summaryrefslogtreecommitdiff
path: root/vulkan-shaders/mul_mm.comp
diff options
context:
space:
mode:
author0cc4m <picard12@live.de>2024-06-16 07:17:31 +0200
committerGitHub <noreply@github.com>2024-06-16 07:17:31 +0200
commit7c7836d9d4062d6858e3fb337b135c417ccee6ce (patch)
treec896967a106e2985763bf1c7bfd7bfb8cbe4f0fd /vulkan-shaders/mul_mm.comp
parent0c7b3595b9e5ad2355818e259f06b0dc3f0065b3 (diff)
Vulkan Shader Refactor, Memory Debugging Option (#7947)
* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory * Improve debug log code * Add memory debug output option * Fix flake8 * Fix unnecessary high llama-3 VRAM use
Diffstat (limited to 'vulkan-shaders/mul_mm.comp')
-rw-r--r--vulkan-shaders/mul_mm.comp494
1 files changed, 494 insertions, 0 deletions
diff --git a/vulkan-shaders/mul_mm.comp b/vulkan-shaders/mul_mm.comp
new file mode 100644
index 00000000..7c2b45cc
--- /dev/null
+++ b/vulkan-shaders/mul_mm.comp
@@ -0,0 +1,494 @@
+#version 450
+
+#extension GL_EXT_control_flow_attributes : enable
+#extension GL_EXT_shader_16bit_storage : require
+
+#ifdef FLOAT16
+#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
+#endif
+
+#ifdef MUL_MAT_ID
+#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
+#endif
+
+#include "types.comp"
+
+#ifndef LOAD_VEC_A
+#define LOAD_VEC_A 1
+#endif
+#ifndef LOAD_VEC_B
+#define LOAD_VEC_B 1
+#endif
+
+layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
+
+layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
+layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
+layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
+
+#ifdef MUL_MAT_ID
+layout (binding = 3) readonly buffer IDS {int data_ids[];};
+#endif
+
+layout (push_constant) uniform parameter
+{
+ uint M;
+ uint N;
+ uint K;
+ uint stride_a;
+ uint stride_b;
+ uint stride_d;
+
+ uint batch_stride_a;
+ uint batch_stride_b;
+ uint batch_stride_d;
+
+#ifdef MUL_MAT_ID
+ uint nei0;
+ uint nei1;
+ uint nbi1;
+ uint ne11;
+#else
+ uint k_split;
+ uint ne02;
+ uint ne12;
+ uint broadcast2;
+ uint broadcast3;
+#endif
+} p;
+
+layout (constant_id = 1) const uint BM = 64;
+layout (constant_id = 2) const uint BN = 64;
+layout (constant_id = 3) const uint BK = 16; // Assumed to be 32 if working with a quant
+layout (constant_id = 4) const uint WM = 32;
+layout (constant_id = 5) const uint WN = 32;
+layout (constant_id = 6) const uint WMITER = 2;
+layout (constant_id = 7) const uint TM = 4;
+layout (constant_id = 8) const uint TN = 2;
+layout (constant_id = 9) const uint WARP = 32;
+
+shared FLOAT_TYPE buf_a[BM * (BK+1)];
+shared FLOAT_TYPE buf_b[BN * (BK+1)];
+
+#ifdef MUL_MAT_ID
+shared u16vec2 row_ids[2048];
+#endif
+
+void main() {
+#ifdef MUL_MAT_ID
+ const uint expert_idx = gl_GlobalInvocationID.z;
+#else
+ const uint batch_idx = gl_GlobalInvocationID.z;
+
+ const uint i13 = batch_idx / p.ne12;
+ const uint i12 = batch_idx % p.ne12;
+
+ const uint i03 = i13 / p.broadcast3;
+ const uint i02 = i12 / p.broadcast2;
+
+ const uint batch_idx_a = i03 * p.ne02 + i02;
+#endif
+
+ const uint blocks_m = (p.M + BM - 1) / BM;
+ const uint ir = gl_WorkGroupID.x % blocks_m;
+ const uint ik = gl_WorkGroupID.x / blocks_m;
+ const uint ic = gl_WorkGroupID.y;
+
+ const uint warp_i = gl_LocalInvocationID.x / WARP;
+ const uint warp_r = warp_i % (BM / WM);
+ const uint warp_c = warp_i / (BM / WM);
+
+ const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
+ const uint WSUBM = WM / WMITER;
+ const uint WSUBN = WN / WNITER;
+
+ const uint tiw = gl_LocalInvocationID.x % WARP;
+ const uint tiwr = tiw % (WSUBM / TM);
+ const uint tiwc = tiw / (WSUBM / TM);
+
+ const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A);
+ const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A);
+ const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B);
+ const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B);
+
+ const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK;
+ const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;
+
+#ifdef MUL_MAT_ID
+ uint _ne1 = 0;
+ for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
+ for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
