x00FAB5, 0x008779},
+{0x00FAB6, 0x00FAB6, 0x008941},
+{0x00FAB7, 0x00FAB7, 0x008986},
+{0x00FAB8, 0x00FAB8, 0x008996},
+{0x00FAB9, 0x00FAB9, 0x008ABF},
+{0x00FABA, 0x00FABA, 0x008AF8},
+{0x00FABB, 0x00FABB, 0x008ACB},
+{0x00FABC, 0x00FABC, 0x008B01},
+{0x00FABD, 0x00FABD, 0x008AFE},
+{0x00FABE, 0x00FABE, 0x008AED},
+{0x00FABF, 0x00FABF, 0x008B39},
+{0x00FAC0, 0x00FAC0, 0x008B8A},
+{0x00FAC1, 0x00FAC1, 0x008D08},
+{0x00FAC2, 0x00FAC2, 0x008F38},
+{0x00FAC3, 0x00FAC3, 0x009072},
+{0x00FAC4, 0x00FAC4, 0x009199},
+{0x00FAC5, 0x00FAC5, 0x009276},
+{0x00FAC6, 0x00FAC6, 0x00967C},
+{0x00FAC7, 0x00FAC7, 0x0096E3},
+{0x00FAC8, 0x00FAC8, 0x009756},
+{0x00FAC9, 0x00FAC9, 0x0097DB},
+{0x00FACA, 0x00FACA, 0x0097FF},
+{0x00FACB, 0x00FACB, 0x00980B},
+{0x00FACC, 0x00FACC, 0x00983B},
+{0x00FACD, 0x00FACD, 0x009B12},
+{0x00FACE, 0x00FACE, 0x009F9C},
+{0x00FACF, 0x00FACF, 0x02284A},
+{0x00FAD0, 0x00FAD0, 0x022844},
+{0x00FAD1, 0x00FAD1, 0x0233D5},
+{0x00FAD2, 0x00FAD2, 0x003B9D},
+{0x00FAD3, 0x00FAD3, 0x004018},
+{0x00FAD4, 0x00FAD4, 0x004039},
+{0x00FAD5, 0x00FAD5, 0x025249},
+{0x00FAD6, 0x00FAD6, 0x025CD0},
+{0x00FAD7, 0x00FAD7, 0x027ED3},
+{0x00FAD8, 0x00FAD8, 0x009F43},
+{0x00FAD9, 0x00FAD9, 0x009F8E},
+{0x00FB1D, 0x00FB1D, 0x0005D9},
+{0x00FB1F, 0x00FB1F, 0x0005F2},
+{0x00FB2A, 0x00FB2D, 0x0005E9},
+{0x00FB2E, 0x00FB30, 0x0005D0},
+{0x00FB31, 0x00FB31, 0x0005D1},
+{0x00FB32, 0x00FB32, 0x0005D2},
+{0x00FB33, 0x00FB33, 0x0005D3},
+{0x00FB34, 0x00FB34, 0x0005D4},
+{0x00FB35, 0x00FB35, 0x0005D5},
+{0x00FB36, 0x00FB36, 0x0005D6},
+{0x00FB38, 0x00FB38, 0x0005D8},
+{0x00FB39, 0x00FB39, 0x0005D9},
+{0x00FB3A, 0x00FB3A, 0x0005DA},
+{0x00FB3B, 0x00FB3B, 0x0005DB},
+{0x00FB3C, 0x00FB3C, 0x0005DC},
+{0x00FB3E, 0x00FB3E, 0x0005DE},
+{0x00FB40, 0x00FB40, 0x0005E0},
+{0x00FB41, 0x00FB41, 0x0005E1},
+{0x00FB43, 0x00FB43, 0x0005E3},
+{0x00FB44, 0x00FB44, 0x0005E4},
+{0x00FB46, 0x00FB46, 0x0005E6},
+{0x00FB47, 0x00FB47, 0x0005E7},
+{0x00FB48, 0x00FB48, 0x0005E8},
+{0x00FB49, 0x00FB49, 0x0005E9},
+{0x00FB4A, 0x00FB4A, 0x0005EA},
+{0x00FB4B, 0x00FB4B, 0x0005D5},
+{0x00FB4C, 0x00FB4C, 0x0005D1},
+{0x00FB4D, 0x00FB4D, 0x0005DB},
+{0x00FB4E, 0x00FB4E, 0x0005E4},
+{0x01109A, 0x01109A, 0x011099},
+{0x01109C, 0x01109C, 0x01109B},
+{0x0110AB, 0x0110AB, 0x0110A5},
+{0x01112E, 0x01112E, 0x011131},
+{0x01112F, 0x01112F, 0x011132},
+{0x01134B, 0x01134C, 0x011347},
+{0x0114BB, 0x0114BC, 0x0114B9},
+{0x0114BE, 0x0114BE, 0x0114B9},
+{0x0115BA, 0x0115BA, 0x0115B8},
+{0x0115BB, 0x0115BB, 0x0115B9},
+{0x011938, 0x011938, 0x011935},
+{0x01D15E, 0x01D15E, 0x01D157},
+{0x01D15F, 0x01D164, 0x01D158},
+{0x01D1BB, 0x01D1BB, 0x01D1B9},
+{0x01D1BC, 0x01D1BC, 0x01D1BA},
+{0x01D1BD, 0x01D1BD, 0x01D1B9},
+{0x01D1BE, 0x01D1BE, 0x01D1BA},
+{0x01D1BF, 0x01D1BF, 0x01D1B9},
+{0x01D1C0, 0x01D1C0, 0x01D1BA},
+{0x02F800, 0x02F800, 0x004E3D},
+{0x02F801, 0x02F801, 0x004E38},
+{0x02F802, 0x02F802, 0x004E41},
+{0x02F803, 0x02F803, 0x020122},
+{0x02F804, 0x02F804, 0x004F60},
+{0x02F805, 0x02F805, 0x004FAE},
+{0x02F806, 0x02F806, 0x004FBB},
+{0x02F807, 0x02F807, 0x005002},
+{0x02F808, 0x02F808, 0x00507A},
+{0x02F809, 0x02F809, 0x005099},
+{0x02F80A, 0x02F80A, 0x0050E7},
+{0x02F80B, 0x02F80B, 0x0050CF},
+{0x02F80C, 0x02F80C, 0x00349E},
+{0x02F80D, 0x02F80D, 0x02063A},
+{0x02F80E, 0x02F80E, 0x00514D},
+{0x02F80F, 0x02F80F, 0x005154},
+{0x02F810, 0x02F810, 0x005164},
+{0x02F811, 0x02F811, 0x005177},
+{0x02F812, 0x02F812, 0x02051C},
+{0x02F813, 0x02F813, 0x0034B9},
+{0x02F814, 0x02F814, 0x005167},
+{0x02F815, 0x02F815, 0x00518D},
+{0x02F816, 0x02F816, 0x02054B},
+{0x02F817, 0x02F817, 0x005197},
+{0x02F818, 0x02F818, 0x0051A4},
+{0x02F819, 0x02F819, 0x004ECC},
+{0x02F81A, 0x02F81A, 0x0051AC},
+{0x02F81B, 0x02F81B, 0x0051B5},
+{0x02F81C, 0x02F81C, 0x0291DF},
+{0x02F81D, 0x02F81D, 0x0051F5},
+{0x02F81E, 0x02F81E, 0x005203},
+{0x02F81F, 0x02F81F, 0x0034DF},
+{0x02F820, 0x02F820, 0x00523B},
+{0x02F821, 0x02F821, 0x005246},
+{0x02F822, 0x02F822, 0x005272},
+{0x02F823, 0x02F823, 0x005277},
+{0x02F824, 0x02F824, 0x003515},
+{0x02F825, 0x02F825, 0x0052C7},
+{0x02F826, 0x02F826, 0x0052C9},
+{0x02F827, 0x02F827, 0x0052E4},
+{0x02F828, 0x02F828, 0x0052FA},
+{0x02F829, 0x02F829, 0x005305},
+{0x02F82A, 0x02F82A, 0x005306},
+{0x02F82B, 0x02F82B, 0x005317},
+{0x02F82C, 0x02F82C, 0x005349},
+{0x02F82D, 0x02F82D, 0x005351},
+{0x02F82E, 0x02F82E, 0x00535A},
+{0x02F82F, 0x02F82F, 0x005373},
+{0x02F830, 0x02F830, 0x00537D},
+{0x02F831, 0x02F833, 0x00537F},
+{0x02F834, 0x02F834, 0x020A2C},
+{0x02F835, 0x02F835, 0x007070},
+{0x02F836, 0x02F836, 0x0053CA},
+{0x02F837, 0x02F837, 0x0053DF},
+{0x02F838, 0x02F838, 0x020B63},
+{0x02F839, 0x02F839, 0x0053EB},
+{0x02F83A, 0x02F83A, 0x0053F1},
+{0x02F83B, 0x02F83B, 0x005406},
+{0x02F83C, 0x02F83C, 0x00549E},
+{0x02F83D, 0x02F83D, 0x005438},
+{0x02F83E, 0x02F83E, 0x005448},
+{0x02F83F, 0x02F83F, 0x005468},
+{0x02F840, 0x02F840, 0x0054A2},
+{0x02F841, 0x02F841, 0x0054F6},
+{0x02F842, 0x02F842, 0x005510},
+{0x02F843, 0x02F843, 0x005553},
+{0x02F844, 0x02F844, 0x005563},
+{0x02F845, 0x02F846, 0x005584},
+{0x02F847, 0x02F847, 0x005599},
+{0x02F848, 0x02F848, 0x0055AB},
+{0x02F849, 0x02F849, 0x0055B3},
+{0x02F84A, 0x02F84A, 0x0055C2},
+{0x02F84B, 0x02F84B, 0x005716},
+{0x02F84C, 0x02F84C, 0x005606},
+{0x02F84D, 0x02F84D, 0x005717},
+{0x02F84E, 0x02F84E, 0x005651},
+{0x02F84F, 0x02F84F, 0x005674},
+{0x02F850, 0x02F850, 0x005207},
+{0x02F851, 0x02F851, 0x0058EE},
+{0x02F852, 0x02F852, 0x0057CE},
+{0x02F853, 0x02F853, 0x0057F4},
+{0x02F854, 0x02F854, 0x00580D},
+{0x02F855, 0x02F855, 0x00578B},
+{0x02F856, 0x02F856, 0x005832},
+{0x02F857, 0x02F857, 0x005831},
+{0x02F858, 0x02F858, 0x0058AC},
+{0x02F859, 0x02F859, 0x0214E4},
+{0x02F85A, 0x02F85A, 0x0058F2},
+{0x02F85B, 0x02F85B, 0x0058F7},
+{0x02F85C, 0x02F85C, 0x005906},
