summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-10 18:13:47 +0100
committerGitHub <noreply@github.com>2024-12-10 18:13:47 +0100
commita63a96b5aea031f9dabf1e7c8d5ee28af170e9e7 (patch)
tree01e5c72689e8daa72a53bbe069c8669655187a34 /src
parentc819fa651beb20c559f692801819e0447d0ead85 (diff)
Q5_K_R4 (#132)
* q5_k_r4: WIP * q5_k_r4: Zen4 and AVX2 We get PP-512(LLaMA-3.1-8B) = 248.3 t/s on Zen4. Q5_K_S has PP-512 = 190 t/s. * q5_k_r4: NEON We get PP-512(LLaMA-3.1-8B) = 96.1 t/s. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src')
-rw-r--r--src/llama.cpp14
1 files changed, 13 insertions, 1 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index 3b617b06..dc6d307d 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -3839,6 +3839,7 @@ struct llama_model_loader {
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
case GGML_TYPE_Q4_K_R4: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_R4; break;
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
+ case GGML_TYPE_Q5_K_R4: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_R4; break;
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
case GGML_TYPE_Q6_K_R4: ftype = LLAMA_FTYPE_MOSTLY_Q6_K_R4; break;
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
@@ -4551,6 +4552,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_K_R4: return "Q4_K_R4";
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
+ case LLAMA_FTYPE_MOSTLY_Q5_K_R4: return "Q5_K_R4";
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
case LLAMA_FTYPE_MOSTLY_Q6_K_R4: return "Q6_K_R4";
@@ -15793,6 +15795,9 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
else if (new_type == GGML_TYPE_Q4_K_R4) {
new_type = GGML_TYPE_Q4_K;
}
+ else if (new_type == GGML_TYPE_Q5_K_R4) {
+ new_type = GGML_TYPE_Q5_K;
+ }
else if (new_type == GGML_TYPE_Q6_K_R4) {
new_type = GGML_TYPE_Q6_K;
}
@@ -16067,7 +16072,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type == GGML_TYPE_IQ1_M || new_type == GGML_TYPE_IQ4_K || new_type == GGML_TYPE_IQ2_K ||
new_type == GGML_TYPE_IQ5_K || new_type == GGML_TYPE_IQ3_K || new_type == GGML_TYPE_Q4_K_R4 ||
new_type == GGML_TYPE_IQ6_K || new_type == GGML_TYPE_IQ4_KS || new_type == GGML_TYPE_IQ4_XS_R4 ||
- new_type == GGML_TYPE_IQ2_KS || new_type == GGML_TYPE_IQ4_KSS || new_type == GGML_TYPE_Q6_K_R4) {
+ new_type == GGML_TYPE_IQ2_KS || new_type == GGML_TYPE_IQ4_KSS || new_type == GGML_TYPE_Q6_K_R4 ||
+ new_type == GGML_TYPE_Q5_K_R4) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
@@ -16105,6 +16111,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
case GGML_TYPE_Q4_K_R4:
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_IQ5_K:
+ case GGML_TYPE_Q5_K_R4:
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q6_0; break;
case GGML_TYPE_IQ6_K:
case GGML_TYPE_Q6_K_R4:
@@ -16199,6 +16206,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q4_K_R4: default_type = GGML_TYPE_Q4_K_R4; break;
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
+ case LLAMA_FTYPE_MOSTLY_Q5_K_R4: default_type = GGML_TYPE_Q5_K_R4; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K_R4: default_type = GGML_TYPE_Q6_K_R4; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
@@ -16604,6 +16612,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_K;
else chunk_size_multiplier = 4;
}
+ else if (new_type == GGML_TYPE_Q5_K_R4) {
+ if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q5_K;
+ else chunk_size_multiplier = 4;
+ }
else if (new_type == GGML_TYPE_Q6_K_R4) {
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q6_K;
else chunk_size_multiplier = 4;