+ if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
+ row_ids[_ne1] = u16vec2(ii0, ii1);
+ _ne1++;
+ }
+ }
+ }
+
+ barrier();
+
+ // Workgroup has no work
+ if (ic * BN >= _ne1) return;
+#endif
+
+#ifdef MUL_MAT_ID
+ const uint start_k = 0;
+ const uint end_k = p.K;
+#else
+ const uint start_k = ik * p.k_split;
+ const uint end_k = min(p.K, (ik + 1) * p.k_split);
+#endif
+
+ uint pos_a = (
+#ifdef MUL_MAT_ID
+ expert_idx * p.batch_stride_a +
+#else
+ batch_idx_a * p.batch_stride_a +
+#endif
+ ir * BM * p.stride_a + start_k) / LOAD_VEC_A;
+#ifdef MUL_MAT_ID
+ uint pos_b = 0;
+#else
+ uint pos_b = (batch_idx * p.batch_stride_b + ic * BN * p.stride_b + start_k) / LOAD_VEC_B;
+#endif
+
+ float sums[WMITER * TM * WNITER * TN];
+ FLOAT_TYPE cache_a[WMITER * TM];
+ FLOAT_TYPE cache_b[WNITER * TN];
+
+ [[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
+ sums[i] = 0.0f;
+ }
+
+ [[unroll]] for (uint block = start_k; block < end_k; block += BK) {
+ [[unroll]] for (uint l = 0; l < BM; l += loadstride_a) {
+
+#if defined(DATA_A_F32) || defined(DATA_A_F16)
+#if LOAD_VEC_A == 8
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+ buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx][0].x);
+ buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y);
+ buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z);
+ buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w);
+ buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x);
+ buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y);
+ buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z);
+ buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w);
+#elif LOAD_VEC_A == 4
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+ buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx].x);
+ buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y);
+ buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z);
+ buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w);
+#else
+ if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
+ buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
+ } else {
+ buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(0.0f);
+ }
+#endif
+#elif defined(DATA_A_Q4_0)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
+
+ const uint ib = idx / 16;
+ const uint iqs = idx & 0xF;
+
+ const float d = float(data_a[ib].d);
+ const uint vui = uint(data_a[ib].qs[iqs]);
+ const vec2 v = (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
+
+ buf_a[buf_idx ] = FLOAT_TYPE(v.x);
+ buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
+#elif defined(DATA_A_Q4_1)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
+
+ const uint ib = idx / 16;
+ const uint iqs = idx & 0xF;
+
+ const float d = float(data_a[ib].d);
+ const float m = float(data_a[ib].m);
+ const uint vui = uint(data_a[ib].qs[iqs]);
+ const vec2 v = vec2(vui & 0xF, vui >> 4) * d + m;
+
+ buf_a[buf_idx ] = FLOAT_TYPE(v.x);
+ buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
+#elif defined(DATA_A_Q5_0)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
+
+ const uint ib = idx / 16;
+ const uint iqs = idx & 0xF;
+
+ const float d = float(data_a[ib].d);
+ const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
+ const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
+ const uint vui = uint(data_a[ib].qs[iqs]);
+ const vec2 v = (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
+
+ buf_a[buf_idx ] = FLOAT_TYPE(v.x);
+ buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
+#elif defined(DATA_A_Q5_1)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
+
+ const uint ib = idx / 16;
+ const uint iqs = idx & 0xF;
+
+ const float d = float(data_a[ib].d);
+ const float m = float(data_a[ib].m);
+ const uint uint_qh = data_a[ib].qh;
+ const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
+ const uint vui = uint(data_a[ib].qs[iqs]);
+ const vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
+
+ buf_a[buf_idx ] = FLOAT_TYPE(v.x);
+ buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);
+#elif defined(DATA_A_Q8_0)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+ const uint ib = idx / 16;
+ const uint iqs = (idx & 0xF) * 2;
+
