diff options
author | 0cc4m <picard12@live.de> | 2024-06-16 07:17:31 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-06-16 07:17:31 +0200 |
commit | 7c7836d9d4062d6858e3fb337b135c417ccee6ce (patch) | |
tree | c896967a106e2985763bf1c7bfd7bfb8cbe4f0fd /vulkan-shaders/mul_mm.comp | |
parent | 0c7b3595b9e5ad2355818e259f06b0dc3f0065b3 (diff) |
Vulkan Shader Refactor, Memory Debugging Option (#7947)
* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory
* Improve debug log code
* Add memory debug output option
* Fix flake8
* Fix unnecessary high llama-3 VRAM use
Diffstat (limited to 'vulkan-shaders/mul_mm.comp')
-rw-r--r-- | vulkan-shaders/mul_mm.comp | 494 |
1 files changed, 494 insertions, 0 deletions
diff --git a/vulkan-shaders/mul_mm.comp b/vulkan-shaders/mul_mm.comp new file mode 100644 index 00000000..7c2b45cc --- /dev/null +++ b/vulkan-shaders/mul_mm.comp @@ -0,0 +1,494 @@ +#version 450 + +#extension GL_EXT_control_flow_attributes : enable +#extension GL_EXT_shader_16bit_storage : require + +#ifdef FLOAT16 +#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require +#endif + +#ifdef MUL_MAT_ID +#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require +#endif + +#include "types.comp" + +#ifndef LOAD_VEC_A +#define LOAD_VEC_A 1 +#endif +#ifndef LOAD_VEC_B +#define LOAD_VEC_B 1 +#endif + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; +layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; +layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; + +#ifdef MUL_MAT_ID +layout (binding = 3) readonly buffer IDS {int data_ids[];}; +#endif + +layout (push_constant) uniform parameter +{ + uint M; + uint N; + uint K; + uint stride_a; + uint stride_b; + uint stride_d; + + uint batch_stride_a; + uint batch_stride_b; + uint batch_stride_d; + +#ifdef MUL_MAT_ID + uint nei0; + uint nei1; + uint nbi1; + uint ne11; +#else + uint k_split; + uint ne02; + uint ne12; + uint broadcast2; + uint broadcast3; +#endif +} p; + +layout (constant_id = 1) const uint BM = 64; +layout (constant_id = 2) const uint BN = 64; +layout (constant_id = 3) const uint BK = 16; // Assumed to be 32 if working with a quant +layout (constant_id = 4) const uint WM = 32; +layout (constant_id = 5) const uint WN = 32; +layout (constant_id = 6) const uint WMITER = 2; +layout (constant_id = 7) const uint TM = 4; +layout (constant_id = 8) const uint TN = 2; +layout (constant_id = 9) const uint WARP = 32; + +shared FLOAT_TYPE buf_a[BM * (BK+1)]; +shared FLOAT_TYPE buf_b[BN * (BK+1)]; + +#ifdef MUL_MAT_ID +shared u16vec2 row_ids[2048]; +#endif + +void main() { +#ifdef MUL_MAT_ID + const uint expert_idx = gl_GlobalInvocationID.z; +#else + const uint batch_idx = gl_GlobalInvocationID.z; + + const uint i13 = batch_idx / p.ne12; + const uint i12 = batch_idx % p.ne12; + + const uint i03 = i13 / p.broadcast3; + const uint i02 = i12 / p.broadcast2; + + const uint batch_idx_a = i03 * p.ne02 + i02; +#endif + + const uint blocks_m = (p.M + BM - 1) / BM; + const uint ir = gl_WorkGroupID.x % blocks_m; + const uint ik = gl_WorkGroupID.x / blocks_m; + const uint ic = gl_WorkGroupID.y; + + const uint warp_i = gl_LocalInvocationID.x / WARP; + const uint warp_r = warp_i % (BM / WM); + const uint warp_c = warp_i / (BM / WM); + + const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER); + const uint WSUBM = WM / WMITER; + const uint WSUBN = WN / WNITER; + + const uint tiw = gl_LocalInvocationID.x % WARP; + const uint tiwr = tiw % (WSUBM / TM); + const uint tiwc = tiw / (WSUBM / TM); + + const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A); + const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A); + const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B); + const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B); + + const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK; + const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK; + +#ifdef MUL_MAT_ID + uint _ne1 = 0; + for (uint ii1 = 0; ii1 < p.nei1; ii1++) { + for (uint ii0 = 0; ii0 < p.nei0; ii0++) { + if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) { + row_ids[_ne1] = u16vec2(ii0, ii1); + _ne1++; + } + } + } + + barrier(); + + // Workgroup has no work + if (ic * BN >= _ne1) return; +#endif + +#ifdef MUL_MAT_ID + const uint start_k = 0; + const uint end_k = p.K; +#else + const uint start_k = ik * p.k_split; + const uint end_k = min(p.K, (ik + 1) * p.k_split); +#endif + + uint pos_a = ( +#ifdef MUL_MAT_ID + expert_idx * p.batch_stride_a + +#else + batch_idx_a * p.batch_stride_a + +#endif + ir * BM * p.stride_a + start_k) / LOAD_VEC_A; +#ifdef MUL_MAT_ID + uint pos_b = 0; +#else + uint pos_b = (batch_idx * p.batch_stride_b + ic * BN * p.stride_b + start_k) / LOAD_VEC_B; +#endif + + float sums[WMITER * TM * WNITER * TN]; + FLOAT_TYPE cache_a[WMITER * TM]; + FLOAT_TYPE cache_b[WNITER * TN]; + + [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) { + sums[i] = 0.0f; + } + + [[unroll]] for (uint block = start_k; block < end_k; block += BK) { + [[unroll]] for (uint l = 0; l < BM; l += loadstride_a) { + +#if defined(DATA_A_F32) || defined(DATA_A_F16) +#if LOAD_VEC_A == 8 + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; + buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx][0].x); + buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y); + buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z); + buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w); + buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x); + buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y); + buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z); + buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w); +#elif