diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2025-02-05 13:49:39 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-02-05 13:49:39 +0200 |
commit | 8b7536bda8b65107794c4df710f14ddfde430160 (patch) | |
tree | 97a9dea70458bddcef51c734e22026ac51b51ed7 /src | |
parent | ecf111a11ca56ff0731308f94bd6c5e96658b6ef (diff) |
IQ1_S_R4: better 1.5 bpw quants (#185)
* iq1_s_r4: basics - quantize/dequantize
* iq1_s_r4: gemm/gemv works on AVX2/Zen4
* Don't forget to make sure we have a multiple of 4 rows per thread
* iq1_s_r4: this is better
* iq1_s_r4: fix Zen4 after AVX2 changes
* iq1_s_r4: NEON gemm/gemv
* iq1_s_r4: more bits for shared experts
With this mix we arrive at PPL(512) = 9.4140
for Deepseek-Lite using 1.766 bpw for the repeating layers.
On the Ryzen-7950X we get PP-512 = 494 t/s and
TG-128 = 52 t/s @ 16 threads.
* Forgotten counter increment
* iq1_s_r4: slightly faster AVX2/Zen4 gemm/gemv
* Compiler warnings
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src')
-rw-r--r-- | src/llama.cpp | 50 |
1 files changed, 48 insertions, 2 deletions
diff --git a/src/llama.cpp b/src/llama.cpp index 570c056c..943b945a 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -3954,6 +3954,7 @@ struct llama_model_loader { case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ3_XXS_R4: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; + case GGML_TYPE_IQ1_S_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ1_S_R4;break; case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; case GGML_TYPE_IQ1_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ1_BN; break; case GGML_TYPE_IQ2_BN: ftype = LLAMA_FTYPE_MOSTLY_IQ2_BN; break; @@ -4688,6 +4689,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4: return "IQ3_XXS_R4 - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ1_S_R4: return "IQ1_S_R4 - 1.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_NL_R4:return "IQ4_NL_R4 - 4.5 bpw"; @@ -15966,7 +15968,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K || ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K_R4 || - ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M_R4) { + ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || + ftype == LLAMA_FTYPE_MOSTLY_IQ2_M_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S_R4) { new_type = !qs.has_output ? GGML_TYPE_IQ4_K : GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) { @@ -15987,7 +15990,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || - ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) { + ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4 || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S_R4) { new_type = GGML_TYPE_Q2_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M_R4) { @@ -16064,6 +16068,41 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n new_type = GGML_TYPE_BF16; } } + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S_R4) { + if (name.find("attn_v.weight") != std::string::npos) { + if (qs.model.hparams.n_expert >= 4 || qs.model.hparams.n_gqa() >= 4) new_type = GGML_TYPE_IQ4_K_R4; + else if (qs.model.hparams.n_gqa() >= 2) new_type = GGML_TYPE_IQ3_K_R4; + else new_type = GGML_TYPE_Q2_K_R4; + ++qs.i_attention_wv; + } + else if (qs.model.hparams.n_expert >= 8 && name.find("attn_k") != std::string::npos) { + new_type = GGML_TYPE_Q4_K_R4; + } + else if (qs.model.hparams.n_expert >= 8 && (name.find("blk.0.ffn_down") != std::string::npos || + name.find("blk.0.ffn_gate") != std::string::npos || + name.find("blk.0.ffn_up") != std::string::npos)) { + new_type = GGML_TYPE_IQ3_K_R4; + } + else if (qs.model.hparams.n_expert >= 8 && name.find("attn_q") != std::string::npos) { + new_type = GGML_TYPE_Q4_K_R4; + } + else if (name.find("attn_qkv.weight") != std::string::npos) { + new_type = GGML_TYPE_IQ2_K_R4; + } + else if (name.find("_shexp.weight") != std::string::npos) { + new_type = GGML_TYPE_IQ4_K_R4; + } + else if (name.find("ffn_down") != std::string::npos) { + auto [i_layer, n_layer] = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); + if (qs.params->ffn_down_type < GGML_TYPE_COUNT) new_type = qs.params->ffn_down_type; + else if (i_layer < n_layer/8) { + new_type = GGML_TYPE_Q2_K_R4; + } + ++qs.i_ffn_down; + } + else if (name.find("attn_output.weight") != std::string::npos) { + new_type = qs.model.hparams.n_expert >= 4 ? GGML_TYPE_Q5_K_R4 : GGML_TYPE_IQ2_K_R4; + } } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4 || @@ -16095,6 +16134,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n new_type = GGML_TYPE_Q5_K; } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S_R4) new_type = GGML_TYPE_IQ2_K_R4; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || is_iq2_m) new_type = GGML_TYPE_IQ3_S; } } @@ -16539,6 +16579,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4: default_type = GGML_TYPE_IQ3_XXS_R4; break; case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break; + case LLAMA_FTYPE_MOSTLY_IQ1_S_R4:default_type = GGML_TYPE_IQ1_S_R4;break; case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break; case LLAMA_FTYPE_MOSTLY_IQ1_BN: default_type = GGML_TYPE_IQ1_BN; break; case LLAMA_FTYPE_MOSTLY_IQ2_BN: default_type = GGML_TYPE_IQ2_BN; break; @@ -16892,6 +16933,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ2_S_R4|| new_type == GGML_TYPE_IQ1_S || + new_type == GGML_TYPE_IQ1_S_R4|| (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0))) { LLAMA_LOG_ERROR("\n\n============================================================\n"); @@ -17011,6 +17053,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ3_S; else chunk_size_multiplier = 4; } + else if (new_type == GGML_TYPE_IQ1_S_R4) { + if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ1_S; + else chunk_size_multiplier = 4; + } else if (new_type == GGML_TYPE_BF16_R16) { if (tensor->ne[1] % 16 != 0) new_type = GGML_TYPE_BF16; else chunk_size_multiplier = 16; |