summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-20 12:02:42 +0100
committerGitHub <noreply@github.com>2024-12-20 12:02:42 +0100
commit4b53bc876eda6d89890711998b3ab5bf033b2199 (patch)
tree4624c21b636cb6c5121ae911c154ff8ed5702791 /src
parent7254f6d34024b708f15d3e6ce6926a808a4d0cc4 (diff)
IQ2_XXS_R4 (#154)
* iq2_xxs_r4: Zen4 Disapointing gain: 134.7 t/s -> 151.1 t/s for PP-512 TG-128 is better: 3.45 -> 4.61 t/s @ 1 thread * Minor * iq2_xxs_r4: NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src')
-rw-r--r--src/llama.cpp21
1 files changed, 17 insertions, 4 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index 0171539d..df700c12 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -3850,6 +3850,7 @@ struct llama_model_loader {
case GGML_TYPE_Q6_K_R4: ftype = LLAMA_FTYPE_MOSTLY_Q6_K_R4; break;
case GGML_TYPE_Q8_K_R8: ftype = LLAMA_FTYPE_MOSTLY_Q8_K_R8; break;
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
+ case GGML_TYPE_IQ2_XXS_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4; break;
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
case GGML_TYPE_IQ2_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_KS; break;
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
@@ -4578,6 +4579,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_Q6_K_R4: return "Q6_K_R4";
case LLAMA_FTYPE_MOSTLY_Q8_K_R8: return "Q8_K_R8";
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4:return "IQ2_XXS_R4 - 2.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_KS: return "IQ2_KS - 2.1875 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
@@ -15798,6 +15800,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4) {
new_type = !qs.has_output ? GGML_TYPE_IQ4_K : GGML_TYPE_Q5_K;
}
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4) {
+ new_type = !qs.has_output ? GGML_TYPE_IQ4_K_R4 : GGML_TYPE_Q5_K_R4;
+ }
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KSS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS_R4) && !qs.has_output) {
new_type = GGML_TYPE_IQ5_K;
@@ -15812,7 +15817,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type = qs.params->token_embedding_type;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4) {
new_type = GGML_TYPE_Q2_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
@@ -15887,8 +15893,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
}
}
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS) {
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M ||
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4) {
if (name.find("attn_v.weight") != std::string::npos) {
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_IQ4_K;
else if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_IQ3_K;
@@ -16182,7 +16188,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type == GGML_TYPE_Q5_K_R4 || new_type == GGML_TYPE_Q3_K_R4 || new_type == GGML_TYPE_Q2_K_R4 ||
new_type == GGML_TYPE_IQ4_K_R4|| new_type == GGML_TYPE_Q8_K_R8 || new_type == GGML_TYPE_IQ3_K_R4||
new_type == GGML_TYPE_IQ2_K_R4|| new_type == GGML_TYPE_IQ5_K_R4|| new_type == GGML_TYPE_IQ4_KS_R4 ||
- new_type == GGML_TYPE_IQ3_XXS_R4) {
+ new_type == GGML_TYPE_IQ3_XXS_R4 || new_type == GGML_TYPE_IQ2_XXS_R4) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
@@ -16201,6 +16207,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
if (convert_incompatible_tensor) {
switch (new_type) {
case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XXS_R4:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ2_S:
@@ -16332,6 +16339,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q6_K_R4: default_type = GGML_TYPE_Q6_K_R4; break;
case LLAMA_FTYPE_MOSTLY_Q8_K_R8: default_type = GGML_TYPE_Q8_K_R8; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4:default_type = GGML_TYPE_IQ2_XXS_R4; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_KS: default_type = GGML_TYPE_IQ2_KS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
@@ -16685,6 +16693,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
}
if (!params->ignore_imatrix_rules && !imatrix &&
(new_type == GGML_TYPE_IQ2_XXS ||
+ new_type == GGML_TYPE_IQ2_XXS_R4 ||
new_type == GGML_TYPE_IQ2_XS ||
new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ1_S ||
@@ -16787,6 +16796,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ4_KS;
else chunk_size_multiplier = 4;
}
+ else if (new_type == GGML_TYPE_IQ2_XXS_R4) {
+ if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ2_XXS;
+ else chunk_size_multiplier = 4;
+ }
else if (new_type == GGML_TYPE_IQ3_XXS_R4) {
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ3_XXS;
else chunk_size_multiplier = 4;