summaryrefslogtreecommitdiff
path: root/tests/test-backend-ops.cpp
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-12-07 22:26:54 +0200
committerGitHub <noreply@github.com>2023-12-07 22:26:54 +0200
commitfe680e3d1080a765e5d3150ffd7bab189742898d (patch)
treecd8be8bf5722d10596923aef7fb44bf8a58378d7 /tests/test-backend-ops.cpp
parentbcc0eb4591bec5ec02fad3f2bdcb1b265052ea56 (diff)
sync : ggml (new ops, tests, backend, etc.) (#4359)
* sync : ggml (part 1) * sync : ggml (part 2, CUDA) * sync : ggml (part 3, Metal) * ggml : build fixes ggml-ci * cuda : restore lost changes * cuda : restore lost changes (StableLM rope) * cmake : enable separable compilation for CUDA ggml-ci * ggml-cuda : remove device side dequantize * Revert "cmake : enable separable compilation for CUDA" This reverts commit 09e35d04b1c4ca67f9685690160b35bc885a89ac. * cuda : remove assert for rope * tests : add test-backend-ops * ggml : fix bug in ggml_concat * ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()` * ci : try to fix macOS * ggml-backend : remove backend self-registration * ci : disable Metal for macOS cmake build ggml-ci * metal : fix "supports family" call * metal : fix assert * metal : print resource path ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com>
Diffstat (limited to 'tests/test-backend-ops.cpp')
-rw-r--r--tests/test-backend-ops.cpp1357
1 files changed, 1357 insertions, 0 deletions
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp
new file mode 100644
index 00000000..e0155ac1
--- /dev/null
+++ b/tests/test-backend-ops.cpp
@@ -0,0 +1,1357 @@
+#include <ggml.h>
+#include <ggml-alloc.h>
+#include <ggml-backend.h>
+#include <ggml-backend-impl.h>
+#include <algorithm>
+#include <array>
+#include <cfloat>
+#include <cstring>
+#include <functional>
+#include <memory>
+#include <random>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string>
+#include <thread>
+#include <vector>
+
+
+static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
+ size_t size = ggml_nelements(tensor);
+ std::vector<float> data(size);
+
+ std::random_device rd;
+
+#if 0
+ std::default_random_engine generator(rd());
+ std::uniform_real_distribution<float> distribution(min, max);
+
+ for (size_t i = 0; i < size; i++) {
+ data[i] = distribution(generator);
+ }
+#endif
+ auto init_thread = [&](size_t start, size_t end) {
+ std::default_random_engine generator(rd());
+ std::uniform_real_distribution<float> distribution(min, max);
+
+ for (size_t i = start; i < end; i++) {
+ data[i] = distribution(generator);
+ }
+ };
+
+ size_t n_threads = std::thread::hardware_concurrency();
+ std::vector<std::thread> threads;
+ threads.reserve(n_threads);
+ for (size_t i = 0; i < n_threads; i++) {
+ size_t start = i*size/n_threads;
+ size_t end = (i+1)*size/n_threads;
+ threads.emplace_back(init_thread, start, end);
+ }
+ for (auto & t : threads) {
+ t.join();
+ }
+
+ if (tensor->type == GGML_TYPE_F32) {
+ ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
+ } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
+ GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
+ std::vector<uint8_t> dataq(ggml_type_size(tensor->type)*size/ggml_blck_size(tensor->type));
+ int64_t hist[16];
+ ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist);
+ ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
+ } else {
+ GGML_ASSERT(false);
+ }
+}
+
+static std::vector<float> tensor_to_float(const ggml_tensor * t) {
+ std::vector<float> tv;
+ tv.reserve(ggml_nelements(t));
+
+ std::vector<uint8_t> buf(ggml_nbytes(t));
+ ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
+
+ // access elements by index to avoid gaps in views
+ for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
+ for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
+ for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
+ for (int64_t i0 = 0; i0 < t->ne[0]; i0++) {
+ size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0*t->nb[0];
+ float v;
+ if (t->type == GGML_TYPE_F16) {
+ v = (float) ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]);
+ } else if (t->type == GGML_TYPE_F32) {
+ v = *(float *) &buf[i];
+ } else if (t->type == GGML_TYPE_I32) {
+ v = *(int32_t *) &buf[i];
+ } else {