+{0x02F85D, 0x02F85D, 0x00591A},
+{0x02F85E, 0x02F85E, 0x005922},
+{0x02F85F, 0x02F85F, 0x005962},
+{0x02F860, 0x02F860, 0x0216A8},
+{0x02F861, 0x02F861, 0x0216EA},
+{0x02F862, 0x02F862, 0x0059EC},
+{0x02F863, 0x02F863, 0x005A1B},
+{0x02F864, 0x02F864, 0x005A27},
+{0x02F865, 0x02F865, 0x0059D8},
+{0x02F866, 0x02F866, 0x005A66},
+{0x02F867, 0x02F867, 0x0036EE},
+{0x02F868, 0x02F868, 0x0036FC},
+{0x02F869, 0x02F869, 0x005B08},
+{0x02F86A, 0x02F86B, 0x005B3E},
+{0x02F86C, 0x02F86C, 0x0219C8},
+{0x02F86D, 0x02F86D, 0x005BC3},
+{0x02F86E, 0x02F86E, 0x005BD8},
+{0x02F86F, 0x02F86F, 0x005BE7},
+{0x02F870, 0x02F870, 0x005BF3},
+{0x02F871, 0x02F871, 0x021B18},
+{0x02F872, 0x02F872, 0x005BFF},
+{0x02F873, 0x02F873, 0x005C06},
+{0x02F874, 0x02F874, 0x005F53},
+{0x02F875, 0x02F875, 0x005C22},
+{0x02F876, 0x02F876, 0x003781},
+{0x02F877, 0x02F877, 0x005C60},
+{0x02F878, 0x02F878, 0x005C6E},
+{0x02F879, 0x02F879, 0x005CC0},
+{0x02F87A, 0x02F87A, 0x005C8D},
+{0x02F87B, 0x02F87B, 0x021DE4},
+{0x02F87C, 0x02F87C, 0x005D43},
+{0x02F87D, 0x02F87D, 0x021DE6},
+{0x02F87E, 0x02F87E, 0x005D6E},
+{0x02F87F, 0x02F87F, 0x005D6B},
+{0x02F880, 0x02F880, 0x005D7C},
+{0x02F881, 0x02F881, 0x005DE1},
+{0x02F882, 0x02F882, 0x005DE2},
+{0x02F883, 0x02F883, 0x00382F},
+{0x02F884, 0x02F884, 0x005DFD},
+{0x02F885, 0x02F885, 0x005E28},
+{0x02F886, 0x02F886, 0x005E3D},
+{0x02F887, 0x02F887, 0x005E69},
+{0x02F888, 0x02F888, 0x003862},
+{0x02F889, 0x02F889, 0x022183},
+{0x02F88A, 0x02F88A, 0x00387C},
+{0x02F88B, 0x02F88B, 0x005EB0},
+{0x02F88C, 0x02F88C, 0x005EB3},
+{0x02F88D, 0x02F88D, 0x005EB6},
+{0x02F88E, 0x02F88E, 0x005ECA},
+{0x02F88F, 0x02F88F, 0x02A392},
+{0x02F890, 0x02F890, 0x005EFE},
+{0x02F891, 0x02F892, 0x022331},
+{0x02F893, 0x02F893, 0x008201},
+{0x02F894, 0x02F895, 0x005F22},
+{0x02F896, 0x02F896, 0x0038C7},
+{0x02F897, 0x02F897, 0x0232B8},
+{0x02F898, 0x02F898, 0x0261DA},
+{0x02F899, 0x02F899, 0x005F62},
+{0x02F89A, 0x02F89A, 0x005F6B},
+{0x02F89B, 0x02F89B, 0x0038E3},
+{0x02F89C, 0x02F89C, 0x005F9A},
+{0x02F89D, 0x02F89D, 0x005FCD},
+{0x02F89E, 0x02F89E, 0x005FD7},
+{0x02F89F, 0x02F89F, 0x005FF9},
+{0x02F8A0, 0x02F8A0, 0x006081},
+{0x02F8A1, 0x02F8A1, 0x00393A},
+{0x02F8A2, 0x02F8A2, 0x00391C},
+{0x02F8A3, 0x02F8A3, 0x006094},
+{0x02F8A4, 0x02F8A4, 0x0226D4},
+{0x02F8A5, 0x02F8A5, 0x0060C7},
+{0x02F8A6, 0x02F8A6, 0x006148},
+{0x02F8A7, 0x02F8A7, 0x00614C},
+{0x02F8A8, 0x02F8A8, 0x00614E},
+{0x02F8A9, 0x02F8A9, 0x00614C},
+{0x02F8AA, 0x02F8AA, 0x00617A},
+{0x02F8AB, 0x02F8AB, 0x00618E},
+{0x02F8AC, 0x02F8AC, 0x0061B2},
+{0x02F8AD, 0x02F8AD, 0x0061A4},
+{0x02F8AE, 0x02F8AE, 0x0061AF},
+{0x02F8AF, 0x02F8AF, 0x0061DE},
+{0x02F8B0, 0x02F8B0, 0x0061F2},
+{0x02F8B1, 0x02F8B1, 0x0061F6},
+{0x02F8B2, 0x02F8B2, 0x006210},
+{0x02F8B3, 0x02F8B3, 0x00621B},
+{0x02F8B4, 0x02F8B4, 0x00625D},
+{0x02F8B5, 0x02F8B5, 0x0062B1},
+{0x02F8B6, 0x02F8B6, 0x0062D4},
+{0x02F8B7, 0x02F8B7, 0x006350},
+{0x02F8B8, 0x02F8B8, 0x022B0C},
+{0x02F8B9, 0x02F8B9, 0x00633D},
+{0x02F8BA, 0x02F8BA, 0x0062FC},
+{0x02F8BB, 0x02F8BB, 0x006368},
+{0x02F8BC, 0x02F8BC, 0x006383},
+{0x02F8BD, 0x02F8BD, 0x0063E4},
+{0x02F8BE, 0x02F8BE, 0x022BF1},
+{0x02F8BF, 0x02F8BF, 0x006422},
+{0x02F8C0, 0x02F8C0, 0x0063C5},
+{0x02F8C1, 0x02F8C1, 0x0063A9},
+{0x02F8C2, 0x02F8C2, 0x003A2E},
+{0x02F8C3, 0x02F8C3, 0x006469},
+{0x02F8C4, 0x02F8C4, 0x00647E},
+{0x02F8C5, 0x02F8C5, 0x00649D},
+{0x02F8C6, 0x02F8C6, 0x006477},
+{0x02F8C7, 0x02F8C7, 0x003A6C},
+{0x02F8C8, 0x02F8C8, 0x00654F},
+{0x02F8C9, 0x02F8C9, 0x00656C},
+{0x02F8CA, 0x02F8CA, 0x02300A},
+{0x02F8CB, 0x02F8CB, 0x0065E3},
+{0x02F8CC, 0x02F8CC, 0x0066F8},
+{0x02F8CD, 0x02F8CD, 0x006649},
+{0x02F8CE, 0x02F8CE, 0x003B19},
+{0x02F8CF, 0x02F8CF, 0x006691},
+{0x02F8D0, 0x02F8D0, 0x003B08},
+{0x02F8D1, 0x02F8D1, 0x003AE4},
+{0x02F8D2, 0x02F8D2, 0x005192},
+{0x02F8D3, 0x02F8D3, 0x005195},
+{0x02F8D4, 0x02F8D4, 0x006700},
+{0x02F8D5, 0x02F8D5, 0x00669C},
+{0x02F8D6, 0x02F8D6, 0x0080AD},
+{0x02F8D7, 0x02F8D7, 0x0043D9},
+{0x02F8D8, 0x02F8D8, 0x006717},
+{0x02F8D9, 0x02F8D9, 0x00671B},
+{0x02F8DA, 0x02F8DA, 0x006721},
+{0x02F8DB, 0x02F8DB, 0x00675E},
+{0x02F8DC, 0x02F8DC, 0x006753},
+{0x02F8DD, 0x02F8DD, 0x0233C3},
+{0x02F8DE, 0x02F8DE, 0x003B49},
+{0x02F8DF, 0x02F8DF, 0x0067FA},
+{0x02F8E0, 0x02F8E0, 0x006785},
+{0x02F8E1, 0x02F8E1, 0x006852},
+{0x02F8E2, 0x02F8E2, 0x006885},
+{0x02F8E3, 0x02F8E3, 0x02346D},
+{0x02F8E4, 0x02F8E4, 0x00688E},
+{0x02F8E5, 0x02F8E5, 0x00681F},
+{0x02F8E6, 0x02F8E6, 0x006914},
+{0x02F8E7, 0x02F8E7, 0x003B9D},
+{0x02F8E8, 0x02F8E8, 0x006942},
+{0x02F8E9, 0x02F8E9, 0x0069A3},
+{0x02F8EA, 0x02F8EA, 0x0069EA},
+{0x02F8EB, 0x02F8EB, 0x006AA8},
+{0x02F8EC, 0x02F8EC, 0x0236A3},
+{0x02F8ED, 0x02F8ED, 0x006ADB},
+{0x02F8EE, 0x02F8EE, 0x003C18},
+{0x02F8EF, 0x02F8EF, 0x006B21},
+{0x02F8F0, 0x02F8F0, 0x0238A7},
+{0x02F8F1, 0x02F8F1, 0x006B54},
+{0x02F8F2, 0x02F8F2, 0x003C4E},
+{0x02F8F3, 0x02F8F3, 0x006B72},
+{0x02F8F4, 0x02F8F4, 0x006B9F},
+{0x02F8F5, 0x02F8F5, 0x006BBA},
+{0x02F8F6, 0x02F8F6, 0x006BBB},
+{0x02F8F7, 0x02F8F7, 0x023A8D},
+{0x02F8F8, 0x02F8F8, 0x021D0B},
+{0x02F8F9, 0x02F8F9, 0x023AFA},
+{0x02F8FA, 0x02F8FA, 0x006C4E},
+{0x02F8FB, 0x02F8FB, 0x023CBC},
+{0x02F8FC, 0x02F8FC, 0x006CBF},
+{0x02F8FD, 0x02F8FD, 0x006CCD},
+{0x02F8FE, 0x02F8FE, 0x006C67},
+{0x02F8FF, 0x02F8FF, 0x006D16},
+{0x02F900, 0x02F900, 0x006D3E},
+{0x02F901, 0x02F901, 0x006D77},
+{0x02F902, 0x02F902, 0x006D41},
+{0x02F903, 0x02F903, 0x006D69},
+{0x02F904, 0x02F904, 0x006D78},
+{0x02F905, 0x02F905, 0x006D85},
+{0x02F906, 0x02F906, 0x023D1E},
+{0x02F907, 0x02F907, 0x006D34},
+{0x02F908, 0x02F908, 0x006E2F},
+{0x02F909, 0x02F909, 0x006E6E},
+{0x02F90A, 0x02F90A, 0x003D33},
+{0x02F90B, 0x02F90B, 0x006ECB},
+{0x02F90C, 0x02F90C, 0x006EC7},
+{0x02F90D, 0x02F90D, 0x023ED1},