LOAD_VEC_A == 4 + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; + buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx].x); + buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y); + buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z); + buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w); +#else + if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) { + buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]); + } else { + buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(0.0f); + } +#endif +#elif defined(DATA_A_Q4_0) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a; + + const uint ib = idx / 16; + const uint iqs = idx & 0xF; + + const float d = float(data_a[ib].d); + const uint vui = uint(data_a[ib].qs[iqs]); + const vec2 v = (vec2(vui & 0xF, vui >> 4) - 8.0f) * d; + + buf_a[buf_idx ] = FLOAT_TYPE(v.x); + buf_a[buf_idx + 16] = FLOAT_TYPE(v.y); +#elif defined(DATA_A_Q4_1) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a; + + const uint ib = idx / 16; + const uint iqs = idx & 0xF; + + const float d = float(data_a[ib].d); + const float m = float(data_a[ib].m); + const uint vui = uint(data_a[ib].qs[iqs]); + const vec2 v = vec2(vui & 0xF, vui >> 4) * d + m; + + buf_a[buf_idx ] = FLOAT_TYPE(v.x); + buf_a[buf_idx + 16] = FLOAT_TYPE(v.y); +#elif defined(DATA_A_Q5_0) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a; + + const uint ib = idx / 16; + const uint iqs = idx & 0xF; + + const float d = float(data_a[ib].d); + const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0]; + const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); + const uint vui = uint(data_a[ib].qs[iqs]); + const vec2 v = (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d; + + buf_a[buf_idx ] = FLOAT_TYPE(v.x); + buf_a[buf_idx + 16] = FLOAT_TYPE(v.y); +#elif defined(DATA_A_Q5_1) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a; + + const uint ib = idx / 16; + const uint iqs = idx & 0xF; + + const float d = float(data_a[ib].d); + const float m = float(data_a[ib].m); + const uint uint_qh = data_a[ib].qh; + const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); + const uint vui = uint(data_a[ib].qs[iqs]); + const vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m; + + buf_a[buf_idx ] = FLOAT_TYPE(v.x); + buf_a[buf_idx + 16] = FLOAT_TYPE(v.y); +#elif defined(DATA_A_Q8_0) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; + + const uint ib = idx / 16; + const uint iqs = (idx & 0xF) * 2; + + const float d = float(data_a[ib].d); + const vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])) * d; + + buf_a[buf_idx ] = FLOAT_TYPE(v.x); + buf_a[buf_idx + 1] = FLOAT_TYPE(v.y); +#elif defined(DATA_A_Q2_K) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; + + const uint ib = idx / 128; // 2 values per idx + const uint iqs = idx % 128; // 0..127 + + const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30 + const uint scalesi = iqs / 8; // 0..15 + const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6 + + const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]); + const uint scales = data_a[ib].scales[scalesi]; + const vec2 d = vec2(data_a[ib].d); + + const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4); + + buf_a[buf_idx ] = FLOAT_TYPE(v.x); + buf_a[buf_idx + 1] = FLOAT_TYPE(v.y); +#elif defined(DATA_A_Q3_K) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; + + const uint ib = idx / 128; // 2 values per idx + const uint iqs = idx % 128; // 0..127 + + const uint n = iqs / 64; // 0,1 + const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..62 + const uint hmi = (iqs % 16) * 2; // 0,2,4..30 + const uint j = (iqs % 64) / 4; // 0..3 + const uint is = iqs / 8; // 0..15 + const uint halfsplit = ((iqs % 64) / 16); // 0,1,2,3 + const uint qsshift = halfsplit * 2; // 0,2,4,6 + const uint m = 1 << (4 * n + halfsplit); // 1,2,4,8,16,32,64,128 + + const int8_t us = int8_t(is < 4 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+8] >> 0) & 3) << 4) : + is < 8 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+4] >> 2) & 3) << 4) : + is < 12 ? (data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is+0] >> 4) & 3) << 4) : + (data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is-4] >> 6) & 3) << 4)); + const float dl = float(data_a[ib].d) * float(us - 32); + + buf_a[buf_idx ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi ] & m) != 0) ? 0 : 4))); + buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4))); +#elif defined(DATA_A_Q4_K) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; + + const uint ib = idx / 128; // 2 values per idx + const uint iqs = idx % 128; // 0..127 + + const uint n = iqs / 32; // 0,1,2,3 + const uint b = (iqs % 32) / 16; // 0,1 + const uint is = 2 * n + b; // 0..7 + const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126 + + const vec2 loadd = vec2(data_a[ib].d); + + uint8_t sc; + uint8_t mbyte; + if (is < 4) { + sc = uint8_t(data_a[ib].scales[is ] & 63); + mbyte = uint8_t(data_a[ib].scales[is + 4] & 63); + } else { + sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4)); + mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4)); + } + const float d = loadd.x * sc; + const float m = loadd.y * mbyte; + + buf_a[buf_idx ] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) - m); + buf_a[buf_idx + 1] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) - m); +#elif defined(DATA_A_Q5_K) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; + + const uint ib = idx / 128; // 2 values per idx + const uint iqs = idx % 128; // 0..127 + + const uint n = iqs / 32; // 0,1,2,3 + const uint b = (iqs % 32) / 16; // 0,1 + const uint is = 2 * n + b; // 0..7 + const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126 + const uint qhi = (iqs % 16) * 2; // 0,2,4..30 + + const uint8_t hm = uint8_t(1 << (iqs / 16)); + + const vec2 loadd = vec2(data_a[ib].d); + + uint8_t sc; + uint8_t mbyte; + if (is < 4) { + sc = uint8_t(data_a[ib].scales[is ] & 63); + mbyte = uint8_t(data_a[ib].scales[is + 4] & 63); + } else { + sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4)); + mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4)); + } + const float d = loadd.x * sc; + const float m = loadd.y * mbyte; + + buf_a[buf_idx ] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0)) - m); + buf_a[buf_idx + 1] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0)) - m); +#elif defined(DATA_A_Q6_K) + const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a; + const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A; + + const uint ib = idx / 128; // 2 values per idx + const uint iqs = idx % 128; // 0..127 + + const uint n = iqs / 64; // 0,1 + const uint b = (iqs % 64) / 32; // 0,1 + const uint is_b = (iqs % 16) / 8; // 0,1 + const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6 + const uint is = 8 * n + qhshift + is_b; // 0..15 + const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126 + const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62 + + const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]); + + buf_a[buf_idx ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32)); + buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32)); +#endif + } + [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) { +#if LOAD_VEC_B == 8 +#ifdef MUL_MAT_ID + const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l]; + const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b; +#else + const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b; +#endif + const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B; + buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x); + buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y); + buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z); + buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w); + buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x); + buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y); + buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z); + buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w); +#elif LOAD_VEC_B == 4 +#ifdef MUL_MAT_ID + const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l]; + const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b; +#else + const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b; +#endif + const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B; + buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x); + buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y); + buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z); + buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w); +#elif !MUL_MAT_ID + if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) { + buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]); + } else { + buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f); + } +#else + const uint row_i = ic * BN + loadc_b + l; + if (row_i < _ne1) { + const u16vec2 row_idx = row_ids[row_i]; + buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]); + } else { + buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f); + } +#endif + } + + barrier(); + + pos_a += BK / LOAD_VEC_A; + pos_b += BK / LOAD_VEC_B; + + for (uint i = 0; i < BK; i++) { + // Load from shared into cache + [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { + [[unroll]] for (uint j = 0; j < TM; j++) { + cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i]; + } + } + [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { + [[unroll]] for (uint j = 0; j < TN; j++) { + cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i]; + } + } + + [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { + [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { + [[unroll]] for (uint cc = 0; cc < TN; cc++) { + [[unroll]] for (uint cr = 0; cr < TM; cr++) { + sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]); + } + } + } + } + } + + barrier(); + } + + const uint dr = ir * BM + warp_r * WM; + const uint dc = ic * BN + warp_c * WN; + +#ifndef MUL_MAT_ID + const uint offsets = batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z; +#endif + + [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) { + [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) { + + const uint dr_warp = dr + wsir * WSUBM + tiwr * TM; + const uint dc_warp = dc + wsic * WSUBN + tiwc * TN; + [[unroll]] for (uint cc = 0; cc < TN; cc++) { +#ifdef MUL_MAT_ID + const uint row_i = dc_warp + cc; + if (row_i >= _ne1) break; + + const u16vec2 row_idx = row_ids[row_i]; +#endif + [[unroll]] for (uint cr = 0; cr < TM; cr++) { +#ifdef MUL_MAT_ID + data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]); +#else + if (dr_warp + cr < p.M && dc_warp + cc < p.N) { + data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]); + } +#endif + } + } + } + } +} |