+ GGML_ASSERT(false);
+ }
+ tv.push_back(v);
+ }
+ }
+ }
+ }
+
+ return tv;
+}
+
+/*
+static double cosine_similarity(const float * v1, const float * v2, size_t n) {
+ double dot = 0.0;
+ double mag1 = 0.0;
+ double mag2 = 0.0;
+
+ for (size_t i = 0; i < n; i++) {
+ if (std::isnan(v1[i]) || std::isnan(v2[i])) {
+ return -1.0f;
+ }
+ if (std::isinf(v1[i]) && std::isinf(v2[i])) {
+ continue;
+ }
+ dot += v1[i]*v2[i];
+ mag1 += v1[i]*v1[i];
+ mag2 += v2[i]*v2[i];
+ }
+
+ return dot/sqrt(mag1*mag2);
+}
+
+static float distance(const float * v1, const float * v2, size_t n) {
+ double d = 0.0;
+
+ for (size_t i = 0; i < n; i++) {
+ if (std::isnan(v1[i]) || std::isnan(v2[i])) {
+ return INFINITY;
+ }
+ if (std::isinf(v1[i]) && std::isinf(v2[i])) {
+ continue;
+ }
+ d += (v1[i] - v2[i])*(v1[i] - v2[i]);
+ }
+
+ return sqrt(d);
+}
+
+static float vec_len(const float * v, size_t n) {
+ double d = 0.0;
+
+ for (size_t i = 0; i < n; i++) {
+ if (std::isnan(v[i])) {
+ return INFINITY;
+ }
+ if (std::isinf(v[i])) {
+ continue;
+ }
+ d += v[i]*v[i];
+ }
+
+ return sqrt(d);
+}
+*/
+
+// normalized mean squared error = mse(a, b) / mse(a, 0)
+static double nmse(const float * a, const float * b, size_t n) {
+ double mse_a_b = 0.0;
+ double mse_a_0 = 0.0;
+
+ for (size_t i = 0; i < n; i++) {
+ float a_i = a[i];
+ float b_i = b[i];
+
+ mse_a_b += (a_i - b_i) * (a_i - b_i);
+ mse_a_0 += a_i * a_i;
+ }
+
+ return mse_a_b / mse_a_0;
+}
+
+// utils for printing the variables of the test cases
+#define VAR_TO_STR(x) (#x "=" + var_to_str(x))
+
+template<typename T>
+static std::string var_to_str(const T & x) {
+ return std::to_string(x);
+}
+
+template<typename T, size_t N>
+static std::string var_to_str(const T (&x)[N]) {
+ std::string s = "[";
+ for (size_t i = 0; i < N; i++) {
+ if (i > 0) {
+ s += ",";
+ }
+ s += var_to_str(x[i]);
+ }
+ s += "]";
+ return s;
+}
+
+template<typename T, size_t N>
+static std::string var_to_str(const std::array<T, N> & x) {
+ std::string s = "[";
+ for (size_t i = 0; i < N; i++) {
+ if (i > 0) {
+ s += ",";
+ }
+ s += var_to_str(x[i]);
+ }
+ s += "]";
+ return s;
+}
+
+//static std::string var_to_str(ggml_unary_op unary_op) {
+// return ggml_unary_op_name(unary_op);
+//}
+
+static std::string var_to_str(ggml_type type) {
+ return ggml_type_name(type);
+}
+
+#define VARS_TO_STR1(a) VAR_TO_STR(a)
+#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
+#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
+#define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
+#define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
+#define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
+#define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
+#define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
+#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
+#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
+#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
+
+
+// accept FLT_MAX as infinity
+static bool isinf_or_max(float f) {
+ return std::isinf(f) || f == FLT_MAX || f == -FLT_MAX;
+}
+
+static bool ggml_is_view_op(enum ggml_op op) {
+ return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
+}
+
+struct test_case {
+ virtual ~test_case() {}
+
+ virtual std::string vars() {
+ return "";
+ }
+
+ virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
+
+ virtual double max_nmse_err() {
+ return 1e-6;
+ }
+
+ virtual void initialize_tensors(ggml_context * ctx) {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
+ init_tensor_uniform(t);
+ }
+ }
+
+ virtual size_t op_size(ggml_tensor * t) {
+ size_t size = ggml_nbytes(t);
+ // add source tensors
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ if (t->src[i] != NULL) {
+ size += ggml_nbytes(t->src[i]);
+ }
+ }
+ return size;
+ }
+
+ bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
+ ggml_init_params params = {
+ /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
+ /* .mem_base = */ NULL,
+ /* .no_alloc = */ true,
+ };
+ ggml_context * ctx = ggml_init(params);
+
+ ggml_tensor * out = build_graph(ctx);
+
+ if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
+ //printf(" %s: skipping\n", ggml_op_desc(out));
+ ggml_free(ctx);
+ return true;
+ }
+
+ printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
+ fflush(stdout);
+
+ // check if backends support op
+ for (ggml_backend_t backend : {backend1, backend2}) {
+ if (!ggml_backend_supports_op(backend, out)) {
+ printf("not supported\n");
+ ggml_free(ctx);
+ return true;
+ }
+ }
+
+ // allocate
+ ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
+
+ // build graph
+ ggml_cgraph * gf = ggml_new_graph(ctx);
+ ggml_build_forward_expand(gf, out);
+
+ // randomize tensors
+ initialize_tensors(ctx);
+
+ // compare
+ struct callback_userdata {
+ bool ok;
+ double max_err;
+ };
+
+ callback_userdata ud {
+ true,
+ max_nmse_err(),
+ };
+
+ auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
+ std::vector<float> f1 = tensor_to_float(t1);
+ std::vector<float> f2 = tensor_to_float(t2);
+ callback_userdata * ud = (callback_userdata *) user_data;
+
+ for (size_t i = 0; i < f1.size(); i++) {
+ // check for nans
+ if (std::isnan(f1[i]) || std::isnan(f2[i])) {
+ printf("NaN at index %zu ", i);
+ ud->ok = false;
+ return true;
+ }
+ // check for infs: both must be inf of the same sign, or both must be finite
+ if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
+ if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
+ if (std::signbit(f1[i]) != std::signbit(f2[i])) {
+ printf("inf sign mismatch: %f %f ", f1[i], f2[i]);
+ ud->ok = false;
+ return true;
+ }
+ } else {
+ printf("inf mismatch: %f %f ", f1[i], f2[i]);
+ ud->ok = false;
+ return true;
+ }
+ }
+ }
+
+ double err = nmse(f1.data(), f2.data(), f1.size());
+ if (err > ud->max_err) {
+ printf("NMSE = %f ", err);
+ ud->ok = false;
+ }
+ return true;
+ };
+
+ ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
+
+ if (ud.ok) {
+ printf("\033[1;32mOK\033[0m\n");
+ } else {
+ printf("\033[1;31mFAIL\033[0m\n");
+ }
+
+ ggml_backend_buffer_free(buf);
+
+ ggml_free(ctx);
+
+ return ud.ok;
+ }
+
+ bool eval_perf(ggml_backend_t backend, const char * op_name) {
+ static const size_t graph_nodes = 8192;
+
+ ggml_init_params params = {
+ /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
+ /* .mem_base = */ NULL,
+ /* .no_alloc = */ true,
+ };
+ ggml_context * ctx = ggml_init(params);
+
+ ggml_tensor * out = build_graph(ctx);
+
+ if (op_name != nullptr && strcmp(ggml_op_desc(out), op_name) != 0) {
+ //printf(" %s: skipping\n", ggml_op_desc(out));
+ ggml_free(ctx);
+ return true;
+ }
+
+ int len = printf(" %s(%s): ", ggml_op_desc(out), vars().c_str());
+ fflush(stdout);
+
+ // check if backends support op
+ if (!ggml_backend_supports_op(backend, out)) {
+ printf("not supported\n");
+ ggml_free(ctx);
+ return true;
+ }
+
+ // align while also leaving some margin for variations in parameters
+ int align = 20;
+ int last = (len + align - 1) / align * align;
+ if (last - len < 5) {
+ last += align;
+ }
+ last = std::max(last, 60);
+ printf("%*s", last - len, "");
+
+ // allocate
+ ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
+
+ // randomize tensors
+ initialize_tensors(ctx);
+
+ // build graph
+ ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
+ ggml_build_forward_expand(gf, out);
+
+ // warmup run
+ ggml_backend_graph_compute(backend, gf);
+
+ // duplicate the op
+ size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
+ int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
+ for (int i = 1; i < n_runs; i++) {
+ gf->nodes[gf->n_nodes++] = out;
+ }
+
+ // calculate memory
+ size_t mem = n_runs * op_size(out);
+ auto tensor_op_size = [](ggml_tensor * t) {
+ size_t size = ggml_nbytes(t);
+ // add source tensors
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ if (t->src[i] != NULL) {
+ size += ggml_nbytes(t->src[i]);
+ }
+ }
+ return size;
+ };
+ for (int i = 0; i < gf->n_nodes; i++) {
+ if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out)
+ continue;
+ mem += tensor_op_size(gf->nodes[i]);
+ }
+
+ // run
+ ggml_backend_synchronize(backend);
+
+ int64_t start_time = ggml_time_us();
+ ggml_backend_graph_compute(backend, gf);
+ ggml_backend_synchronize(backend);
+ int64_t end_time = ggml_time_us();
+ double time_us = end_time - start_time;
+
+ printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
+ n_runs,