+ const float d = float(data_a[ib].d);
+ const vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])) * d;
+
+ buf_a[buf_idx ] = FLOAT_TYPE(v.x);
+ buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
+#elif defined(DATA_A_Q2_K)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+ const uint ib = idx / 128; // 2 values per idx
+ const uint iqs = idx % 128; // 0..127
+
+ const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
+ const uint scalesi = iqs / 8; // 0..15
+ const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
+
+ const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
+ const uint scales = data_a[ib].scales[scalesi];
+ const vec2 d = vec2(data_a[ib].d);
+
+ const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);
+
+ buf_a[buf_idx ] = FLOAT_TYPE(v.x);
+ buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
+#elif defined(DATA_A_Q3_K)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+ const uint ib = idx / 128; // 2 values per idx
+ const uint iqs = idx % 128; // 0..127
+
+ const uint n = iqs / 64; // 0,1
+ const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
+ const uint hmi = (iqs % 16) * 2; // 0,2,4..30
+ const uint j = (iqs % 64) / 4; // 0..3
+ const uint is = iqs / 8; // 0..15
+ const uint halfsplit = ((iqs % 64) / 16); // 0,1,2,3
+ const uint qsshift = halfsplit * 2; // 0,2,4,6
+ const uint m = 1 << (4 * n + halfsplit); // 1,2,4,8,16,32,64,128
+
+ const int8_t us = int8_t(is < 4 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+8] >> 0) & 3) << 4) :
+ is < 8 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+4] >> 2) & 3) << 4) :
+ is < 12 ? (data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is+0] >> 4) & 3) << 4) :
+ (data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is-4] >> 6) & 3) << 4));
+ const float dl = float(data_a[ib].d) * float(us - 32);
+
+ buf_a[buf_idx ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi ] & m) != 0) ? 0 : 4)));
+ buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));
+#elif defined(DATA_A_Q4_K)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+ const uint ib = idx / 128; // 2 values per idx
+ const uint iqs = idx % 128; // 0..127
+
+ const uint n = iqs / 32; // 0,1,2,3
+ const uint b = (iqs % 32) / 16; // 0,1
+ const uint is = 2 * n + b; // 0..7
+ const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
+
+ const vec2 loadd = vec2(data_a[ib].d);
+
+ uint8_t sc;
+ uint8_t mbyte;
+ if (is < 4) {
+ sc = uint8_t(data_a[ib].scales[is ] & 63);
+ mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
+ } else {
+ sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
+ mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4));
+ }
+ const float d = loadd.x * sc;
+ const float m = loadd.y * mbyte;
+
+ buf_a[buf_idx ] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) - m);
+ buf_a[buf_idx + 1] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) - m);
+#elif defined(DATA_A_Q5_K)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+ const uint ib = idx / 128; // 2 values per idx
+ const uint iqs = idx % 128; // 0..127
+
+ const uint n = iqs / 32; // 0,1,2,3
+ const uint b = (iqs % 32) / 16; // 0,1
+ const uint is = 2 * n + b; // 0..7
+ const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
+ const uint qhi = (iqs % 16) * 2; // 0,2,4..30
+
+ const uint8_t hm = uint8_t(1 << (iqs / 16));
+
+ const vec2 loadd = vec2(data_a[ib].d);
+
+ uint8_t sc;
+ uint8_t mbyte;
+ if (is < 4) {
+ sc = uint8_t(data_a[ib].scales[is ] & 63);
+ mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
+ } else {
+ sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
+ mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4));
+ }
+ const float d = loadd.x * sc;
+ const float m = loadd.y * mbyte;
+
+ buf_a[buf_idx ] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0)) - m);
+ buf_a[buf_idx + 1] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0)) - m);
+#elif defined(DATA_A_Q6_K)
+ const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
+ const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
+
+ const uint ib = idx / 128; // 2 values per idx
+ const uint iqs = idx % 128; // 0..127
+
