diff options
author | slaren <slarengh@gmail.com> | 2024-01-12 20:07:38 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-01-12 20:07:38 +0100 |
commit | e7e4df031b9e29d4b55a4e0b0295187f6b213db1 (patch) | |
tree | 93211b7800be3c2c5f9eb1d55f3b7b3acdc56c9b /tests | |
parent | 584d674be622fbf1578694ada6e62eebedbfd377 (diff) |
llama : ggml-backend integration (#4766)
* llama : ggml-backend integration
* ggml-backend : add names to buffers
* fix unmap after loading
* batched-bench : add tensor_split param
* llama : check for null tensor_split
* ggml-backend : increase GGML_MAX_BACKENDS
* improve graph splitting, partial fix for --no-kv-offload
* cuda : add ggml-backend split buffer support
* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)
* ggml : fix null backend dereference (#4807)
* ggml : fix null backend dereference
* ggml : also check ggml_backend_is_cpu
* test-backend-ops : check buffer allocation failures
* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)
* ggml : fix mul_mat_id work size
* llama : rewrite session kv load/set without graphs
* minor
* llama : only initialize used backends, free backends on context free
* llama : abort ctx if cuda backend init fails
* llama : rewrite lora with ggml-backend and compute on CPU
ggml-ci
* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer
* opencl : add ggml-backend buffer type
* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)
* llama : on Metal, by default offload the full model
ggml-ci
* metal : page align the data ptr (#4854)
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* cuda : fix split buffer free
* address review comments
* llama-bench : add split-mode parameter
* fix whitespace
* opencl : fix double initialization
* server : add --split-mode parameter
* use async copy and compute to improve multi-gpu performance
ggml-ci
* use async memcpys to copy the graph outputs to the CPU
* fix opencl
* use a host buffer for the cpu compute buffer for faster copies to the gpu
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Diffstat (limited to 'tests')
-rw-r--r-- | tests/test-backend-ops.cpp | 26 |
1 files changed, 20 insertions, 6 deletions
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 7a60d774..d9b8b106 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -376,6 +376,11 @@ struct test_case { // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1); + if (buf == NULL) { + printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1)); + ggml_free(ctx); + return false; + } // build graph ggml_build_forward_expand(gf, out); @@ -463,19 +468,23 @@ struct test_case { GGML_UNUSED(index); }; - ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud); + const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud); - if (ud.ok) { - printf("\033[1;32mOK\033[0m\n"); - } else { - printf("\033[1;31mFAIL\033[0m\n"); + if (!cmp_ok) { + printf("compare failed "); } ggml_backend_buffer_free(buf); ggml_free(ctx); - return ud.ok; + if (ud.ok && cmp_ok) { + printf("\033[1;32mOK\033[0m\n"); + return true; + } + + printf("\033[1;31mFAIL\033[0m\n"); + return false; } bool eval_perf(ggml_backend_t backend, const char * op_name) { @@ -519,6 +528,11 @@ struct test_case { // allocate ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend); + if (buf == NULL) { + printf("failed to allocate tensors\n"); + ggml_free(ctx); + return false; + } // randomize tensors initialize_tensors(ctx); |