diff options
author | Kawrakow <iwankawrakow@gmail.com> | 2025-03-10 16:19:09 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2025-03-10 16:19:09 +0200 |
commit | a48e16324770bb829406d06e11be1df0c8a3b517 (patch) | |
tree | 1f0ef5e1fd55c35acac40cca85cadc8606dd0673 /src | |
parent | 699c9cb7f63dd8431bce91b86e10efb41255f6c1 (diff) |
DeepSeek imatrix stuff (#250)
* This gives us ~20% TG speedup for DeepSeek on CUDA
* Slightly better
* Also do it for plain (not fused) mul_mat_id
* Guard against numerical precision issues for MLA on CUDA
* imatrix: wv_b <-> wkv_b
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src')
-rw-r--r-- | src/llama.cpp | 18 |
1 files changed, 18 insertions, 0 deletions
diff --git a/src/llama.cpp b/src/llama.cpp index bad8d33d..ba5c5052 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -13787,6 +13787,7 @@ struct llm_build_context { ggml_row_size(model.layers[il].wv_b->type, kv_lora_rank), ggml_row_size(model.layers[il].wv_b->type, kv_lora_rank)*n_embd_head_v, 0); cb(wv_b, "wv_b", il); + std::memcpy(wv_b->name, model.layers[il].wv_b->name, GGML_MAX_NAME); kqv = ggml_mul_mat(ctx0, wv_b, kqv_compressed); cb(kqv, "kqv", il); @@ -17348,6 +17349,23 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (imatrix_data) { auto it = imatrix_data->find(tensor->name); if (it == imatrix_data->end()) { + // MLA hack: most imatrix files floating around the Internet have been computed with standard attention. + // This means that the imatrix file does not contain data for the *.attn_k_b.weight and *.attn_v_b.weight + // required by MLA. But the *.attn_v_b.weight tensors "see" the exact same activations as the + // *.attn_kv_b.weight tensors used in standard attention. Hence, if we find imatrix data for + // *.attn_kv_b.weight we can use it for *.attn_v_b.weight and vice versa. + std::string name{tensor->name}; + static std::array<std::string, 2> alternatives{".attn_v_b.weight", ".attn_kv_b.weight"}; + for (int j = 0; j < int(alternatives.size()); ++j) { + if (auto pos = name.find(alternatives[j]); pos != std::string::npos) { + int j1 = (j + 1) % alternatives.size(); + auto alternative_name = name.substr(0, pos) + alternatives[j1]; + it = imatrix_data->find(alternative_name); + break; + } + } + } + if (it == imatrix_data->end()) { LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); } else { if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { |