diff options
author | Jared Van Bortel <jared@nomic.ai> | 2024-01-29 15:50:50 -0500 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-01-29 15:50:50 -0500 |
commit | fbf1ddec69f7001cc707de17fa74d7200813bbac (patch) | |
tree | 55ff0324a0fe0dfc3de70d232a29b04926657ae1 /tests/test-backend-ops.cpp | |
parent | 2aed77eb06a329f0d82bb1c467f4244904d4073f (diff) |
Nomic Vulkan backend (#4456)
Signed-off-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: niansa <anton-sa@web.de>
Co-authored-by: Adam Treat <treat.adam@gmail.com>
Co-authored-by: Aaron Miller <apage43@ninjawhale.com>
Co-authored-by: ToKiNoBug <tokinobug@163.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
Diffstat (limited to 'tests/test-backend-ops.cpp')
-rw-r--r-- | tests/test-backend-ops.cpp | 430 |
1 files changed, 422 insertions, 8 deletions
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 01593910..775147d4 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -370,12 +370,15 @@ struct test_case { printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str()); fflush(stdout); - // check if backends support op + // check if the backends support the ops bool supported = true; for (ggml_backend_t backend : {backend1, backend2}) { - if (!ggml_backend_supports_op(backend, out)) { - printf("not supported [%s] ", ggml_backend_name(backend)); - supported = false; + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + if (!ggml_backend_supports_op(backend, t)) { + printf("not supported [%s] ", ggml_backend_name(backend)); + supported = false; + break; + } } } if (!supported) { @@ -626,6 +629,13 @@ struct test_unary : public test_case { ggml_tensor * out = ggml_unary(ctx, in, op); return out; } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + // test extended range of values to check for NaNs in GELU + init_tensor_uniform(t, -150.f, 150.f); + } + } }; // GGML_OP_GET_ROWS @@ -1066,18 +1076,24 @@ struct test_diag_mask_inf : public test_case { struct test_soft_max : public test_case { const ggml_type type; const std::array<int64_t, 4> ne; + const float scale; + const bool mask; std::string vars() override { - return VARS_TO_STR2(type, ne); + return VARS_TO_STR4(type, ne, scale, mask); } test_soft_max(ggml_type type = GGML_TYPE_F32, - std::array<int64_t, 4> ne = {10, 10, 10, 10}) - : type(type), ne(ne) {} + std::array<int64_t, 4> ne = {10, 10, 10, 10}, + float scale = 1.0f, + bool mask = false) + : type(type), ne(ne), scale(scale), mask(mask) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); - ggml_tensor * out = ggml_soft_max(ctx, a); + ggml_tensor * b = nullptr; + if (mask) { b = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); } + ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale); return out; } }; @@ -1474,6 +1490,393 @@ struct test_moe : public test_case { } }; + +enum llm_norm_type { + LLM_NORM, + LLM_NORM_RMS, +}; + +struct llama_hparams { + uint32_t n_vocab; + uint32_t n_embd; + uint32_t n_head; + uint32_t n_head_kv; + static constexpr uint32_t n_layer = 1; + uint32_t n_rot; + uint32_t n_embd_head; // dimension of values (d_v) + uint32_t n_ff; + + float f_norm_eps; + float f_norm_rms_eps; + + // cparams + static constexpr uint32_t n_ctx = 512; // user-specified context size + static constexpr uint32_t n_orig_ctx = n_ctx; + + // batch + int32_t n_tokens; + + // llm_build_context + static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx + static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache + + uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads + return n_embd_head * n_head_kv; + } +}; + +// LLM base class +struct test_llm : public test_case { + llama_hparams hp; + +protected: + test_llm(llama_hparams hp) + : hp(std::move(hp)) { + } + +public: + struct ggml_tensor * llm_build_norm( + struct ggml_context * ctx, + struct ggml_tensor * cur, + struct ggml_tensor * mw, + struct ggml_tensor * mb, + llm_norm_type type) { + switch (type) { + case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break; + case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break; + } + cur = ggml_mul(ctx, cur, mw); + if (mb) { + cur = ggml_add(ctx, cur, mb); + } + return cur; + } + + void llm_build_kv_store( + struct ggml_context * ctx, + struct ggml_tensor * k_l, + struct ggml_tensor * v_l, + struct ggml_tensor * k_cur, + struct ggml_tensor * v_cur) { + // compute the transposed [n_tokens, n_embd] V matrix + struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens)); + + struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(), + (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head); + + struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(), + ( hp.n_ctx)*ggml_element_size(v_l), + (hp.kv_head)*ggml_element_size(v_l)); + + // important: storing RoPE-ed version of K in the KV cache! + ggml_cpy(ctx, k_cur, k_cache_view); + ggml_cpy(ctx, v_cur_t, v_cache_view); + } + + // if max_alibi_bias > 0 then apply ALiBi + struct ggml_tensor * llm_build_kqv( + struct ggml_context * ctx, + struct ggml_tensor * k_l, + struct ggml_tensor * v_l, + struct ggml_tensor * q_cur, + struct ggml_tensor * kq_mask, + float kq_scale) { + struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); + + struct ggml_tensor * k = + ggml_view_3d(ctx, k_l, + hp.n_embd_head, hp.n_kv, hp.n_head_kv, + ggml_row_size(k_l->type, hp.n_embd_gqa()), + ggml_row_size(k_l->type, hp.n_embd_head), + 0); + + struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); + + kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale); + + // split cached v into n_head heads + struct ggml_tensor * v = + ggml_view_3d(ctx, v_l, + hp.n_kv, hp.n_embd_head, hp.n_head_kv, + ggml_element_size(v_l)*hp.n_ctx, + ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head, + 0); + + struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); + + struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); + + struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens); + + struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); + cur = ggml_mul_mat(ctx, wo, cur); + + return cur; + } + + void initialize_tensors(ggml_context * ctx) override { + for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { + if (t->type == GGML_TYPE_I32) { + // pos + std::vector<int> data(hp.n_tokens); + for (int i = 0; i < hp.n_tokens; i++) { + data[i] = rand() % hp.n_ctx; + } + ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int)); + } else { + init_tensor_uniform(t); + } + } + } +}; + + +// Llama +struct test_llama : public test_llm { + static constexpr float freq_base = 10000.0f; + static constexpr float freq_scale = 1.0f; + static constexpr float ext_factor = 0.0f; + static constexpr float attn_factor = 1.0f; + static constexpr float beta_fast = 32.0f; + static constexpr float beta_slow = 1.0f; + + std::string op_desc(ggml_tensor * t) override { + GGML_UNUSED(t); + return "LLAMA"; + } + + std::string vars() override { + auto n_tokens = hp.n_tokens; + return VARS_TO_STR1(n_tokens); + } + + double max_nmse_err() override { + return 2e-3; + } + + test_llama(int n_tokens = 1) + : test_llm({ + /*n_vocab =*/ 32000, + /*n_embd =*/ 3200, + /*n_head =*/ 32, + /*n_head_kv =*/ 32, + /*n_rot =*/ 100, + /*n_embd_head =*/ 100, + /*n_ff =*/ 8640, + /*f_norm_eps =*/ 0.f, + /*f_norm_rms_eps =*/ 1e-5f, + /*n_tokens =*/ n_tokens, + }) { + } + + ggml_tensor * build_graph(ggml_context * ctx) override { + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); + + ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); + ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); + + for (uint32_t il = 0; il < hp.n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS); + + // self-attention + { + ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd); + ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); + ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa()); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur); + struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur); + struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur); + + Qcur = ggml_rope_custom( + ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, + hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = ggml_rope_custom( + ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, + hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + + llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); + + cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA); + + // feed-forward network + ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS); + + ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); + ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); + ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); + struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur); + cur = ggml_mul_mat(ctx, ffn_gate, cur); + cur = ggml_silu(ctx, cur); + cur = ggml_mul(ctx, cur, tmp); + cur = ggml_mul_mat(ctx, ffn_down, cur); + + cur = ggml_add(ctx, cur, ffn_inp); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS); + + // lm_head + ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab); + cur = ggml_mul_mat(ctx, output, cur); + + return cur; + } +}; + +// Falcon +struct test_falcon : public test_llm { + static constexpr float freq_base = 10000.0f; + static constexpr float freq_scale = 1.0f; + static constexpr float ext_factor = 0.0f; + static constexpr float attn_factor = 1.0f; + static constexpr float beta_fast = 32.0f; + static constexpr float beta_slow = 1.0f; + + std::string op_desc(ggml_tensor * t) override { + GGML_UNUSED(t); + return "FALCON"; + } + + std::string vars() override { + auto n_tokens = hp.n_tokens; + return VARS_TO_STR1(n_tokens); + } + + double max_nmse_err() override { + return 2e-3; + } + + test_falcon(int n_tokens = 1) + : test_llm({ + /*n_vocab =*/ 32000, + /*n_embd =*/ 3200, + /*n_head =*/ 50, + /*n_head_kv =*/ 1, + /*n_rot =*/ 64, + /*n_embd_head =*/ 64, + /*n_ff =*/ 8640, + /*f_norm_eps =*/ 1e-5f, + /*f_norm_rms_eps =*/ 0.f, + /*n_tokens =*/ n_tokens, + }) { + } + + ggml_tensor * build_graph(ggml_context * ctx) override { + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1); + + ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); + ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400); + + for (uint32_t il = 0; il < hp.n_layer; ++il) { + // norm + ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM); + + // self-attention + { + cur = attn_norm; + + ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa()); + + cur = ggml_mul_mat(ctx, wqkv, cur); + + struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa()))); + + Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens); + Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens); + + // using mode = 2 for neox mode + Qcur = ggml_rope_custom( + ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + + Kcur = ggml_rope_custom( + ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + + llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur); + + cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head))); + } + + struct ggml_tensor * ffn_inp = cur; + + // feed forward + { + ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff); + ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd); + cur = attn_norm; + cur = ggml_mul_mat(ctx, ffn_up, cur); + cur = ggml_gelu(ctx, cur); + cur = ggml_mul_mat(ctx, ffn_down, cur); + } + + cur = ggml_add(ctx, cur, ffn_inp); + + cur = ggml_add(ctx, cur, inpL); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd); + cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM); + + // lm_head + ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab); + cur = ggml_mul_mat(ctx, output, cur); + + return cur; + } +}; + static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { std::vector<std::unique_ptr<test_case>> test_cases; std::default_random_engine rng(0); @@ -1626,6 +2029,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op exponent <<= 1; } + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, 0.1f)); + test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, 0.1f, true)); + for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B @@ -1662,6 +2068,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op //test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336)); #endif + // these tests are disabled to save execution time, but they can be handy for debugging +#if 0 + test_cases.emplace_back(new test_llama(1)); + test_cases.emplace_back(new test_llama(2)); + test_cases.emplace_back(new test_falcon(1)); + test_cases.emplace_back(new test_falcon(2)); +#endif + // run tests if (mode == MODE_TEST) { ggml_backend_t backend_cpu = ggml_backend_cpu_init(); |