+ time_us / n_runs,
+ op_size(out) / 1024,
+ mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
+
+ ggml_backend_buffer_free(buf);
+
+ ggml_free(ctx);
+
+ return true;
+ }
+};
+
+// GGML_OP_UNARY
+struct test_unary : public test_case {
+ const ggml_unary_op op;
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+
+ std::string vars() override {
+ return VARS_TO_STR2(type, ne);
+ }
+
+ test_unary(ggml_unary_op op,
+ ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {128, 10, 10, 10})
+ : op(op), type(type), ne(ne) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * in = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_unary(ctx, in, op);
+ return out;
+ }
+};
+
+// GGML_OP_GET_ROWS
+struct test_get_rows : public test_case {
+ const ggml_type type;
+ const int n; // cols
+ const int m; // rows
+ const int r; // rows to get
+
+ std::string vars() override {
+ return VARS_TO_STR4(type, n, m, r);
+ }
+
+ test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3)
+ : type(type), n(n), m(m), r(r) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * in = ggml_new_tensor_2d(ctx, type, n, m);
+ ggml_tensor * rows = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, r);
+ ggml_tensor * out = ggml_get_rows(ctx, in, rows);
+ return out;
+ }
+
+ void initialize_tensors(ggml_context * ctx) override {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (t->type == GGML_TYPE_I32) {
+ // rows
+ std::vector<int> data(r);
+ for (int i = 0; i < r; i++) {
+ data[i] = rand() % m;
+ }
+ ggml_backend_tensor_set(t, data.data(), 0, r * sizeof(int));
+ } else {
+ init_tensor_uniform(t);
+ }
+ }
+ }
+};
+
+// GGML_OP_REPEAT
+struct test_repeat : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ const std::array<int, 4> nr;
+
+ std::string vars() override {
+ return VARS_TO_STR3(type, ne, nr);
+ }
+
+ size_t op_size(ggml_tensor * t) override {
+ return ggml_nbytes(t) * 2;
+ }
+
+ test_repeat(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10},
+ std::array<int, 4> nr = {2, 2, 2, 2})
+ : type(type), ne(ne), nr(nr) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
+ ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_repeat(ctx, src, target);
+ return out;
+ }
+};
+
+// GGML_OP_DUP
+struct test_dup : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+
+ std::string vars() override {
+ return VARS_TO_STR2(type, ne);
+ }
+
+ test_dup(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 1})
+ : type(type), ne(ne) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_dup(ctx, src);
+ return out;
+ }
+};
+
+// GGML_OP_CPY
+struct test_cpy : public test_case {
+ const ggml_type type_src;
+ const ggml_type type_dst;
+ const std::array<int64_t, 4> ne;
+
+ std::string vars() override {
+ return VARS_TO_STR3(type_src, type_dst, ne);
+ }
+
+ size_t op_size(ggml_tensor * t) override {
+ return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
+ }
+
+ test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 1})
+ : type_src(type_src), type_dst(type_dst), ne(ne) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
+ ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
+ ggml_tensor * out = ggml_cpy(ctx, src, dst);
+ return out;
+ }
+};
+
+// GGML_OP_CONT
+struct test_cont : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+
+ std::string vars() override {
+ return VARS_TO_STR2(type, ne);
+ }
+
+ test_cont(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 1})
+ : type(type), ne(ne) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
+ src = ggml_transpose(ctx, src);
+ ggml_tensor * out = ggml_cont(ctx, src);
+
+ return out;
+ }
+};
+
+// GGML_OP_ADD
+// GGML_OP_MUL
+// GGML_OP_DIV
+struct test_bin_bcast : public test_case {
+ using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
+ op_t op;
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ const std::array<int, 4> nr;
+
+ std::string vars() override {
+ return VARS_TO_STR3(type, ne, nr);
+ }
+
+ size_t op_size(ggml_tensor * t) override {
+ return ggml_nbytes(t) * 3;
+ }
+
+ test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 1, 1},
+ std::array<int, 4> nr = {1, 2, 1, 1})
+ : op(op), type(type), ne(ne), nr(nr) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
+ ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = op(ctx, a, b);
+ return out;
+ }
+
+ void initialize_tensors(ggml_context * ctx) override {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (op == ggml_div) {
+ // avoid division by zero
+ init_tensor_uniform(t, 1.0f, 2.0f);
+ } else {
+ init_tensor_uniform(t);
+ }
+ }
+ }
+};
+
+// GGML_OP_SCALE
+struct test_scale : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+
+ std::string vars() override {
+ return VARS_TO_STR2(type, ne);
+ }
+
+ test_scale(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10})
+ : type(type), ne(ne) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * scale = ggml_new_tensor_1d(ctx, type, 1);
+ ggml_tensor * out = ggml_scale(ctx, a, scale);
+ return out;
+ }
+};
+
+// GGML_OP_NORM
+struct test_norm : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ float eps;
+
+ std::string vars() override {
+ return VARS_TO_STR3(type, ne, eps);
+ }
+
+ test_norm(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {64, 10, 10, 10},
+ float eps = 1e-6f)
+ : type(type), ne(ne), eps(eps) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_norm(ctx, a, eps);
+ return out;
+ }
+};
+
+// GGML_OP_RMS_NORM
+struct test_rms_norm : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ float eps;
+
+ std::string vars() override {
+ return VARS_TO_STR3(type, ne, eps);
+ }
+
+ test_rms_norm(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {64, 10, 10, 10},
+ float eps = 1e-6f)
+ : type(type), ne(ne), eps(eps) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
+ return out;
+ }
+};
+
+// GGML_OP_MUL_MAT
+struct test_mul_mat : public test_case {
+ const ggml_type type_a;
+ const ggml_type type_b;
+ const int64_t m;
+ const int64_t n;
+ const int64_t k;
+ const std::array<int64_t, 2> bs; // dims 3 and 4
+ const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
+
+ std::string vars() override {
+ return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
+ }
+
+ double max_nmse_err() override {
+ return 5e-4;
+ }
+
+ size_t op_size(ggml_tensor * t) override {
+ size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
+ size_t b = ggml_nbytes(t->src[1]) * m;
+ size_t c = ggml_nbytes(t);
+ return a + b + c;
+
+ GGML_UNUSED(t);
+ }
+
+ test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
+ int64_t m = 32, int64_t n = 32, int64_t k = 32,
+ std::array<int64_t, 2> bs = {10, 10},
+ std::array<int64_t, 2> nr = {2, 2})
+ : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ // C^T = A * B^T: (k, m) * (k, n) => (m, n)
+ ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
+ ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
+ ggml_tensor * out = ggml_mul_mat(ctx, a, b);
+ return out;
+ }
+};
+
+// GGML_OP_MUL_MAT_ID
+struct test_mul_mat_id : public test_case {
+ const ggml_type type_a;
+ const ggml_type type_b;
+ const int n_mats;
+ const int id;
+ const int64_t m;
+ const int64_t n;
+ const int64_t k;
+ const std::array<int64_t, 2> bs; // dims 3 and 4
+ const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
+
+ std::string vars() override {
+ return VARS_TO_STR9(type_a, type_b, n_mats, id, m, n, k, bs, nr);
+ }
+
+ double max_nmse_err() override {
+ return 5e-4;
+ }
+
+ size_t op_size(ggml_tensor * t) override {
+ size_t a = ggml_nbytes(t->src[2]) * n * nr[0] * nr[1];
+ size_t b = ggml_nbytes(t->src[1]) * m;
+ size_t c = ggml_nbytes(t);
+ return a + b + c;
+
+ GGML_UNUSED(t);
+ }
+
+ test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
+ int n_mats = 2, int id = 0,
+ int64_t m = 32, int64_t n = 32, int64_t k = 32,
+ std::array<int64_t, 2> bs = {10, 10},
+ std::array<int64_t, 2> nr = {2, 2})
+ : type_a(type_a), type_b(type_b), n_mats(n_mats), id(id),
+ m(m), n(n), k(k), bs(bs), nr(nr) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ // C^T = A * B^T: (k, m) * (k, n) => (m, n)
+ std::vector<ggml_tensor *> mats;
+ for (int i = 0; i < n_mats; i++) {
+ ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
+ mats.push_back(a);
+ }
+ ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_mats);
+ ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
+ ggml_tensor * out = ggml_mul_mat_id(ctx, mats.data(), ids, id, b);
+ return out;
+ }
+