+ const uint n = iqs / 64; // 0,1
+ const uint b = (iqs % 64) / 32; // 0,1
+ const uint is_b = (iqs % 16) / 8; // 0,1
+ const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
+ const uint is = 8 * n + qhshift + is_b; // 0..15
+ const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126
+ const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
+
+ const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);
+
+ buf_a[buf_idx ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32));
+ buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));
+#endif
+ }
+ [[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
+#if LOAD_VEC_B == 8
+#ifdef MUL_MAT_ID
+ const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
+ const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
+#else
+ const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
+#endif
+ const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
+ buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x);
+ buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y);
+ buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z);
+ buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w);
+ buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x);
+ buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y);
+ buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z);
+ buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w);
+#elif LOAD_VEC_B == 4
+#ifdef MUL_MAT_ID
+ const u16vec2 row_idx = row_ids[ic * BN + loadc_b + l];
+ const uint idx = pos_b + row_idx.y * p.batch_stride_b / LOAD_VEC_B + (row_idx.x % p.ne11) * p.stride_b / LOAD_VEC_B + loadr_b;
+#else
+ const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
+#endif
+ const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
+ buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
+ buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
+ buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
+ buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
+#elif !MUL_MAT_ID
+ if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
+ buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
+ } else {
+ buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
+ }
+#else
+ const uint row_i = ic * BN + loadc_b + l;
+ if (row_i < _ne1) {
+ const u16vec2 row_idx = row_ids[row_i];
+ buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
+ } else {
+ buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
+ }
+#endif
+ }
+
+ barrier();
+
+ pos_a += BK / LOAD_VEC_A;
+ pos_b += BK / LOAD_VEC_B;
+
+ for (uint i = 0; i < BK; i++) {
+ // Load from shared into cache
+ [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
+ [[unroll]] for (uint j = 0; j < TM; j++) {
+ cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i];
+ }
+ }
+ [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
+ [[unroll]] for (uint j = 0; j < TN; j++) {
+ cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i];
+ }
+ }
+
+ [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
+ [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
+ [[unroll]] for (uint cc = 0; cc < TN; cc++) {
+ [[unroll]] for (uint cr = 0; cr < TM; cr++) {
+ sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]);
+ }
+ }
+ }
+ }
+ }
+
+ barrier();
+ }
+
+ const uint dr = ir * BM + warp_r * WM;
+ const uint dc = ic * BN + warp_c * WN;
+
+#ifndef MUL_MAT_ID
+ const uint offsets = batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z;
+#endif
+
+ [[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
+ [[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
+
+ const uint dr_warp = dr + wsir * WSUBM + tiwr * TM;
+ const uint dc_warp = dc + wsic * WSUBN + tiwc * TN;
+ [[unroll]] for (uint cc = 0; cc < TN; cc++) {
+#ifdef MUL_MAT_ID
+ const uint row_i = dc_warp + cc;
+ if (row_i >= _ne1) break;
+
+ const u16vec2 row_idx = row_ids[row_i];
+#endif
+ [[unroll]] for (uint cr = 0; cr < TM; cr++) {
+#ifdef MUL_MAT_ID
+ data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
+#else
+ if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
+ data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
+ }
+#endif
+ }
+ }
+ }
+ }
+}