summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--README.md1
-rwxr-xr-xconvert-hf-to-gguf.py17
-rw-r--r--gguf-py/gguf/constants.py15
-rw-r--r--gguf-py/gguf/gguf_writer.py3
-rw-r--r--llama.cpp183
5 files changed, 219 insertions, 0 deletions
diff --git a/README.md b/README.md
index 61bedc3f..5cbdf7e4 100644
--- a/README.md
+++ b/README.md
@@ -112,6 +112,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
- [x] [Gemma](https://ai.google.dev/gemma)
- [x] [Mamba](https://github.com/state-spaces/mamba)
+- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
**Multimodal models:**
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py
index 5eee3201..cf1f98d6 100755
--- a/convert-hf-to-gguf.py
+++ b/convert-hf-to-gguf.py
@@ -1965,6 +1965,23 @@ class MambaModel(Model):
self.gguf_writer.add_tensor(new_name, data)
+@Model.register("CohereForCausalLM")
+class CommandR2Model(Model):
+ model_arch = gguf.MODEL_ARCH.COMMAND_R
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ # max_position_embeddings = 8192 in config.json but model was actually
+ # trained on 128k context length
+ self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+
+
###### CONVERSION LOGIC ######
diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py
index 458a641d..4a4facb0 100644
--- a/gguf-py/gguf/constants.py
+++ b/gguf-py/gguf/constants.py
@@ -42,6 +42,7 @@ class Keys:
EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count"
POOLING_TYPE = "{arch}.pooling_type"
+ LOGIT_SCALE = "{arch}.logit_scale"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@@ -121,6 +122,7 @@ class MODEL_ARCH(IntEnum):
GEMMA = auto()
STARCODER2 = auto()
MAMBA = auto()
+ COMMAND_R = auto()
class MODEL_TENSOR(IntEnum):
@@ -187,6 +189,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.MAMBA: "mamba",
+ MODEL_ARCH.COMMAND_R: "command-r",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -579,6 +582,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT,
],
+ MODEL_ARCH.COMMAND_R: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.FFN_GATE,
+ MODEL_TENSOR.FFN_DOWN,
+ MODEL_TENSOR.FFN_UP,
+ ],
# TODO
}
diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py
index 1967b633..2ae6c814 100644
--- a/gguf-py/gguf/gguf_writer.py
+++ b/gguf-py/gguf/gguf_writer.py
@@ -361,6 +361,9 @@ class GGUFWriter:
def add_clamp_kqv(self, value: float) -> None:
self.add_float32(Keys.Attention.CLAMP_KQV.format(arch=self.arch), value)
+ def add_logit_scale(self, value: float) -> None:
+ self.add_float32(Keys.LLM.LOGIT_SCALE.format(arch=self.arch), value)
+
def add_expert_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_COUNT.format(arch=self.arch), count)
diff --git a/llama.cpp b/llama.cpp
index 8e185d4b..fc5dd5cb 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -214,6 +214,7 @@ enum llm_arch {
LLM_ARCH_GEMMA,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
+ LLM_ARCH_COMMAND_R,
LLM_ARCH_UNKNOWN,
};
@@ -243,6 +244,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GEMMA, "gemma" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
+ { LLM_ARCH_COMMAND_R, "command-r" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -268,6 +270,7 @@ enum llm_kv {
LLM_KV_EXPERT_COUNT,
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_POOLING_TYPE,
+ LLM_KV_LOGIT_SCALE,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
@@ -332,6 +335,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_POOLING_TYPE , "%s.pooling_type" },
+ { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@@ -839,6 +843,21 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
},
},
{
+ LLM_ARCH_COMMAND_R,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
+ {
LLM_ARCH_UNKNOWN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
@@ -1597,6 +1616,7 @@ enum e_model {
MODEL_20B,
MODEL_30B,
MODEL_34B,
+ MODEL_35B,
MODEL_40B,
MODEL_65B,
MODEL_70B,
@@ -1643,6 +1663,7 @@ struct llama_hparams {
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
+ float f_logit_scale = 0.0f;
bool causal_attn = true;
bool need_kq_pos = false;
@@ -3231,6 +3252,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_20B: return "20B";
case MODEL_30B: return "30B";
case MODEL_34B: return "34B";
+ case MODEL_35B: return "35B";
case MODEL_40B: return "40B";
case MODEL_65B: return "65B";
case MODEL_70B: return "70B";
@@ -3623,6 +3645,15 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_COMMAND_R:
+ {
+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ switch (hparams.n_layer) {
+ case 40: model.type = e_model::MODEL_35B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
default: (void)0;
}
@@ -3944,6 +3975,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
+ LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
@@ -4918,6 +4950,37 @@ static bool llm_load_tensors(
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
}
} break;
+ case LLM_ARCH_COMMAND_R:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ // init output from the input tok embed
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+ ml.n_created--; // artificial tensor
+ ml.size_data += ggml_nbytes(model.output);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
default:
throw std::runtime_error("unknown architecture");
}
@@ -8315,6 +8378,121 @@ struct llm_build_context {
return gf;
}
+
+ struct ggml_cgraph * build_command_r() {
+
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ const float f_logit_scale = hparams.f_logit_scale;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM, cb, il);
+ cb(cur, "attn_norm", il);
+ struct ggml_tensor * ffn_inp = cur;
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_custom(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ struct ggml_tensor * attn_out = cur;
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, ffn_inp,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ // add together residual + FFN + self-attention
+ cur = ggml_add(ctx0, cur, inpL);
+ cur = ggml_add(ctx0, cur, attn_out);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+
+ if (f_logit_scale) {
+ cur = ggml_scale(ctx0, cur, f_logit_scale);
+ }
+
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+
+ }
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -8497,6 +8675,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_mamba();
} break;
+ case LLM_ARCH_COMMAND_R:
+ {
+ result = llm.build_command_r();
+ } break;
default:
GGML_ASSERT(false);
}
@@ -13147,6 +13329,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_ORION:
case LLM_ARCH_INTERNLM2:
case LLM_ARCH_MINICPM:
+ case LLM_ARCH_COMMAND_R:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2