diff options
author | 0cc4m <picard12@live.de> | 2024-06-16 07:17:31 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-06-16 07:17:31 +0200 |
commit | 7c7836d9d4062d6858e3fb337b135c417ccee6ce (patch) | |
tree | c896967a106e2985763bf1c7bfd7bfb8cbe4f0fd /vulkan-shaders/mul_mat_vec_q2_k.comp | |
parent | 0c7b3595b9e5ad2355818e259f06b0dc3f0065b3 (diff) |
Vulkan Shader Refactor, Memory Debugging Option (#7947)
* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory
* Improve debug log code
* Add memory debug output option
* Fix flake8
* Fix unnecessary high llama-3 VRAM use
Diffstat (limited to 'vulkan-shaders/mul_mat_vec_q2_k.comp')
-rw-r--r-- | vulkan-shaders/mul_mat_vec_q2_k.comp | 73 |
1 files changed, 73 insertions, 0 deletions
diff --git a/vulkan-shaders/mul_mat_vec_q2_k.comp b/vulkan-shaders/mul_mat_vec_q2_k.comp new file mode 100644 index 00000000..27bf6d51 --- /dev/null +++ b/vulkan-shaders/mul_mat_vec_q2_k.comp @@ -0,0 +1,73 @@ +#version 450 + +#include "mul_mat_vec_base.comp" + +layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; + +shared FLOAT_TYPE tmp[32]; + +void main() { + const uint row = gl_WorkGroupID.x; + + uint a_offset, b_offset, d_offset; + get_offsets(a_offset, b_offset, d_offset); + + const uint num_blocks_per_row = p.ncols / QUANT_K; + const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; + + const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 + const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 + + const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8 + + const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128... + const uint v_in = tid - step*v_im; // 0...15 or 0...7 + + const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15 + const uint q_offset = 32*v_im + l0; + const uint s_offset = 8*v_im; + const uint y_offset = 128*v_im + l0; + + tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp + + [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { + const uint y_idx = i * QUANT_K + y_offset; + + const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x); + const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y); + + FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); + FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); + for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) { + sum1 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3) + + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3); + sum2 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF) + + FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF) + + FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF); + } + tmp[16 * ix + tid] += dall * sum1 - dmin * sum2; + } + + // sum up partial sums and write back result + barrier(); + [[unroll]] for (uint s = 16; s > 0; s >>= 1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(); + } + if (tid == 0) { + data_d[d_offset + row] = D_TYPE(tmp[0]); + } +} |