+ void initialize_tensors(ggml_context * ctx) override {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (t->type == GGML_TYPE_I32) {
+ // ids
+ std::vector<int> data(n_mats);
+ for (int i = 0; i < n_mats; i++) {
+ data[i] = i;
+ }
+ std::shuffle(data.begin(), data.end(), std::default_random_engine(std::random_device()()));
+ ggml_backend_tensor_set(t, data.data(), 0, n_mats * sizeof(int));
+ } else {
+ init_tensor_uniform(t);
+ }
+ }
+ }
+};
+
+// GGML_OP_SQR
+struct test_sqr : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+
+ std::string vars() override {
+ return VARS_TO_STR2(type, ne);
+ }
+
+ test_sqr(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10})
+ : type(type), ne(ne) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_sqr(ctx, a);
+ return out;
+ }
+};
+
+// GGML_OP_CLAMP
+struct test_clamp : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ float min;
+ float max;
+
+ std::string vars() override {
+ return VARS_TO_STR4(type, ne, min, max);
+ }
+
+ test_clamp(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10},
+ float min = -0.5f, float max = 0.5f)
+ : type(type), ne(ne), min(min), max(max) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_clamp(ctx, a, min, max);
+ return out;
+ }
+};
+
+// GGML_OP_DIAG_MASK_INF
+struct test_diag_mask_inf : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ const int n_past;
+
+ std::string vars() override {
+ return VARS_TO_STR3(type, ne, n_past);
+ }
+
+ test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10},
+ int n_past = 5)
+ : type(type), ne(ne), n_past(n_past) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
+ return out;
+ }
+};
+
+// GGML_OP_SOFT_MAX
+struct test_soft_max : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+
+ std::string vars() override {
+ return VARS_TO_STR2(type, ne);
+ }
+
+ test_soft_max(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10})
+ : type(type), ne(ne) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_soft_max(ctx, a);
+ return out;
+ }
+};
+
+// GGML_OP_ROPE
+struct test_rope : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ int n_dims;
+ int mode;
+ int n_ctx;
+
+ std::string vars() override {
+ return VARS_TO_STR5(type, ne, n_dims, mode, n_ctx);
+ }
+
+ test_rope(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 1},
+ int n_dims = 10, int mode = 0, int n_ctx = 512)
+ : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
+ ggml_tensor * out = ggml_rope(ctx, a, pos, n_dims, mode, n_ctx);
+ return out;
+ }
+
+ void initialize_tensors(ggml_context * ctx) override {
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (t->type == GGML_TYPE_I32) {
+ // pos
+ std::vector<int> data(ne[2]);
+ for (int i = 0; i < ne[2]; i++) {
+ data[i] = rand() % n_ctx;
+ }
+ ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
+ } else {
+ init_tensor_uniform(t);
+ }
+ }
+ }
+};
+
+// GGML_OP_ALIBI
+struct test_alibi : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ int n_past;
+ int n_head;
+ float bias_max;
+
+ std::string vars() override {
+ return VARS_TO_STR5(type, ne, n_past, n_head, bias_max);
+ }
+
+ test_alibi(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10},
+ int n_past = 512, int n_head = 10, float bias_max = 0.5f)
+ : type(type), ne(ne), n_past(n_past), n_head(n_head), bias_max(bias_max) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_alibi(ctx, a, n_past, n_head, bias_max);
+ return out;
+ }
+};
+
+// GGML_OP_IM2COL
+struct test_im2col : public test_case {
+ const ggml_type type_input;
+ const ggml_type type_kernel;
+ const std::array<int64_t, 4> ne_input;
+ const std::array<int64_t, 4> ne_kernel;
+ // stride
+ const int s0;
+ const int s1;
+ // padding
+ const int p0;
+ const int p1;
+ // dilatation
+ const int d0;
+ const int d1;
+ // mode
+ const bool is_2D;
+
+ std::string vars() override {
+ return VARS_TO_STR11(type_input, type_kernel, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
+ }
+
+ test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16,
+ std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
+ std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
+ int s0 = 1, int s1 = 1,
+ int p0 = 1, int p1 = 1,
+ int d0 = 1, int d1 = 1,