+{0x02F90E, 0x02F90E, 0x006DF9},
+{0x02F90F, 0x02F90F, 0x006F6E},
+{0x02F910, 0x02F910, 0x023F5E},
+{0x02F911, 0x02F911, 0x023F8E},
+{0x02F912, 0x02F912, 0x006FC6},
+{0x02F913, 0x02F913, 0x007039},
+{0x02F914, 0x02F914, 0x00701E},
+{0x02F915, 0x02F915, 0x00701B},
+{0x02F916, 0x02F916, 0x003D96},
+{0x02F917, 0x02F917, 0x00704A},
+{0x02F918, 0x02F918, 0x00707D},
+{0x02F919, 0x02F919, 0x007077},
+{0x02F91A, 0x02F91A, 0x0070AD},
+{0x02F91B, 0x02F91B, 0x020525},
+{0x02F91C, 0x02F91C, 0x007145},
+{0x02F91D, 0x02F91D, 0x024263},
+{0x02F91E, 0x02F91E, 0x00719C},
+{0x02F91F, 0x02F91F, 0x0243AB},
+{0x02F920, 0x02F920, 0x007228},
+{0x02F921, 0x02F921, 0x007235},
+{0x02F922, 0x02F922, 0x007250},
+{0x02F923, 0x02F923, 0x024608},
+{0x02F924, 0x02F924, 0x007280},
+{0x02F925, 0x02F925, 0x007295},
+{0x02F926, 0x02F926, 0x024735},
+{0x02F927, 0x02F927, 0x024814},
+{0x02F928, 0x02F928, 0x00737A},
+{0x02F929, 0x02F929, 0x00738B},
+{0x02F92A, 0x02F92A, 0x003EAC},
+{0x02F92B, 0x02F92B, 0x0073A5},
+{0x02F92C, 0x02F92D, 0x003EB8},
+{0x02F92E, 0x02F92E, 0x007447},
+{0x02F92F, 0x02F92F, 0x00745C},
+{0x02F930, 0x02F930, 0x007471},
+{0x02F931, 0x02F931, 0x007485},
+{0x02F932, 0x02F932, 0x0074CA},
+{0x02F933, 0x02F933, 0x003F1B},
+{0x02F934, 0x02F934, 0x007524},
+{0x02F935, 0x02F935, 0x024C36},
+{0x02F936, 0x02F936, 0x00753E},
+{0x02F937, 0x02F937, 0x024C92},
+{0x02F938, 0x02F938, 0x007570},
+{0x02F939, 0x02F939, 0x02219F},
+{0x02F93A, 0x02F93A, 0x007610},
+{0x02F93B, 0x02F93B, 0x024FA1},
+{0x02F93C, 0x02F93C, 0x024FB8},
+{0x02F93D, 0x02F93D, 0x025044},
+{0x02F93E, 0x02F93E, 0x003FFC},
+{0x02F93F, 0x02F93F, 0x004008},
+{0x02F940, 0x02F940, 0x0076F4},
+{0x02F941, 0x02F941, 0x0250F3},
+{0x02F942, 0x02F942, 0x0250F2},
+{0x02F943, 0x02F943, 0x025119},
+{0x02F944, 0x02F944, 0x025133},
+{0x02F945, 0x02F945, 0x00771E},
+{0x02F946, 0x02F947, 0x00771F},
+{0x02F948, 0x02F948, 0x00774A},
+{0x02F949, 0x02F949, 0x004039},
+{0x02F94A, 0x02F94A, 0x00778B},
+{0x02F94B, 0x02F94B, 0x004046},
+{0x02F94C, 0x02F94C, 0x004096},
+{0x02F94D, 0x02F94D, 0x02541D},
+{0x02F94E, 0x02F94E, 0x00784E},
+{0x02F94F, 0x02F94F, 0x00788C},
+{0x02F950, 0x02F950, 0x0078CC},
+{0x02F951, 0x02F951, 0x0040E3},
+{0x02F952, 0x02F952, 0x025626},
+{0x02F953, 0x02F953, 0x007956},
+{0x02F954, 0x02F954, 0x02569A},
+{0x02F955, 0x02F955, 0x0256C5},
+{0x02F956, 0x02F956, 0x00798F},
+{0x02F957, 0x02F957, 0x0079EB},
+{0x02F958, 0x02F958, 0x00412F},
+{0x02F959, 0x02F959, 0x007A40},
+{0x02F95A, 0x02F95A, 0x007A4A},
+{0x02F95B, 0x02F95B, 0x007A4F},
+{0x02F95C, 0x02F95C, 0x02597C},
+{0x02F95D, 0x02F95E, 0x025AA7},
+{0x02F95F, 0x02F95F, 0x007AEE},
+{0x02F960, 0x02F960, 0x004202},
+{0x02F961, 0x02F961, 0x025BAB},
+{0x02F962, 0x02F962, 0x007BC6},
+{0x02F963, 0x02F963, 0x007BC9},
+{0x02F964, 0x02F964, 0x004227},
+{0x02F965, 0x02F965, 0x025C80},
+{0x02F966, 0x02F966, 0x007CD2},
+{0x02F967, 0x02F967, 0x0042A0},
+{0x02F968, 0x02F968, 0x007CE8},
+{0x02F969, 0x02F969, 0x007CE3},
+{0x02F96A, 0x02F96A, 0x007D00},
+{0x02F96B, 0x02F96B, 0x025F86},
+{0x02F96C, 0x02F96C, 0x007D63},
+{0x02F96D, 0x02F96D, 0x004301},
+{0x02F96E, 0x02F96E, 0x007DC7},
+{0x02F96F, 0x02F96F, 0x007E02},
+{0x02F970, 0x02F970, 0x007E45},
+{0x02F971, 0x02F971, 0x004334},
+{0x02F972, 0x02F972, 0x026228},
+{0x02F973, 0x02F973, 0x026247},
+{0x02F974, 0x02F974, 0x004359},
+{0x02F975, 0x02F975, 0x0262D9},
+{0x02F976, 0x02F976, 0x007F7A},
+{0x02F977, 0x02F977, 0x02633E},
+{0x02F978, 0x02F978, 0x007F95},
+{0x02F979, 0x02F979, 0x007FFA},
+{0x02F97A, 0x02F97A, 0x008005},
+{0x02F97B, 0x02F97B, 0x0264DA},
+{0x02F97C, 0x02F97C, 0x026523},
+{0x02F97D, 0x02F97D, 0x008060},
+{0x02F97E, 0x02F97E, 0x0265A8},
+{0x02F97F, 0x02F97F, 0x008070},
+{0x02F980, 0x02F980, 0x02335F},
+{0x02F981, 0x02F981, 0x0043D5},
+{0x02F982, 0x02F982, 0x0080B2},
+{0x02F983, 0x02F983, 0x008103},
+{0x02F984, 0x02F984, 0x00440B},
+{0x02F985, 0x02F985, 0x00813E},
+{0x02F986, 0x02F986, 0x005AB5},
+{0x02F987, 0x02F987, 0x0267A7},
+{0x02F988, 0x02F988, 0x0267B5},
+{0x02F989, 0x02F989, 0x023393},
+{0x02F98A, 0x02F98A, 0x02339C},
+{0x02F98B, 0x02F98B, 0x008201},
+{0x02F98C, 0x02F98C, 0x008204},
+{0x02F98D, 0x02F98D, 0x008F9E},
+{0x02F98E, 0x02F98E, 0x00446B},
+{0x02F98F, 0x02F98F, 0x008291},
+{0x02F990, 0x02F990, 0x00828B},
+{0x02F991, 0x02F991, 0x00829D},
+{0x02F992, 0x02F992, 0x0052B3},
+{0x02F993, 0x02F993, 0x0082B1},
+{0x02F994, 0x02F994, 0x0082B3},
+{0x02F995, 0x02F995, 0x0082BD},
+{0x02F996, 0x02F996, 0x0082E6},
+{0x02F997, 0x02F997, 0x026B3C},
+{0x02F998, 0x02F998, 0x0082E5},
+{0x02F999, 0x02F999, 0x00831D},
+{0x02F99A, 0x02F99A, 0x008363},
+{0x02F99B, 0x02F99B, 0x0083AD},
+{0x02F99C, 0x02F99C, 0x008323},
+{0x02F99D, 0x02F99D, 0x0083BD},
+{0x02F99E, 0x02F99E, 0x0083E7},
+{0x02F99F, 0x02F99F, 0x008457},
+{0x02F9A0, 0x02F9A0, 0x008353},
+{0x02F9A1, 0x02F9A1, 0x0083CA},
+{0x02F9A2, 0x02F9A2, 0x0083CC},
+{0x02F9A3, 0x02F9A3, 0x0083DC},
+{0x02F9A4, 0x02F9A4, 0x026C36},
+{0x02F9A5, 0x02F9A5, 0x026D6B},
+{0x02F9A6, 0x02F9A6, 0x026CD5},
+{0x02F9A7, 0x02F9A7, 0x00452B},
+{0x02F9A8, 0x02F9A8, 0x0084F1},
+{0x02F9A9, 0x02F9A9, 0x0084F3},
+{0x02F9AA, 0x02F9AA, 0x008516},
+{0x02F9AB, 0x02F9AB, 0x0273CA},
+{0x02F9AC, 0x02F9AC, 0x008564},
+{0x02F9AD, 0x02F9AD, 0x026F2C},
+{0x02F9AE, 0x02F9AE, 0x00455D},
+{0x02F9AF, 0x02F9AF, 0x004561},
+{0x02F9B0, 0x02F9B0, 0x026FB1},
+{0x02F9B1, 0x02F9B1, 0x0270D2},
+{0x02F9B2, 0x02F9B2, 0x00456B},
+{0x02F9B3, 0x02F9B3, 0x008650},
+{0x02F9B4, 0x02F9B4, 0x00865C},
+{0x02F9B5, 0x02F9B5, 0x008667},
+{0x02F9B6, 0x02F9B6, 0x008669},
+{0x02F9B7, 0x02F9B7, 0x0086A9},
+{0x02F9B8, 0x02F9B8, 0x008688},
+{0x02F9B9, 0x02F9B9, 0x00870E},
+{0x02F9BA, 0x02F9BA, 0x0086E2},
+{0x02F9BB, 0x02F9BB, 0x008779},
+{0x02F9BC, 0x02F9BC, 0x008728},
+{0x02F9BD, 0x02F9BD, 0x00876B},
+{0x02F9BE, 0x02F9BE, 0x008786},
