summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-14 09:24:30 +0100
committerGitHub <noreply@github.com>2024-12-14 09:24:30 +0100
commit20758edcae65213b2f575b6d23dfea67ad9dd0e0 (patch)
treef9f32d541da8bb945a45bbf473b9295496ec5c2b /src
parent12f962dd2494b743deb1c671974a591fdef1f003 (diff)
Q8_K_R8: Fastest quantized matrix multiplications (#141)
* q8_k_r8: fastest matrix multiplication known to human kind We get PP-512(LLaMA-3.1-8B) = 370 t/s on a Ryzen-7950X! * q8_k_r8: AVX2 I was worried that we don't have enough vector registrers on AVX2, but it looks like it handles it just fine. We get PP-512(LLaMA-3.1-8B) = 354 t/s on a Ryzen-5975WX. Slightly slower than the Zen4 version with double the threads, but still a huge upgrade compared to Q8_0_R4. * q8_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 159.2 t/s. Compare this to the 128 t/s we have fr Q8_0_R4. * q8_k_r4: go to signed ints Why? * On AVX2 _mm256_maddubs_epi16() may overflow, so we need to stay within the signed int range and use _mm256_sign_epi8. Not yet tested on the AVX2 comp, vut expect major slowdown. * It is almost 10% faster on ARM_NEON. Somehow the veorrq_u8() needed tto convert from unsigned to signed seems to be extremely slow on the M2-Max * We only lose ~0.5% in oerformance on Zen4 (there the exclusive or that we now use to convert fro signed to unsigned seems to be much faster than on M2-Max) * Shutup useless compiler warnings --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src')
-rw-r--r--src/llama.cpp16
1 files changed, 14 insertions, 2 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index 9356c639..035e5b1a 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -3843,6 +3843,7 @@ struct llama_model_loader {
case GGML_TYPE_Q5_K_R4: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_R4; break;
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
case GGML_TYPE_Q6_K_R4: ftype = LLAMA_FTYPE_MOSTLY_Q6_K_R4; break;
+ case GGML_TYPE_Q8_K_R8: ftype = LLAMA_FTYPE_MOSTLY_Q8_K_R8; break;
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
case GGML_TYPE_IQ2_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_KS; break;
@@ -4560,6 +4561,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
case LLAMA_FTYPE_MOSTLY_Q6_K_R4: return "Q6_K_R4";
+ case LLAMA_FTYPE_MOSTLY_Q8_K_R8: return "Q8_K_R8";
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_KS: return "IQ2_KS - 2.1875 bpw";
@@ -15766,7 +15768,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KSS) && !qs.has_output) {
new_type = GGML_TYPE_IQ5_K;
}
- else if (new_type != GGML_TYPE_Q8_0 && new_type != GGML_TYPE_Q8_0_R4 && new_type != GGML_TYPE_IQ6_K && new_type != GGML_TYPE_Q6_K_R4) {
+ else if (new_type != GGML_TYPE_Q8_0 && new_type != GGML_TYPE_Q8_0_R4 && new_type != GGML_TYPE_IQ6_K && new_type != GGML_TYPE_Q6_K_R4 &&
+ new_type != GGML_TYPE_Q8_K_R8) {
new_type = GGML_TYPE_Q6_K;
}
}
@@ -15812,6 +15815,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (new_type == GGML_TYPE_Q6_K_R4) {
new_type = GGML_TYPE_Q6_K;
}
+ else if (new_type == GGML_TYPE_Q8_K_R8) {
+ new_type = GGML_TYPE_Q8_0;
+ }
else if (new_type == GGML_TYPE_IQ4_K_R4) {
new_type = GGML_TYPE_IQ4_K;
}
@@ -16099,7 +16105,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type == GGML_TYPE_IQ6_K || new_type == GGML_TYPE_IQ4_KS || new_type == GGML_TYPE_IQ4_XS_R4 ||
new_type == GGML_TYPE_IQ2_KS || new_type == GGML_TYPE_IQ4_KSS || new_type == GGML_TYPE_Q6_K_R4 ||
new_type == GGML_TYPE_Q5_K_R4 || new_type == GGML_TYPE_Q3_K_R4 || new_type == GGML_TYPE_Q2_K_R4 ||
- new_type == GGML_TYPE_IQ4_K_R4) {
+ new_type == GGML_TYPE_IQ4_K_R4|| new_type == GGML_TYPE_Q8_K_R8) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
@@ -16144,6 +16150,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q6_0; break;
case GGML_TYPE_IQ6_K:
case GGML_TYPE_Q6_K_R4:
+ case GGML_TYPE_Q8_K_R8:
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
}
@@ -16240,6 +16247,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q5_K_R4: default_type = GGML_TYPE_Q5_K_R4; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K_R4: default_type = GGML_TYPE_Q6_K_R4; break;
+ case LLAMA_FTYPE_MOSTLY_Q8_K_R8: default_type = GGML_TYPE_Q8_K_R8; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_KS: default_type = GGML_TYPE_IQ2_KS; break;
@@ -16660,6 +16668,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q6_K;
else chunk_size_multiplier = 4;
}
+ else if (new_type == GGML_TYPE_Q8_K_R8) {
+ if (tensor->ne[1] % 8 != 0) new_type = GGML_TYPE_Q8_0;
+ else chunk_size_multiplier = 8;
+ }
else if (new_type == GGML_TYPE_IQ2_BN_R4) {
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ2_BN;
else chunk_size_multiplier = 4;