diff options
author | JidongZhang-THU <1119708529@qq.com> | 2024-01-31 21:10:15 +0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-01-31 15:10:15 +0200 |
commit | 15606309a05ccf7fadbaad5538cb7c32acb1e06b (patch) | |
tree | aae8b8e0977922438c1e514e961f7c8bea2dcb9a /tests/test-backend-ops.cpp | |
parent | b2b9f025e7821e78bd501d75d01838c26de07a57 (diff) |
llava : add MobileVLM support (#5132)
* New Feature:
1. Sum_Rows:
fix cuda kernel overflow
fix block shape error when nrows too big
2. Im2Col:
Support Batch in cuda
Support f32 to f32 both in cpu && cuda
3. DepthWiseConv:
Support by Im2Col && MulMat
4. Pool_2d:
Supoort avg pooling in cuda
5. HardSigmoid:
Imp in cuda
6. HardSwish:
Imp in cuda
* fix tabs instead of spaces
* code clean
* CUDA POOL2D
* ADD POOL2D test case in test-backend-ops.cpp
* code clean
* fix pool2d_kernel
nits
* fix bug in pool2d kernel
* fix avg pooling, count_include_pad
nits
* test-backend-ops : add more pool_2d tests
* cuda : fix warnings and formatting
* ggml : check types in release builds too in pool_2d
* test-backend-ops : remove f16 pool_2d tests
* cuda : more style fixes
* Add assert in ggml_cuda_op_pool2d
* pool2d float padding fallback
* test-backend-ops : add dst_type to im2col
---------
Co-authored-by: slaren <slarengh@gmail.com>
Diffstat (limited to 'tests/test-backend-ops.cpp')
-rw-r--r-- | tests/test-backend-ops.cpp | 74 |
1 files changed, 69 insertions, 5 deletions
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 1d29070b..eb06123d 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -227,6 +227,14 @@ static std::string var_to_str(ggml_type type) { return ggml_type_name(type); } +static std::string var_to_str(ggml_op_pool pool) { + switch (pool) { + case GGML_OP_POOL_AVG: return "avg"; + case GGML_OP_POOL_MAX: return "max"; + default: return std::to_string(pool); + } +} + #define VARS_TO_STR1(a) VAR_TO_STR(a) #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b) #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c) @@ -238,6 +246,7 @@ static std::string var_to_str(ggml_type type) { #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i) #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j) #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k) +#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l) #ifdef GGML_USE_SYCL static bool inline _isinf(float f) { @@ -1162,10 +1171,45 @@ struct test_alibi : public test_case { } }; +// GGML_OP_POOL2D +struct test_pool2d : public test_case { + enum ggml_op_pool pool_type; + const ggml_type type_input; + const std::array<int64_t, 4> ne_input; + // kernel size + const int k0; + const int k1; + // stride + const int s0; + const int s1; + // padding + const int p0; + const int p1; + + std::string vars() override { + return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1); + } + + test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG, + ggml_type type_input = GGML_TYPE_F32, + std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] + int k0 = 3, int k1 = 3, + int s0 = 1, int s1 = 1, + int p0 = 1, int p1 = 1) + : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); + ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1); + return out; + } +}; + // GGML_OP_IM2COL struct test_im2col : public test_case { const ggml_type type_input; const ggml_type type_kernel; + const ggml_type dst_type; const std::array<int64_t, 4> ne_input; const std::array<int64_t, 4> ne_kernel; // stride @@ -1181,22 +1225,22 @@ struct test_im2col : public test_case { const bool is_2D; std::string vars() override { - return VARS_TO_STR11(type_input, type_kernel, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D); + return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D); } - test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, + test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32, std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1] int s0 = 1, int s1 = 1, int p0 = 1, int p1 = 1, int d0 = 1, int d1 = 1, bool is_2D = true) - : type_input(type_input), type_kernel(type_kernel), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {} + : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data()); ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data()); - ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D); + ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type); return out; } }; @@ -1912,6 +1956,27 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op } } + for (ggml_type type_input : {GGML_TYPE_F32}) { + for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) { + for (int k0 : {1, 3}) { + for (int k1 : {1, 3}) { + for (int s0 : {1, 2}) { + for (int s1 : {1, 2}) { + for (int p0 : {0, 1}) { + for (int p1 : {0, 1}) { + test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1)); + } + } + } + } + } + } + } + } + + test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32)); + test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16)); + test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1})); @@ -2049,7 +2114,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op } test_cases.emplace_back(new test_alibi()); - test_cases.emplace_back(new test_im2col()); test_cases.emplace_back(new test_concat(GGML_TYPE_F32)); test_cases.emplace_back(new test_concat(GGML_TYPE_I32)); |