+{0x02F9BF, 0x02F9BF, 0x0045D7},
+{0x02F9C0, 0x02F9C0, 0x0087E1},
+{0x02F9C1, 0x02F9C1, 0x008801},
+{0x02F9C2, 0x02F9C2, 0x0045F9},
+{0x02F9C3, 0x02F9C3, 0x008860},
+{0x02F9C4, 0x02F9C4, 0x008863},
+{0x02F9C5, 0x02F9C5, 0x027667},
+{0x02F9C6, 0x02F9C6, 0x0088D7},
+{0x02F9C7, 0x02F9C7, 0x0088DE},
+{0x02F9C8, 0x02F9C8, 0x004635},
+{0x02F9C9, 0x02F9C9, 0x0088FA},
+{0x02F9CA, 0x02F9CA, 0x0034BB},
+{0x02F9CB, 0x02F9CB, 0x0278AE},
+{0x02F9CC, 0x02F9CC, 0x027966},
+{0x02F9CD, 0x02F9CD, 0x0046BE},
+{0x02F9CE, 0x02F9CE, 0x0046C7},
+{0x02F9CF, 0x02F9CF, 0x008AA0},
+{0x02F9D0, 0x02F9D0, 0x008AED},
+{0x02F9D1, 0x02F9D1, 0x008B8A},
+{0x02F9D2, 0x02F9D2, 0x008C55},
+{0x02F9D3, 0x02F9D3, 0x027CA8},
+{0x02F9D4, 0x02F9D4, 0x008CAB},
+{0x02F9D5, 0x02F9D5, 0x008CC1},
+{0x02F9D6, 0x02F9D6, 0x008D1B},
+{0x02F9D7, 0x02F9D7, 0x008D77},
+{0x02F9D8, 0x02F9D8, 0x027F2F},
+{0x02F9D9, 0x02F9D9, 0x020804},
+{0x02F9DA, 0x02F9DA, 0x008DCB},
+{0x02F9DB, 0x02F9DB, 0x008DBC},
+{0x02F9DC, 0x02F9DC, 0x008DF0},
+{0x02F9DD, 0x02F9DD, 0x0208DE},
+{0x02F9DE, 0x02F9DE, 0x008ED4},
+{0x02F9DF, 0x02F9DF, 0x008F38},
+{0x02F9E0, 0x02F9E0, 0x0285D2},
+{0x02F9E1, 0x02F9E1, 0x0285ED},
+{0x02F9E2, 0x02F9E2, 0x009094},
+{0x02F9E3, 0x02F9E3, 0x0090F1},
+{0x02F9E4, 0x02F9E4, 0x009111},
+{0x02F9E5, 0x02F9E5, 0x02872E},
+{0x02F9E6, 0x02F9E6, 0x00911B},
+{0x02F9E7, 0x02F9E7, 0x009238},
+{0x02F9E8, 0x02F9E8, 0x0092D7},
+{0x02F9E9, 0x02F9E9, 0x0092D8},
+{0x02F9EA, 0x02F9EA, 0x00927C},
+{0x02F9EB, 0x02F9EB, 0x0093F9},
+{0x02F9EC, 0x02F9EC, 0x009415},
+{0x02F9ED, 0x02F9ED, 0x028BFA},
+{0x02F9EE, 0x02F9EE, 0x00958B},
+{0x02F9EF, 0x02F9EF, 0x004995},
+{0x02F9F0, 0x02F9F0, 0x0095B7},
+{0x02F9F1, 0x02F9F1, 0x028D77},
+{0x02F9F2, 0x02F9F2, 0x0049E6},
+{0x02F9F3, 0x02F9F3, 0x0096C3},
+{0x02F9F4, 0x02F9F4, 0x005DB2},
+{0x02F9F5, 0x02F9F5, 0x009723},
+{0x02F9F6, 0x02F9F6, 0x029145},
+{0x02F9F7, 0x02F9F7, 0x02921A},
+{0x02F9F8, 0x02F9F8, 0x004A6E},
+{0x02F9F9, 0x02F9F9, 0x004A76},
+{0x02F9FA, 0x02F9FA, 0x0097E0},
+{0x02F9FB, 0x02F9FB, 0x02940A},
+{0x02F9FC, 0x02F9FC, 0x004AB2},
+{0x02F9FD, 0x02F9FD, 0x029496},
+{0x02F9FE, 0x02F9FF, 0x00980B},
+{0x02FA00, 0x02FA00, 0x009829},
+{0x02FA01, 0x02FA01, 0x0295B6},
+{0x02FA02, 0x02FA02, 0x0098E2},
+{0x02FA03, 0x02FA03, 0x004B33},
+{0x02FA04, 0x02FA04, 0x009929},
+{0x02FA05, 0x02FA05, 0x0099A7},
+{0x02FA06, 0x02FA06, 0x0099C2},
+{0x02FA07, 0x02FA07, 0x0099FE},
+{0x02FA08, 0x02FA08, 0x004BCE},
+{0x02FA09, 0x02FA09, 0x029B30},
+{0x02FA0A, 0x02FA0A, 0x009B12},
+{0x02FA0B, 0x02FA0B, 0x009C40},
+{0x02FA0C, 0x02FA0C, 0x009CFD},
+{0x02FA0D, 0x02FA0D, 0x004CCE},
+{0x02FA0E, 0x02FA0E, 0x004CED},
+{0x02FA0F, 0x02FA0F, 0x009D67},
+{0x02FA10, 0x02FA10, 0x02A0CE},
+{0x02FA11, 0x02FA11, 0x004CF8},
+{0x02FA12, 0x02FA12, 0x02A105},
+{0x02FA13, 0x02FA13, 0x02A20E},
+{0x02FA14, 0x02FA14, 0x02A291},
+{0x02FA15, 0x02FA15, 0x009EBB},
+{0x02FA16, 0x02FA16, 0x004D56},
+{0x02FA17, 0x02FA17, 0x009EF9},
+{0x02FA18, 0x02FA18, 0x009EFE},
+{0x02FA19, 0x02FA19, 0x009F05},
+{0x02FA1A, 0x02FA1A, 0x009F0F},
+{0x02FA1B, 0x02FA1B, 0x009F16},
+{0x02FA1C, 0x02FA1C, 0x009F3B},
+{0x02FA1D, 0x02FA1D, 0x02A600},
+};
diff --git a/src/unicode-data.h b/src/unicode-data.h
new file mode 100644
index 00000000..e27fe177
--- /dev/null
+++ b/src/unicode-data.h
@@ -0,0 +1,20 @@
+#pragma once
+
+#include <cstdint>
+#include <vector>
+#include <unordered_map>
+#include <unordered_set>
+
+struct range_nfd {
+ uint32_t first;
+ uint32_t last;
+ uint32_t nfd;
+};
+
+static const uint32_t MAX_CODEPOINTS = 0x110000;
+
+extern const std::vector<std::pair<uint32_t, uint16_t>> unicode_ranges_flags;
+extern const std::unordered_set<uint32_t> unicode_set_whitespace;
+extern const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase;
+extern const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase;
+extern const std::vector<range_nfd> unicode_ranges_nfd;
diff --git a/src/unicode.cpp b/src/unicode.cpp
new file mode 100644
index 00000000..46650bff
--- /dev/null
+++ b/src/unicode.cpp
@@ -0,0 +1,818 @@
+#if defined(_MSC_VER)
+#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
+#endif
+
+#include "unicode.h"
+#include "unicode-data.h"
+
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <map>
+#include <regex>
+#include <stdexcept>
+#include <string>
+#include <unordered_map>
+#include <unordered_set>
+#include <utility>
+#include <vector>
+#include <locale>
+#include <codecvt>
+
+size_t unicode_len_utf8(char src) {
+ const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
+ uint8_t highbits = static_cast<uint8_t>(src) >> 4;
+ return lookup[highbits];
+}
+
+static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
+ std::string result;
+ for (size_t i = 0; i < cps.size(); ++i) {
+ result.append(unicode_cpt_to_utf8(cps[i]));
+ }
+ return result;
+}
+
+uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
+ assert(offset < utf8.size());
+ if (!(utf8[offset + 0] & 0x80)) {
+ auto result = utf8[offset + 0];
+ offset += 1;
+ return result;
+ }
+ if (!(utf8[offset + 0] & 0x40)) {
+ throw std::invalid_argument("invalid character");
+ }
+ if (!(utf8[offset + 0] & 0x20)) {
+ if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) {
+ throw std::invalid_argument("invalid character");
+ }
+ auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
+ offset += 2;
+ return result;
+ }
+ if (!(utf8[offset + 0] & 0x10)) {
+ if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) {
+ throw std::invalid_argument("invalid character");
+ }
+ auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
+ offset += 3;
+ return result;
+ }
+ if (!(utf8[offset + 0] & 0x08)) {
+ if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) {
+ throw std::invalid_argument("invalid character");
+ }
+ auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
+ offset += 4;
+ return result;
+ }
+ throw std::invalid_argument("failed to convert utf8 to codepoint");
+}
+
+//static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cp) {
+// std::vector<uint16_t> result;
+// if (/* 0x0000 <= cp && */ cp <= 0xffff) {
+// result.emplace_back(cp);
+// return result;
+// }
+// if (0x10000 <= cp && cp <= 0x10ffff) {
+// result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
+// result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
+// return result;
+// }
+// throw std::invalid_argument("failed to convert codepoint to utf16");
+//}
+
+//static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) {
+// std::vector<uint16_t> result;
+// for (size_t i = 0; i < cps.size(); ++i) {
+// auto temp = unicode_cpt_to_utf16(cps[i]);
+// result.insert(result.end(), temp.begin(), temp.end());
+// }
+// return result;
+//}
+
+//static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
+// assert(offset < utf16.size());
+// if (((utf16[0] >> 10) << 10) != 0xd800) {
+// auto result = utf16[offset + 0];
+// offset += 1;
+// return result;
+// }
+//
+// if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) {
+// throw std::invalid_argument("invalid character");
+// }
+//
+// auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
+// offset += 2;
+// return result;
+//}
+
+//static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) {
+// std::vector<uint32_t> result;
+// size_t offset = 0;
+// while (offset < utf16.size()) {
+// result.push_back(unicode_cpt_from_utf16(utf16, offset));
+// }
+// return result;
+//}
+
+static std::vector<codepoint_flags> unicode_cpt_flags_array() {
+ std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED);
+
+ assert (unicode_ranges_flags.front().first == 0);
+ assert (unicode_ranges_flags.back().first == MAX_CODEPOINTS);
+ for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
+ const auto range_ini = unicode_ranges_flags[i-1]; // codepoint_ini, flags
+ const auto range_end = unicode_ranges_flags[i]; // codepoint_end, flags
+ for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
+ cpt_flags[cpt] = range_ini.second;
+ }
+ }
+
+ for (auto cpt : unicode_set_whitespace) {
+ cpt_flags[cpt].is_whitespace = true;
+ }
+
+ for (auto p : unicode_map_lowercase) {
+ cpt_flags[p.second].is_lowercase = true;
+ }
+
+ for (auto p : unicode_map_uppercase) {
+ cpt_flags[p.second].is_uppercase = true;
+ }
+
+ for (auto &range : unicode_ranges_nfd) { // start, last, nfd
+ cpt_flags[range.nfd].is_nfd = true;
+ }
+
+ return cpt_flags;
+}
+
+static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
+ std::unordered_map<uint8_t, std::string> map;
+ for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
+ assert(0 <= ch && ch < 256);
+ map[ch] = unicode_cpt_to_utf8(ch);
+ }
+ for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
+ assert(0 <= ch && ch < 256);
+ map[ch] = unicode_cpt_to_utf8(ch);
+ }
+ for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
+ assert(0 <= ch && ch < 256);
+ map[ch] = unicode_cpt_to_utf8(ch);
+ }
+ auto n = 0;
+ for (int ch = 0; ch < 256; ++ch) {
+ if (map.find(ch) == map.end()) {
+ map[ch] = unicode_cpt_to_utf8(256 + n);
+ ++n;
+ }
+ }
+ return map;
+}
+
+static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
+ std::unordered_map<std::string, uint8_t> map;
+ for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
+ assert(0 <= ch && ch < 256);
+ map[unicode_cpt_to_utf8(ch)] = ch;
+ }
+ for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
+ assert(0 <= ch && ch < 256);
+ map[unicode_cpt_to_utf8(ch)] = ch;
+ }
+ for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
+ assert(0 <= ch && ch < 256);
+ map[unicode_cpt_to_utf8(ch)] = ch;
+ }
+ auto n = 0;
+ for (int ch = 0; ch < 256; ++ch) {
+ if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) {
+ map[unicode_cpt_to_utf8(256 + n)] = ch;
+ ++n;
+ }
+ }
+ return map;
+}
+
+static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
+ std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
+ return conv.from_bytes(s);
+}
+
+static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
+ std::vector<std::string> bpe_encoded_words;
+ for (const auto & word : bpe_words) {
+ std::string text_utf;
+ auto utf_word = unicode_cpts_from_utf8(word);
+ for (size_t i = 0; i < utf_word.size(); ++i) {
+ text_utf += unicode_cpt_to_utf8(utf_word[i]);
+ }
+
+ std::string encoded_token;
+ for (char & c : text_utf) {
+ encoded_token += unicode_byte_to_utf8(c);
+ }
+ bpe_encoded_words.emplace_back(encoded_token);
+ }
+ return bpe_encoded_words;
+}
+
+// GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
+static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) {
+ std::vector<size_t> bpe_offsets; // store the offset of each word
+ bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
+
+ const auto cpts = unicode_cpts_from_utf8(text);
+
+ size_t start = 0;
+ for (auto offset : offsets) {
+ const size_t offset_ini = start;
+ const size_t offset_end = start + offset;
+ assert(offset_end <= cpts.size());
+ start = offset_end;
+
+ static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
+ auto _get_cpt = [&] (const size_t pos) -> uint32_t {
+ return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
+ };
+
+ auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
+ return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
+ };
+
+ size_t _prev_end = offset_ini;
+ auto _add_token = [&] (const size_t end) -> size_t {
+ assert(_prev_end <= end && end <= offset_end);
+ size_t len = end - _prev_end;
+ if (len > 0) {
+ bpe_offsets.push_back(len);
+ }
+ _prev_end = end;
+ //if (len > 0) {
+ // std::string s = "";
+ // for(size_t p = end-len; p < end; p++)
+ // s += unicode_cpt_to_utf8(cpts[p]);
+ // printf(">>> '%s'\n", s.c_str());
+ //}
+ return len;
+ };
+
+ for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
+ const uint32_t cpt = _get_cpt(pos);
+ const auto flags = _get_flags(pos);
+
+ // regex: 's|'t|'re|'ve|'m|'ll|'d
+ if (cpt == '\'' && pos+1 < offset_end) {
+ uint32_t cpt_next = _get_cpt(pos+1);
+ if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
+ pos += _add_token(pos+2);
+ continue;
+ }
+ if (pos+2 < offset_end) {
+ uint32_t cpt_next_next = _get_cpt(pos+2);
+ if ((cpt_next == 'r' && cpt_next_next == 'e') ||
+ (cpt_next == 'v' && cpt_next_next == 'e') ||
+ (cpt_next == 'l' && cpt_next_next == 'l')) {
+ pos += _add_token(pos+3);
+ continue;
+ }
+ }
+ }
+
+ auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
+ // regex: <space>?\p{L}+
+ if (flags2.is_letter) {
+ pos += (cpt == ' ');
+ while (flags2.is_letter) {
+ flags2 = _get_flags(++pos);
+ }
+ _add_token(pos);
+ continue;
+ }
+ // regex: <space>?\p{N}+
+ if (flags2.is_number) {
+ pos += (cpt == ' ');
+ while (flags2.is_number) {
+ flags2 = _get_flags(++pos);
+ }
+ _add_token(pos);
+ continue;
+ }
+ // regex: <space>?[^\s\p{L}\p{N}]+
+ if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
+ pos += (cpt == ' ');
+ while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
+ flags2 = _get_flags(++pos);
+ }
+ _add_token(pos);
+ continue;
+ }
+
+ size_t num_whitespaces = 0;
+ while (_get_flags(pos+num_whitespaces).is_whitespace) {
+ num_whitespaces++;
+ }
+
+ // regex: \s+(?!\S)
+ if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
+ pos += num_whitespaces - 1;
+ _add_token(pos);
+ continue;
+ }
+
+ // regex: \s+
+ if (num_whitespaces > 0) {
+ pos += num_whitespaces;
+ _add_token(pos);
+ continue;
+ }
+
+ // no matches
+ _add_token(++pos);
+ }
+ }
+
+ return bpe_offsets;
+}
+
+// LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
+static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) {
+ std::vector<size_t> bpe_offsets; // store the offset of each word
+ bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
+
+ const auto cpts = unicode_cpts_from_utf8(text);
+
+ size_t start = 0;
+ for (auto offset : offsets) {
+ const size_t offset_ini = start;
+ const size_t offset_end = start + offset;
+ assert(offset_end <= cpts.size());
+ start = offset_end;
+
+ static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
+ auto _get_cpt = [&] (const size_t pos) -> uint32_t {
+ return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
+ };
+
+ auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
+ return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
+ };
+
+ size_t _prev_end = offset_ini;
+ auto _add_token = [&] (const size_t end) -> size_t {
+ assert(_prev_end <= end && end <= offset_end);
+ size_t len = end - _prev_end;
+ if (len > 0) {
+ bpe_offsets.push_back(len);
+ }
+ _prev_end = end;
+ //if (len > 0) {
+ // std::string s = "";
+ // for(size_t p = end-len; p < end; p++)
+ // s += unicode_cpt_to_utf8(cpts[p]);
+ // printf(">>> '%s'\n", s.c_str());
+ //}
+ return len;
+ };
+
+ for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
+ const uint32_t cpt = _get_cpt(pos);
+ const auto flags = _get_flags(pos);
+
+ // regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
+ if (cpt == '\'' && pos+1 < offset_end) {
+ uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
+ if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
+ pos += _add_token(pos+2);
+ continue;
+ }
+ if (pos+2 < offset_end) {
+ uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
+ if ((cpt_next == 'r' && cpt_next_next == 'e') ||
+ (cpt_next == 'v' && cpt_next_next == 'e') ||
+ (cpt_next == 'l' && cpt_next_next == 'l')) {
+ pos += _add_token(pos+3);
+ continue;
+ }
+ }
+ }
+
+ // regex: [^\r\n\p{L}\p{N}]?\p{L}+
+ if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) {
+ if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
+ pos++;
+ while (_get_flags(pos).is_letter) {
+ pos++;
+ }
+ _add_token(pos);
+ continue;
+ }
+ }
+
+ // regex: \p{N}{1,3}
+ if (flags.is_number) {
+ size_t ini = pos;
+ while (_get_flags(pos).is_number) {
+ if (++pos - ini >= 3 ) {
+ _add_token(pos);
+ ini = pos;
+ }
+ }
+ _add_token(pos);
+ continue;
+ }
+
+ // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
+ auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
+ if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) {
+ pos += (cpt == ' ');
+ while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
+ flags2 = _get_flags(++pos);
+ }
+ uint32_t cpt2 = _get_cpt(pos);
+ while (cpt2 == '\r' || cpt2 == '\n') {
+ cpt2 = _get_cpt(++pos);
+ }
+ _add_token(pos);
+ continue;
+ }
+
+ size_t num_whitespaces = 0;
+ size_t last_end_r_or_n = 0;
+ while (_get_flags(pos+num_whitespaces).is_whitespace) {
+ uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
+ if (cpt2 == '\r' || cpt2 == '\n') {
+ last_end_r_or_n = pos + num_whitespaces + 1;
+ }
+ num_whitespaces++;
+ }
+
+ // regex: \s*[\r\n]+
+ if (last_end_r_or_n > 0) {
+ pos = last_end_r_or_n;
+ _add_token(pos);
+ continue;
+ }
+
+ // regex: \s+(?!\S)
+ if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
+ pos += num_whitespaces - 1;
+ _add_token(pos);
+ continue;
+ }
+
+ // regex: \s+
+ if (num_whitespaces > 0) {
+ pos += num_whitespaces;
+ _add_token(pos);
+ continue;
+ }
+
+ // no matches
+ _add_token(++pos);
+ }
+ }
+
+ return bpe_offsets;
+}
+
+// use std::wregex to split the text
+static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
+ std::wregex expr(regex_expr);
+ std::vector<size_t> bpe_offsets; // store the offset of each word
+ bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
+ size_t start = 0;
+ for (auto offset : offsets) {
+ std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
+ std::wcregex_iterator end;
+
+ int64_t start_idx = 0;