+ bool is_2D = true)
+ : type_input(type_input), type_kernel(type_kernel), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
+ ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
+ ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D);
+ return out;
+ }
+};
+
+// GGML_OP_CONCAT
+struct test_concat : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ const int64_t b_ne2;
+
+ std::string vars() override {
+ return VARS_TO_STR3(type, ne, b_ne2);
+ }
+
+ test_concat(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10},
+ int64_t b_ne2 = 10)
+ : type(type), ne(ne), b_ne2(b_ne2) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]);
+ ggml_tensor * out = ggml_concat(ctx, a, b);
+ return out;
+ }
+};
+
+// GGML_OP_ARGSORT
+struct test_argsort : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+ ggml_sort_order order;
+
+ std::string vars() override {
+ return VARS_TO_STR3(type, ne, order);
+ }
+
+ test_argsort(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {16, 10, 10, 10},
+ ggml_sort_order order = GGML_SORT_ASC)
+ : type(type), ne(ne), order(order) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_argsort(ctx, a, order);
+ return out;
+ }
+
+ void initialize_tensors(ggml_context * ctx) override {
+ std::random_device rd;
+ std::default_random_engine rng(rd());
+ for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
+ if (t->type == GGML_TYPE_I32) {
+ // indices
+ std::vector<int> data(ggml_nelements(t));
+ for (int i = 0; i < ggml_nelements(t); i++) {
+ data[i] = rand();
+ }
+ std::shuffle(data.begin(), data.end(), rng);
+ ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
+ } else if (t->type == GGML_TYPE_F32) {
+ // initialize with unique values to avoid ties
+ for (int64_t r = 0; r < ggml_nrows(t); r++) {
+ std::vector<float> data(t->ne[0]);
+ for (int i = 0; i < t->ne[0]; i++) {
+ data[i] = i;
+ }
+ std::shuffle(data.begin(), data.end(), rng);
+ ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
+ }
+ } else {
+ GGML_ASSERT(false);
+ }
+ }
+ }
+};
+
+// GGML_OP_SUM_ROWS
+struct test_sum_rows : public test_case {
+ const ggml_type type;
+ const std::array<int64_t, 4> ne;
+
+ std::string vars() override {
+ return VARS_TO_STR2(type, ne);
+ }
+
+ test_sum_rows(ggml_type type = GGML_TYPE_F32,
+ std::array<int64_t, 4> ne = {10, 10, 10, 10})
+ : type(type), ne(ne) {}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
+ ggml_tensor * out = ggml_sum_rows(ctx, a);
+ return out;
+ }
+};
+
+enum test_mode {
+ MODE_TEST,
+ MODE_PERF,
+};
+
+static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
+ std::vector<std::unique_ptr<test_case>> test_cases;
+
+ // unary ops
+ for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
+ test_cases.emplace_back(new test_unary((ggml_unary_op) op));
+ }
+
+ for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
+ test_cases.emplace_back(new test_get_rows(type, 10, 5, 3));
+ test_cases.emplace_back(new test_get_rows(type, 16, 5, 3));
+ }
+
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
+ test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
+
+ test_cases.emplace_back(new test_dup());
+ test_cases.emplace_back(new test_cpy());
+ test_cases.emplace_back(new test_cont());
+
+ auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
+ for (auto op : {ggml_add, ggml_mul, ggml_div}) {
+ test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
+ }
+ };
+
+ add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
+
+ // stable diffusion
+ add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
+ add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
+
+ test_cases.emplace_back(new test_scale());
+
+ for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
+ test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
+ test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
+ }
+
+ const ggml_type all_types[] = {
+ GGML_TYPE_F32, GGML_TYPE_F16,
+ GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
+ GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
+ GGML_TYPE_Q8_0,
+ GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
+ GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
+ GGML_TYPE_Q6_K
+ };
+
+ for (ggml_type type_a : all_types) {
+ for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
+ // FIXME: CPU crashes on f16xf16
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
+
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
+ test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
+ }
+ }
+
+ for (ggml_type type_a : all_types) {
+ for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
+ for (int n_mats : {1, 2, 4}) {
+ for (int id = 0; id < n_mats; id++) {
+ test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, id, 16, 16, 256, {1, 1}, {1, 1}));
+ }
+ }
+ }
+ }
+
+ test_cases.emplace_back(new test_sqr());
+ test_cases.emplace_back(new test_clamp());
+
+ test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
+ test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
+ test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
+
+ test_cases.emplace_back(new test_soft_max());
+
+ for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
+ test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
+ test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
+ test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512)); // llama 30B
+ test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512)); // llama 65B
+ test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
+ test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512)); // neox (falcon 7B)
+ test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
+ test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
+ test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm)
+ }
+
+ test_cases.emplace_back(new test_alibi());
+ test_cases.emplace_back(new test_im2col());
+ test_cases.emplace_back(new test_concat());
+
+ for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
+ test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
+ }
+
+ test_cases.emplace_back(new test_sum_rows());
+
+ // run tests
+ if (mode == MODE_TEST) {
+ ggml_backend_t backend_cpu = ggml_backend_cpu_init();
+
+ size_t n_ok = 0;
+ for (auto & test : test_cases) {
+ if (test->eval(backend, backend_cpu, op_name)) {
+ n_ok++;
+ }
+ }
+ printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
+
+ ggml_backend_free(backend_cpu);
+
+ return n_ok == test_cases.size();
+ } else if (mode == MODE_PERF) {
+ for (auto & test : test_cases) {
+ test->eval_perf(backend, op_name);
+ }
+ return true;
+ } else {
+ GGML_ASSERT(false);
+ }
+}
+
+static void usage(char ** argv) {
+ printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
+ printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
+ printf(" op names are as given by ggml_op_desc()\n");
+}
+
+int main(int argc, char ** argv) {
+ test_mode mode = MODE_TEST;
+ const char * op_name = NULL;
+ const char * backend = NULL;
+
+ for (int i = 1; i < argc; i++) {
+ if (strcmp(argv[i], "test") == 0) {
+ mode = MODE_TEST;
+ } else if (strcmp(argv[i], "perf") == 0) {
+ mode = MODE_PERF;
+ } else if (strcmp(argv[i], "-o") == 0) {
+ if (i + 1 < argc) {
+ op_name = argv[++i];
+ } else {
+ usage(argv);
+ return 1;
+ }
+ } else if (strcmp(argv[i], "-b") == 0) {
+ if (i + 1 < argc) {
+ backend = argv[++i];
+ } else {
+ usage(argv);
+ return 1;
+ }
+ } else {
+ usage(argv);
+ return 1;
+ }
+ }
+
+ // enumerate backends
+ printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
+
+ size_t n_ok = 0;
+
+ for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
+ printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
+
+ if (backend != NULL && strcmp(backend, ggml_backend_reg_get_name(i)) != 0) {
+ printf(" Skipping\n");
+ n_ok++;
+ continue;
+ }
+
+ ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
+ GGML_ASSERT(backend != NULL);
+ printf(" Backend name: %s\n", ggml_backend_name(backend));
+
+ bool ok = test_backend(backend, mode, op_name);
+
+ printf(" Backend %s: ", ggml_backend_name(backend));
+ if (ok) {
+ printf("\033[1;32mOK\033[0m\n");
+ n_ok++;
+ } else {
+ printf("\033[1;31mFAIL\033[0m\n");
+ }
+
+ printf("\n");
+
+ ggml_backend_free(backend);
+ }
+
+ printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
+ if (n_ok != ggml_backend_reg_get_count()) {
+ printf("\033[1;31mFAIL\033[0m\n");
+ return 1;
+ } else {
+ printf("\033[1;32mOK\033[0m\n");
+ return 0;
+ }
+}