summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorKawrakow <iwankawrakow@gmail.com>2024-12-21 08:32:39 +0100
committerGitHub <noreply@github.com>2024-12-21 08:32:39 +0100
commita867b919ca1e26cc828f98c35b4c6926e8e54762 (patch)
treeff03d259c375e17dfbf4b0bf3488be08a9cc2738 /src
parent4b53bc876eda6d89890711998b3ab5bf033b2199 (diff)
IQ2_XS_R4 (#155)
* iq2_xs_r4: Zen4 * iq2_xs_r4: AVX2 * iq2_xs_r4: slightly better matrix x vector on AVX2 * iq2_xs_r4: NEON - not much better than iq2_xs * iq2_xs_r4: slightly better NEON --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Diffstat (limited to 'src')
-rw-r--r--src/llama.cpp19
1 files changed, 14 insertions, 5 deletions
diff --git a/src/llama.cpp b/src/llama.cpp
index df700c12..eac0d866 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -3852,6 +3852,7 @@ struct llama_model_loader {
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
case GGML_TYPE_IQ2_XXS_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4; break;
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
+ case GGML_TYPE_IQ2_XS_R4:ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS_R4; break;
case GGML_TYPE_IQ2_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_KS; break;
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
@@ -4581,6 +4582,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4:return "IQ2_XXS_R4 - 2.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
+ case LLAMA_FTYPE_MOSTLY_IQ2_XS_R4:return "IQ2_XS_R4 - 2.3125 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_KS: return "IQ2_KS - 2.1875 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
@@ -15797,10 +15799,10 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K_R4 ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4) {
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS_R4) {
new_type = !qs.has_output ? GGML_TYPE_IQ4_K : GGML_TYPE_Q5_K;
}
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4) {
+ else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) {
new_type = !qs.has_output ? GGML_TYPE_IQ4_K_R4 : GGML_TYPE_Q5_K_R4;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS ||
@@ -15818,7 +15820,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4) {
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) {
new_type = GGML_TYPE_Q2_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
@@ -15894,7 +15896,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
}
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M ||
- ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4) {
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4 || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS_R4) {
if (name.find("attn_v.weight") != std::string::npos) {
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_IQ4_K;
else if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_IQ3_K;
@@ -16188,7 +16190,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
new_type == GGML_TYPE_Q5_K_R4 || new_type == GGML_TYPE_Q3_K_R4 || new_type == GGML_TYPE_Q2_K_R4 ||
new_type == GGML_TYPE_IQ4_K_R4|| new_type == GGML_TYPE_Q8_K_R8 || new_type == GGML_TYPE_IQ3_K_R4||
new_type == GGML_TYPE_IQ2_K_R4|| new_type == GGML_TYPE_IQ5_K_R4|| new_type == GGML_TYPE_IQ4_KS_R4 ||
- new_type == GGML_TYPE_IQ3_XXS_R4 || new_type == GGML_TYPE_IQ2_XXS_R4) {
+ new_type == GGML_TYPE_IQ3_XXS_R4 || new_type == GGML_TYPE_IQ2_XXS_R4 || new_type == GGML_TYPE_IQ2_XS_R4) {
int nx = tensor->ne[0];
int ny = tensor->ne[1];
if (nx % QK_K != 0) {
@@ -16209,6 +16211,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XXS_R4:
case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ2_XS_R4:
case GGML_TYPE_IQ2_KS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
@@ -16341,6 +16344,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS_R4:default_type = GGML_TYPE_IQ2_XXS_R4; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
+ case LLAMA_FTYPE_MOSTLY_IQ2_XS_R4:default_type = GGML_TYPE_IQ2_XS_R4; break;
case LLAMA_FTYPE_MOSTLY_IQ2_KS: default_type = GGML_TYPE_IQ2_KS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
@@ -16695,6 +16699,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
(new_type == GGML_TYPE_IQ2_XXS ||
new_type == GGML_TYPE_IQ2_XXS_R4 ||
new_type == GGML_TYPE_IQ2_XS ||
+ new_type == GGML_TYPE_IQ2_XS_R4 ||
new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ1_S ||
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
@@ -16800,6 +16805,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ2_XXS;
else chunk_size_multiplier = 4;
}
+ else if (new_type == GGML_TYPE_IQ2_XS_R4) {
+ if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ2_XS;
+ else chunk_size_multiplier = 4;
+ }
else if (new_type == GGML_TYPE_IQ3_XXS_R4) {
if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_IQ3_XXS;
else chunk_size_multiplier = 4;