+ while (it != end) {
+ std::wcmatch match = *it;
+ if (match.position() > start_idx) {
+ bpe_offsets.emplace_back(match.position() - start_idx);
+ }
+ bpe_offsets.emplace_back(match.length());
+ start_idx = match.position() + match.length();
+ ++it;
+ }
+
+ if (start_idx < (int64_t) offset) {
+ bpe_offsets.emplace_back(offset - start_idx);
+ }
+ start += offset;
+ }
+
+ return bpe_offsets;
+}
+
+// use std::regex to split the text
+static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
+ std::regex expr(regex_expr);
+ std::vector<size_t> bpe_offsets; // store the offset of each word
+ bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
+ size_t start = 0;
+ for (auto offset : offsets) {
+ std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
+ std::cregex_iterator end;
+
+ int64_t start_idx = 0;
+ while (it != end) {
+ std::cmatch match = *it;
+ if (match.position() > start_idx) {
+ bpe_offsets.emplace_back(match.position() - start_idx);
+ }
+ bpe_offsets.emplace_back(match.length());
+ start_idx = match.position() + match.length();
+ ++it;
+ }
+
+ if (start_idx < (int64_t) offset) {
+ bpe_offsets.emplace_back(offset - start_idx);
+ }
+ start += offset;
+ }
+
+ return bpe_offsets;
+}
+
+static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
+ std::vector<size_t> bpe_offsets;
+
+ if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
+ bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets);
+ } else if (
+ regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" ||
+ regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") {
+
+ bpe_offsets = unicode_regex_split_custom_llama3(text, offsets);
+ }
+
+ return bpe_offsets;
+}
+
+//
+// interface
+//
+
+std::string unicode_cpt_to_utf8(uint32_t cp) {
+ std::string result;
+
+ if (/* 0x00 <= cp && */ cp <= 0x7f) {
+ result.push_back(cp);
+ return result;
+ }
+ if (0x80 <= cp && cp <= 0x7ff) {
+ result.push_back(0xc0 | ((cp >> 6) & 0x1f));
+ result.push_back(0x80 | (cp & 0x3f));
+ return result;
+ }
+ if (0x800 <= cp && cp <= 0xffff) {
+ result.push_back(0xe0 | ((cp >> 12) & 0x0f));
+ result.push_back(0x80 | ((cp >> 6) & 0x3f));
+ result.push_back(0x80 | (cp & 0x3f));
+ return result;
+ }
+ if (0x10000 <= cp && cp <= 0x10ffff) {
+ result.push_back(0xf0 | ((cp >> 18) & 0x07));
+ result.push_back(0x80 | ((cp >> 12) & 0x3f));
+ result.push_back(0x80 | ((cp >> 6) & 0x3f));
+ result.push_back(0x80 | (cp & 0x3f));
+ return result;
+ }
+
+ throw std::invalid_argument("invalid codepoint");
+}
+
+std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) {
+ auto comp = [] (const uint32_t cpt, const range_nfd & range) {
+ return cpt < range.first;
+ };
+ std::vector<uint32_t> result(cpts.size());
+ for (size_t i = 0; i < cpts.size(); ++i) {
+ const uint32_t cpt = cpts[i];
+ auto it = std::upper_bound(unicode_ranges_nfd.cbegin(), unicode_ranges_nfd.cend(), cpt, comp) - 1;
+ result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
+ }
+ return result;
+}
+
+std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
+ std::vector<uint32_t> result;
+ result.reserve(utf8.size());
+ size_t offset = 0;
+ while (offset < utf8.size()) {
+ result.push_back(unicode_cpt_from_utf8(utf8, offset));
+ }
+ return result;
+}
+
+codepoint_flags unicode_cpt_flags(const uint32_t cp) {
+ static const codepoint_flags undef(codepoint_flags::UNDEFINED);
+ static const auto cpt_flags = unicode_cpt_flags_array();
+ return cp < cpt_flags.size() ? cpt_flags[cp] : undef;
+}
+
+codepoint_flags unicode_cpt_flags(const std::string & utf8) {
+ static const codepoint_flags undef(codepoint_flags::UNDEFINED);
+ if (utf8.empty()) {
+ return undef; // undefined
+ }
+ size_t offset = 0;
+ return unicode_cpt_flags(unicode_cpt_from_utf8(utf8, offset));
+}
+
+std::string unicode_byte_to_utf8(uint8_t byte) {
+ static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map();
+ return map.at(byte);
+}
+
+uint8_t unicode_utf8_to_byte(const std::string & utf8) {
+ static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map();
+ return map.at(utf8);
+}
+
+uint32_t unicode_tolower(uint32_t cp) {
+ auto it = unicode_map_lowercase.find(cp);
+ return it == unicode_map_lowercase.end() ? cp : it->second;
+}
+
+std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
+ // unicode categories
+ static const std::map<std::string, int> k_ucat_enum = {
+ { "\\p{N}", codepoint_flags::NUMBER },
+ { "\\p{L}", codepoint_flags::LETTER },
+ { "\\p{P}", codepoint_flags::PUNCTUATION },
+ };
+
+ static const std::map<int, int> k_ucat_cpt = {
+ { codepoint_flags::NUMBER, 0xD1 },
+ { codepoint_flags::LETTER, 0xD2 },
+ { codepoint_flags::PUNCTUATION, 0xD3 },
+ };
+
+ static const std::map<int, std::string> k_ucat_map = {
+ { codepoint_flags::NUMBER, "\x30-\x39" }, // 0-9
+ { codepoint_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
+ { codepoint_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
+ };
+
+ // compute collapsed codepoints only if needed by at least one regex
+ bool need_collapse = false;
+ for (auto & regex_expr : regex_exprs) {
+ // search for unicode categories
+ for (const auto & ucat : k_ucat_enum) {
+ if (std::string::npos != regex_expr.find(ucat.first)) {
+ need_collapse = true;
+ break;
+ }
+ }
+ }
+
+ const auto cpts = unicode_cpts_from_utf8(text);
+
+ // generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
+ // ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935
+ std::string text_collapsed;
+ if (need_collapse) {
+ // collapse all unicode categories
+ text_collapsed.resize(cpts.size());
+
+ for (size_t i = 0; i < cpts.size(); ++i) {
+ // keep single-byte codepoints as is
+ if (cpts[i] < 128) {
+ text_collapsed[i] = cpts[i];
+ continue;
+ }
+
+ const auto flags = unicode_cpt_flags(cpts[i]);
+
+ if (flags.is_whitespace) {
+ //NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
+ //text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
+ text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
+ } else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
+ text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
+ } else {
+ text_collapsed[i] = (char) 0xD0; // fallback
+ }
+ }
+ }
+
+ std::vector<size_t> bpe_offsets = { cpts.size() };
+
+ for (auto & regex_expr : regex_exprs) {
+ // first, see if we have an efficient custom regex implementation
+ auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets);
+
+ if (!tmp.empty()) {
+ bpe_offsets = std::move(tmp);
+ continue;
+ }
+
+ // fallback to general-purpose std::regex / std::wregex
+ try {
+ // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category
+ // with the corresponding collapsed representation
+ bool use_collapsed = false;
+ for (auto & ucat : k_ucat_enum) {
+ if (std::string::npos != regex_expr.find(ucat.first)) {
+ use_collapsed = true;
+ break;
+ }
+ }
+
+ if (use_collapsed) {
+ // sanity-check that the original regex does not contain any non-ASCII characters
+ const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
+ for (size_t i = 0; i < cpts_regex.size(); ++i) {
+ if (cpts_regex[i] >= 128) {
+ throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
+ }
+ }
+
+ // generate a collapsed representation of the regex
+ std::string regex_expr_collapsed;
+
+ // track if we are inside [], because nested [] are not allowed
+ bool inside = false;
+ for (size_t i = 0; i < regex_expr.size(); ++i) {
+ if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) {
+ regex_expr_collapsed += '[';
+ inside = true;
+ continue;
+ }
+
+ if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') {
+ regex_expr_collapsed += ']';
+ inside = false;
+ continue;
+ }
+
+ if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
+ regex_expr[i + 1] == 'p' &&
+ regex_expr[i + 2] == '{' &&
+ regex_expr[i + 4] == '}') {
+ const std::string pat = regex_expr.substr(i, 5);
+ if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
+ if (!inside) {
+ regex_expr_collapsed += '[';
+ }
+ regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
+ regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
+ if (!inside) {
+ regex_expr_collapsed += ']';
+ }
+ i += 4;
+ continue;
+ }
+ }
+
+ regex_expr_collapsed += regex_expr[i];
+ }
+
+ //printf("text_collapsed: %s\n", text_collapsed.c_str());
+ //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str());
+ bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
+ } else {
+ // no unicode category used, we can use std::wregex directly
+ const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
+
+ // std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
+ std::wstring wtext(cpts.begin(), cpts.end());
+ for (size_t i = 0; i < wtext.size(); ++i) {
+ if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) {
+ wtext[i] = 0x0B;
+ }
+ }
+
+ //printf("text: %s\n", text.c_str());
+ //printf("regex_expr: %s\n", regex_expr.c_str());
+ bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
+ }
+ } catch (std::regex_error & e) {
+ fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str());
+ fprintf(stderr, "Regex error: %s\n", e.what());
+ throw std::runtime_error("Failed to process regex");
+ }
+ }
+
+ std::vector<std::string> bpe_words;
+ bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size
+
+ size_t start = 0;
+ for (size_t & offset : bpe_offsets) {
+ bpe_words.emplace_back();
+ for (size_t i = start; i < start + offset; ++i) {
+ bpe_words.back() += unicode_cpt_to_utf8(cpts[i]);
+ }
+ start += offset;
+ }
+
+ return unicode_byte_encoding_process(bpe_words);
+}
diff --git a/src/unicode.h b/src/unicode.h
new file mode 100644
index 00000000..008532a2
--- /dev/null
+++ b/src/unicode.h
@@ -0,0 +1,67 @@
+#pragma once
+
+#include <cstdint>
+#include <string>
+#include <vector>
+
+// TODO: prefix all symbols with "llama_"
+
+struct codepoint_flags {
+ enum {
+ UNDEFINED = 0x0001,
+ NUMBER = 0x0002, // regex: \p{N}
+ LETTER = 0x0004, // regex: \p{L}
+ SEPARATOR = 0x0008, // regex: \p{Z}
+ ACCENT_MARK = 0x0010, // regex: \p{M}
+ PUNCTUATION = 0x0020, // regex: \p{P}
+ SYMBOL = 0x0040, // regex: \p{S}
+ CONTROL = 0x0080, // regex: \p{C}
+ MASK_CATEGORIES = 0x00FF,
+ };
+
+ // codepoint type
+ uint16_t is_undefined : 1;
+ uint16_t is_number : 1; // regex: \p{N}
+ uint16_t is_letter : 1; // regex: \p{L}
+ uint16_t is_separator : 1; // regex: \p{Z}
+ uint16_t is_accent_mark : 1; // regex: \p{M}
+ uint16_t is_punctuation : 1; // regex: \p{P}
+ uint16_t is_symbol : 1; // regex: \p{S}
+ uint16_t is_control : 1; // regex: \p{C}
+ // helper flags
+ uint16_t is_whitespace : 1; // regex: \s
+ uint16_t is_lowercase : 1;
+ uint16_t is_uppercase : 1;
+ uint16_t is_nfd : 1;
+
+ // decode from uint16
+ inline codepoint_flags(const uint16_t flags=0) {
+ *reinterpret_cast<uint16_t*>(this) = flags;
+ }
+
+ inline uint16_t as_uint() const {
+ return *reinterpret_cast<const uint16_t*>(this);
+ }
+
+ inline uint16_t category_flag() const {
+ return this->as_uint() & MASK_CATEGORIES;
+ }
+};
+
+size_t unicode_len_utf8(char src);
+
+std::string unicode_cpt_to_utf8(uint32_t cp);
+uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset);
+std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8);
+
+std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts);
+
+codepoint_flags unicode_cpt_flags(const uint32_t cp);
+codepoint_flags unicode_cpt_flags(const std::string & utf8);
+
+std::string unicode_byte_to_utf8(uint8_t byte);
+uint8_t unicode_utf8_to_byte(const std::string & utf8);
+
+uint32_t unicode_tolower(uint32_t cp);
+
+std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs);