summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ggml-cuda.cu106
-rw-r--r--ggml-impl.h6
-rw-r--r--ggml-metal.h2
-rw-r--r--ggml-metal.m106
-rw-r--r--ggml-metal.metal108
-rw-r--r--ggml-quants.c241
-rw-r--r--ggml.c1067
-rw-r--r--ggml.h19
8 files changed, 583 insertions, 1072 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index 16340244..7be63925 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -4489,6 +4489,13 @@ static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
*dsti = __float2half(*xi);
}
+static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
+ const half * xi = (const half *) cxi;
+ half * dsti = (half *) cdsti;
+
+ *dsti = *xi;
+}
+
template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
@@ -4742,6 +4749,25 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
}
+static __global__ void im2col_f32_f16(
+ const float * x, half * dst,
+ int ofs0, int ofs1, int IW, int IH, int CHW,
+ int s0, int s1, int p0, int p1, int d0, int d1) {
+ const int iiw = blockIdx.z * s0 + threadIdx.z * d0 - p0;
+ const int iih = blockIdx.y * s1 + threadIdx.y * d1 - p1;
+
+ const int offset_dst =
+ (threadIdx.x * gridDim.y * gridDim.z + blockIdx.y * gridDim.z + blockIdx.z) * CHW +
+ (blockIdx.x * (blockDim.y * blockDim.z) + threadIdx.y * blockDim.z + threadIdx.z);
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] = __float2half(0.0f);
+ } else {
+ const int offset_src = threadIdx.x * ofs0 + blockIdx.x * ofs1;
+ dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
+ }
+}
+
template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
@@ -5642,6 +5668,16 @@ static void ggml_cpy_f32_f16_cuda(
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
}
+static void ggml_cpy_f16_f16_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
+ const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
+
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
+}
+
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
@@ -5725,6 +5761,15 @@ static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, c
soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
}
+static void im2col_f32_f16_cuda(const float * x, half * dst,
+ int OH, int IW, int IH, int OW, int IC,
+ int KH, int KW, int N, int ofs0, int ofs1,
+ int s0, int s1, int p0, int p1, int d0, int d1, cudaStream_t stream) {
+ dim3 block_nums(IC, OH, OW);
+ dim3 block_dims(N, KH, KW);
+ im2col_f32_f16<<<block_nums, block_dims, 0, stream>>>(x, dst, ofs0, ofs1, IW, IH, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
+}
+
// buffer pool for cuda
#define MAX_CUDA_BUFFERS 256
@@ -6522,8 +6567,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
}
- const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16;
-
+ const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16;
size_t dst_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
@@ -6698,6 +6742,45 @@ inline void ggml_cuda_op_alibi(
(void) src1_dd;
}
+inline void ggml_cuda_op_im2col(
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
+
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16);
+
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
+
+ const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
+
+ const int64_t N = src1->ne[is_2D ? 3 : 2];
+ const int64_t IC = src1->ne[is_2D ? 2 : 1];
+ const int64_t IH = is_2D ? src1->ne[1] : 1;
+ const int64_t IW = src1->ne[0];
+
+ const int64_t KH = is_2D ? src0->ne[1] : 1;
+ const int64_t KW = src0->ne[0];
+
+ const int64_t OH = is_2D ? dst->ne[2] : 1;
+ const int64_t OW = dst->ne[1];
+
+ const size_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
+ const size_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
+
+ im2col_f32_f16_cuda(src1_dd, (half*) dst_dd,
+ OH, IW, IH, OW, IC, KH, KW, N,
+ ofs0, ofs1, s0, s1, p0, p1, d0, d1, main_stream);
+
+ (void) src0;
+ (void) src0_dd;
+}
+
inline void ggml_cuda_op_diag_mask_inf(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
@@ -7610,6 +7693,9 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
ne10, ne11, nb10, nb11, nb12, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
+ ggml_cpy_f16_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
+ ne10, ne11, nb10, nb11, nb12, main_stream);
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
@@ -7641,6 +7727,10 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
}
+void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
+}
+
static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
(void) src0;
(void) src1;
@@ -7934,6 +8024,15 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
return false;
}
+ if (tensor->op == GGML_OP_MUL_MAT) {
+ if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
+#ifndef NDEBUG
+ fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %d, src1->ne[3] = %d - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
+#endif
+ return false;
+ }
+ }
+
switch (tensor->op) {
case GGML_OP_REPEAT:
func = ggml_cuda_repeat;
@@ -8012,6 +8111,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
case GGML_OP_ALIBI:
func = ggml_cuda_alibi;
break;
+ case GGML_OP_IM2COL:
+ func = ggml_cuda_im2col;
+ break;
default:
return false;
}
diff --git a/ggml-impl.h b/ggml-impl.h
index d88f2614..06c07339 100644
--- a/ggml-impl.h
+++ b/ggml-impl.h
@@ -39,12 +39,6 @@ extern "C" {
#endif
#endif
-#undef MIN
-#undef MAX
-
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
diff --git a/ggml-metal.h b/ggml-metal.h
index 096b844e..be2731f8 100644
--- a/ggml-metal.h
+++ b/ggml-metal.h
@@ -26,7 +26,7 @@
#include <stdbool.h>
// max memory buffers that can be mapped to the device
-#define GGML_METAL_MAX_BUFFERS 16
+#define GGML_METAL_MAX_BUFFERS 64
#define GGML_METAL_MAX_COMMAND_BUFFERS 32
struct ggml_tensor;
diff --git a/ggml-metal.m b/ggml-metal.m
index c2cda0bf..3d22b0b2 100644
--- a/ggml-metal.m
+++ b/ggml-metal.m
@@ -86,6 +86,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
+ GGML_METAL_DECL_KERNEL(mul_mv_f16_f16);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
@@ -114,6 +115,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rope_f32);
GGML_METAL_DECL_KERNEL(rope_f16);
GGML_METAL_DECL_KERNEL(alibi_f32);
+ GGML_METAL_DECL_KERNEL(im2col_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
@@ -126,7 +128,7 @@ struct ggml_metal_context {
// MSL code
// TODO: move the contents here when ready
// for now it is easier to work in a separate file
-static NSString * const msl_library_source = @"see metal.metal";
+//static NSString * const msl_library_source = @"see metal.metal";
// Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject
@@ -142,7 +144,8 @@ void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_dat
ggml_metal_log_user_data = user_data;
}
-static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){
+GGML_ATTRIBUTE_FORMAT(2, 3)
+static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
if (ggml_metal_log_callback != NULL) {
va_list args;
va_start(args, format);
@@ -210,7 +213,13 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
} else {
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
- NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
+ NSString * sourcePath;
+ NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
+ if (ggmlMetalPathResources) {
+ sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
+ } else {
+ sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
+ }
if (sourcePath == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
sourcePath = @"ggml-metal.metal";
@@ -281,6 +290,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
+ GGML_METAL_ADD_KERNEL(mul_mv_f16_f16);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
@@ -311,6 +321,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rope_f32);
GGML_METAL_ADD_KERNEL(rope_f16);
GGML_METAL_ADD_KERNEL(alibi_f32);
+ GGML_METAL_ADD_KERNEL(im2col_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
@@ -329,7 +340,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
if ([ctx->device supportsFamily:i]) {
- GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i);
+ GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
break;
}
}
@@ -380,6 +391,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
+ GGML_METAL_DEL_KERNEL(mul_mv_f16_f16);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
@@ -410,6 +422,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rope_f32);
GGML_METAL_DEL_KERNEL(rope_f16);
GGML_METAL_DEL_KERNEL(alibi_f32);
+ GGML_METAL_DEL_KERNEL(im2col_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
@@ -467,6 +480,10 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
const int64_t tsize = ggml_nbytes(t);
+ if (t->buffer && t->buffer->backend && t->buffer->backend->context) {
+ ctx = t->buffer->backend->context;
+ }
+
// find the view that contains the tensor fully
for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
@@ -567,7 +584,7 @@ bool ggml_metal_add_buffer(
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
- GGML_METAL_LOG_WARN(", warning: current allocated size is greater than the recommended max working set size\n", __func__);
+ GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
@@ -1024,7 +1041,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
- [encoder setThreadgroupMemoryLength:MAX(16, nth/32*sizeof(float)) atIndex:0];
+ [encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
@@ -1133,6 +1150,7 @@ void ggml_metal_graph_compute(
switch (src0t) {
case GGML_TYPE_F32:
{
+ GGML_ASSERT(src1t == GGML_TYPE_F32);
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
nrows = 4;
} break;
@@ -1140,13 +1158,18 @@ void ggml_metal_graph_compute(
{
nth0 = 32;
nth1 = 1;
- if (ne11 * ne12 < 4) {
- [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
- } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
- [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
- nrows = ne11;
+ if (src1t == GGML_TYPE_F32) {
+ if (ne11 * ne12 < 4) {
+ [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
+ } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
+ [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
+ nrows = ne11;
+ } else {
+ [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
+ nrows = 4;
+ }
} else {
- [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
+ [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f16];
nrows = 4;
}
} break;
@@ -1336,7 +1359,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
- [encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
+ [encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
@@ -1355,7 +1378,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
- [encoder setThreadgroupMemoryLength:MAX(16, nth*sizeof(float)) atIndex:0];
+ [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
@@ -1410,8 +1433,7 @@ void ggml_metal_graph_compute(
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
- // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
- const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
+ const int n_orig_ctx = ((int32_t *) dst->op_params)[3];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
@@ -1459,6 +1481,58 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
+ case GGML_OP_IM2COL:
+ {
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16);
+
+ const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
+ const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
+
+ const int32_t N = src1->ne[is_2D ? 3 : 2];
+ const int32_t IC = src1->ne[is_2D ? 2 : 1];
+ const int32_t IH = is_2D ? src1->ne[1] : 1;
+ const int32_t IW = src1->ne[0];
+
+ const int32_t KH = is_2D ? src0->ne[1] : 1;
+ const int32_t KW = src0->ne[0];
+
+ const int32_t OH = is_2D ? dst->ne[2] : 1;
+ const int32_t OW = dst->ne[1];
+
+ const int32_t CHW = IC * KH * KW;
+
+ const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
+ const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
+
+ switch (src0->type) {
+ case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
+ case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_im2col_f16]; break;
+ default: GGML_ASSERT(false);
+ };
+
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
+ [encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
+ [encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
+ [encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
+ [encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
+ [encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
+ [encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
+ [encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
+ [encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
+ [encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
+ [encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
+ [encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
+
+ [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
+ } break;
case GGML_OP_DUP:
case GGML_OP_CPY:
case GGML_OP_CONT:
diff --git a/ggml-metal.metal b/ggml-metal.metal
index 7c35f23a..5d1357cd 100644
--- a/ggml-metal.metal
+++ b/ggml-metal.metal
@@ -792,7 +792,7 @@ kernel void kernel_mul_mv_f32_f32(
constant int64_t & ne0,
constant int64_t & ne1,
uint3 tgpig[[threadgroup_position_in_grid]],
- uint tiisg[[thread_index_in_simdgroup]]) {
+ uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t rb = tgpig.y*N_F32_F32;
@@ -844,6 +844,79 @@ kernel void kernel_mul_mv_f32_f32(
}
}
+#define N_F16_F16 4
+
+kernel void kernel_mul_mv_f16_f16(
+ device const char * src0,
+ device const char * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne01,
+ constant int64_t & ne02,
+ constant uint64_t & nb00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb02,
+ constant int64_t & ne10,
+ constant int64_t & ne11,
+ constant int64_t & ne12,
+ constant uint64_t & nb10,
+ constant uint64_t & nb11,
+ constant uint64_t & nb12,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint tiisg[[thread_index_in_simdgroup]]) {
+
+ const int64_t r0 = tgpig.x;
+ const int64_t rb = tgpig.y*N_F16_F16;
+ const int64_t im = tgpig.z;
+
+ device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
+
+ if (ne00 < 128) {
+ for (int row = 0; row < N_F16_F16; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00; i += 32) {
+ sumf += (half) x[i] * (half) y[i];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ } else {
+ device const half4 * x4 = (device const half4 *)x;
+ for (int row = 0; row < N_F16_F16; ++row) {
+ int r1 = rb + row;
+ if (r1 >= ne11) {
+ break;
+ }
+
+ device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
+ device const half4 * y4 = (device const half4 *) y;
+
+ float sumf = 0;
+ for (int i = tiisg; i < ne00/4; i += 32) {
+ for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
+ }
+
+ float all_sum = simd_sum(sumf);
+ if (tiisg == 0) {
+ for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
+ dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
+ }
+ }
+ }
+}
+
kernel void kernel_mul_mv_f16_f32_1row(
device const char * src0,
device const char * src1,
@@ -1229,6 +1302,39 @@ kernel void kernel_rope(
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
+kernel void kernel_im2col_f16(
+ device const float * x,
+ device half * dst,
+ constant int32_t & ofs0,
+ constant int32_t & ofs1,
+ constant int32_t & IW,
+ constant int32_t & IH,
+ constant int32_t & CHW,
+ constant int32_t & s0,
+ constant int32_t & s1,
+ constant int32_t & p0,
+ constant int32_t & p1,
+ constant int32_t & d0,
+ constant int32_t & d1,
+ uint3 tgpig[[threadgroup_position_in_grid]],
+ uint3 tgpg[[threadgroups_per_grid]],
+ uint3 tpitg[[thread_position_in_threadgroup]],
+ uint3 ntg[[threads_per_threadgroup]]) {
+ const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
+ const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
+
+ const int32_t offset_dst =
+ (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
+ (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] = 0.0f;
+ } else {
+ const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
+ dst[offset_dst] = x[offset_src + iih * IW + iiw];
+ }
+}
+
kernel void kernel_cpy_f16_f16(
device const half * src0,
device half * dst,
diff --git a/ggml-quants.c b/ggml-quants.c
index 740be6dc..a48eda73 100644
--- a/ggml-quants.c
+++ b/ggml-quants.c
@@ -14,26 +14,6 @@
//
#include <arm_neon.h>
-#if !defined(__aarch64__)
-inline static int32_t vaddvq_s16(int16x8_t v) {
- return
- (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
- (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
- (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
- (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
-}
-
-inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
- int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
- int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
- return vcombine_s16(a0, b0);
-}
-
-inline static int32_t vaddvq_s32(int32x4_t v) {
- return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
-}
-#endif
-
#else
#ifdef __wasm_simd128__
@@ -47,13 +27,15 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
-#if !defined(__riscv) && !defined(__s390__)
+#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
+#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
+#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
@@ -61,6 +43,7 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
#undef MIN
#undef MAX
+
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
@@ -283,9 +266,31 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
#if defined(__ARM_NEON)
-
#if !defined(__aarch64__)
+// 64-bit compatibility
+
+// vaddvq_s16
+// vpaddq_s16
+// vaddvq_s32
+// vaddvq_f32
+// vmaxvq_f32
+// vcvtnq_s32_f32
+
+inline static int32_t vaddvq_s16(int16x8_t v) {
+ return
+ (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
+ (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
+ (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
+ (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
+}
+
+inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
+ int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
+ int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
+ return vcombine_s16(a0, b0);
+}
+
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
@@ -311,6 +316,96 @@ inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
return res;
}
+// vld1q_s16_x2
+// vld1q_u8_x2
+// vld1q_u8_x4
+// vld1q_s8_x2
+// vld1q_s8_x4
+// TODO: double-check these work correctly
+
+typedef struct ggml_int16x8x2_t {
+ int16x8_t val[2];
+} ggml_int16x8x2_t;
+
+inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
+ ggml_int16x8x2_t res;
+
+ res.val[0] = vld1q_s16(ptr + 0);
+ res.val[1] = vld1q_s16(ptr + 8);
+
+ return res;
+}
+
+typedef struct ggml_uint8x16x2_t {
+ uint8x16_t val[2];
+} ggml_uint8x16x2_t;
+
+inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
+ ggml_uint8x16x2_t res;
+
+ res.val[0] = vld1q_u8(ptr + 0);
+ res.val[1] = vld1q_u8(ptr + 16);
+
+ return res;
+}
+
+typedef struct ggml_uint8x16x4_t {
+ uint8x16_t val[4];
+} ggml_uint8x16x4_t;
+
+inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
+ ggml_uint8x16x4_t res;
+
+ res.val[0] = vld1q_u8(ptr + 0);
+ res.val[1] = vld1q_u8(ptr + 16);
+ res.val[2] = vld1q_u8(ptr + 32);
+ res.val[3] = vld1q_u8(ptr + 48);
+
+ return res;
+}
+
+typedef struct ggml_int8x16x2_t {
+ int8x16_t val[2];
+} ggml_int8x16x2_t;
+
+inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
+ ggml_int8x16x2_t res;
+
+ res.val[0] = vld1q_s8(ptr + 0);
+ res.val[1] = vld1q_s8(ptr + 16);
+
+ return res;
+}
+
+typedef struct ggml_int8x16x4_t {
+ int8x16_t val[4];
+} ggml_int8x16x4_t;
+
+inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
+ ggml_int8x16x4_t res;
+
+ res.val[0] = vld1q_s8(ptr + 0);
+ res.val[1] = vld1q_s8(ptr + 16);
+ res.val[2] = vld1q_s8(ptr + 32);
+ res.val[3] = vld1q_s8(ptr + 48);
+
+ return res;
+}
+
+#else
+
+#define ggml_int16x8x2_t int16x8x2_t
+#define ggml_uint8x16x2_t uint8x16x2_t
+#define ggml_uint8x16x4_t uint8x16x4_t
+#define ggml_int8x16x2_t int8x16x2_t
+#define ggml_int8x16x4_t int8x16x4_t
+
+#define ggml_vld1q_s16_x2 vld1q_s16_x2
+#define ggml_vld1q_u8_x2 vld1q_u8_x2
+#define ggml_vld1q_u8_x4 vld1q_u8_x4
+#define ggml_vld1q_s8_x2 vld1q_s8_x2
+#define ggml_vld1q_s8_x4 vld1q_s8_x4
+
#endif
#endif
@@ -3557,7 +3652,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t vzero = vdupq_n_s32(0);
#endif
- int8x16x2_t q2bytes;
+ ggml_int8x16x2_t q2bytes;
uint8_t aux[16];
float sum = 0;
@@ -3576,8 +3671,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
vst1q_u8(aux, scales);
const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
- const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
- const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
+ const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
+ const ggml_int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
@@ -3605,7 +3700,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
#endif
#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
- q8bytes = vld1q_s8_x2(q8); q8 += 32;\
+ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
MULTIPLY_ACCUM_WITH_SCALE((index));
@@ -3613,9 +3708,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) {
- const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
+ const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
- int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
MULTIPLY_ACCUM_WITH_SCALE(0);
@@ -3949,7 +4044,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t vzero = vdupq_n_s32(0);
#endif
- int8x16x4_t q2bytes;
+ ggml_int8x16x4_t q2bytes;
uint32_t aux32[2];
const uint8_t * scales = (const uint8_t *)aux32;
@@ -3974,7 +4069,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t q2bits = vld1q_u8(q2);
- const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
+ const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
@@ -4238,7 +4333,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t m3 = vshlq_n_u8(m0, 3);
const int8_t m32 = 32;
- int8x16x4_t q3bytes;
+ ggml_int8x16x4_t q3bytes;
float sum = 0;
@@ -4250,9 +4345,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict qh = x[i].hmask;
const int8_t * restrict q8 = y[i].qs;
- uint8x16x2_t qhbits = vld1q_u8_x2(qh);
+ ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
- uint8x16x4_t q3h;
+ ggml_uint8x16x4_t q3h;
int32_t isum = 0;
@@ -4268,9 +4363,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) {
- const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
- const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
- const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
+ const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
+ const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
+ const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
@@ -4772,7 +4867,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t m3b = vdupq_n_u8(0x3);
const uint8x16_t mh = vdupq_n_u8(4);
- int8x16x4_t q3bytes;
+ ggml_int8x16x4_t q3bytes;
uint16_t aux16[2];
int8_t * scales = (int8_t *)aux16;
@@ -4781,11 +4876,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
for (int i = 0; i < nb; ++i) {
- uint8x16x4_t q3h;
+ ggml_uint8x16x4_t q3h;
const uint8x8_t hbits = vld1_u8(x[i].hmask);
const uint8x16_t q3bits = vld1q_u8(x[i].qs);
- const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
+ const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
const uint16_t a = *(const uint16_t *)x[i].scales;
aux16[0] = a & 0x0f0f;
@@ -5134,8 +5229,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0);
#endif
- int8x16x2_t q4bytes;
- int8x16x2_t q8bytes;
+ ggml_int8x16x2_t q4bytes;
+ ggml_int8x16x2_t q8bytes;
float sumf = 0;
@@ -5170,17 +5265,17 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/64; ++j) {
- const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
+ const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
#ifdef __ARM_FEATURE_DOTPROD
- q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
sumi1 += vaddvq_s32(p1) * scales[2*j+0];
- q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
@@ -5188,7 +5283,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
sumi2 += vaddvq_s32(p2) * scales[2*j+1];
#else
- q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@@ -5197,7 +5292,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
- q8bytes = vld1q_s8_x2(q8); q8 += 32;
+ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@@ -5512,8 +5607,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
float sumf = 0;
- int8x16x2_t q4bytes;
- int8x16x4_t q8bytes;
+ ggml_int8x16x2_t q4bytes;
+ ggml_int8x16x4_t q8bytes;
float sum_mins = 0.f;
@@ -5534,10 +5629,10 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const float d = y[i].d * (float)x[i].d[0];
- const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
+ const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
#ifdef __ARM_FEATURE_DOTPROD
- q8bytes = vld1q_s8_x4(q8);
+ q8bytes = ggml_vld1q_s8_x4(q8);
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
@@ -5551,7 +5646,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
#else
- q8bytes = vld1q_s8_x4(q8);
+ q8bytes = ggml_vld1q_s8_x4(q8);
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
@@ -5785,7 +5880,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0);
#endif
- int8x16x4_t q5bytes;
+ ggml_int8x16x4_t q5bytes;
float sumf = 0;
@@ -5815,16 +5910,16 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
- uint8x16x2_t qhbits = vld1q_u8_x2(qh);
+ ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
- uint8x16x4_t q5h;
+ ggml_uint8x16x4_t q5h;
int32_t sumi = 0;
for (int j = 0; j < QK_K/64; ++j) {
- const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
- const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
+ const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
+ const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
@@ -6218,8 +6313,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t mzero = vdupq_n_s32(0);
#endif
- int8x16x4_t q5bytes;
- uint8x16x4_t q5h;
+ ggml_int8x16x4_t q5bytes;
+ ggml_uint8x16x4_t q5h;
float sumf = 0;
@@ -6234,8 +6329,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x8_t qhbits = vld1_u8(qh);
- const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
- const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
+ const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
+ const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
@@ -6511,8 +6606,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t mone = vdupq_n_u8(3);
- int8x16x4_t q6bytes;
- uint8x16x4_t q6h;
+ ggml_int8x16x4_t q6bytes;
+ ggml_uint8x16x4_t q6h;
for (int i = 0; i < nb; ++i) {
@@ -6524,9 +6619,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const int8_t * restrict scale = x[i].scales;
- const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
+ const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
const int8x16_t scales = vld1q_s8(scale);
- const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
+ const ggml_int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
@@ -6538,9 +6633,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
for (int j = 0; j < QK_K/128; ++j) {
- uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
- uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
- int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
+ ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
+ ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
+ ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
@@ -6583,7 +6678,7 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
scale += 2;
#endif
- q8bytes = vld1q_s8_x4(q8); q8 += 64;
+ q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
shifted = vshrq_n_u8(qhbits.val[0], 4);
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
@@ -6987,8 +7082,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t mone = vdupq_n_u8(3);
- int8x16x4_t q6bytes;
- uint8x16x4_t q6h;
+ ggml_int8x16x4_t q6bytes;
+ ggml_uint8x16x4_t q6h;
for (int i = 0; i < nb; ++i) {
@@ -7002,9 +7097,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
int32_t isum = 0;
- uint8x16_t qhbits = vld1q_u8(qh);
- uint8x16x2_t q6bits = vld1q_u8_x2(q6);
- int8x16x4_t q8bytes = vld1q_s8_x4(q8);
+ uint8x16_t qhbits = vld1q_u8(qh);
+ ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
+ ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
diff --git a/ggml.c b/ggml.c
index da78e6de..3202a517 100644
--- a/ggml.c
+++ b/ggml.c
@@ -271,6 +271,12 @@ inline static void * ggml_aligned_malloc(size_t size) {
// floating point type used to accumulate sums
typedef double ggml_float;
+#undef MIN
+#undef MAX
+
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
//
// global data
//
@@ -604,6 +610,18 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
// simd mappings
//
+#if defined(__ARM_NEON)
+#if !defined(__aarch64__)
+
+// 64-bit compatibility
+
+inline static float vaddvq_f32(float32x4_t v) {
+ return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
+}
+
+#endif
+#endif
+
// we define a common set of C macros which map to specific intrinsics based on the current architecture
// we then implement the fundamental computation operations below using only these macros
// adding support for new architectures requires to define the corresponding SIMD macros
@@ -1616,13 +1634,8 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"ROPE_BACK",
"ALIBI",
"CLAMP",
- "CONV_1D",
- "CONV_1D_STAGE_0",
- "CONV_1D_STAGE_1",
"CONV_TRANSPOSE_1D",
- "CONV_2D",
- "CONV_2D_STAGE_0",
- "CONV_2D_STAGE_1",
+ "IM2COL",
"CONV_TRANSPOSE_2D",
"POOL_1D",
"POOL_2D",
@@ -1653,7 +1666,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK",
};
-static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
+static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@@ -1703,13 +1716,8 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"rope_back(x)",
"alibi(x)",
"clamp(x)",
- "conv_1d(x)",
- "conv_1d_stage_0(x)",
- "conv_1d_stage_1(x)",
"conv_transpose_1d(x)",
- "conv_2d(x)",
- "conv_2d_stage_0(x)",
- "conv_2d_stage_1(x)",
+ "im2col(x)",
"conv_transpose_2d(x)",
"pool_1d(x)",
"pool_2d(x)",
@@ -1740,7 +1748,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)",
};
-static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
+static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@@ -1768,13 +1776,7 @@ static void ggml_setup_op_has_task_pass(void) {
p[GGML_OP_GET_ROWS_BACK ] = true;
p[GGML_OP_DIAG_MASK_INF ] = true;
p[GGML_OP_DIAG_MASK_ZERO ] = true;
- p[GGML_OP_CONV_1D ] = true;
- p[GGML_OP_CONV_1D_STAGE_0 ] = true;
- p[GGML_OP_CONV_1D_STAGE_1 ] = true;
p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
- p[GGML_OP_CONV_2D ] = true;
- p[GGML_OP_CONV_2D_STAGE_0 ] = true;
- p[GGML_OP_CONV_2D_STAGE_1 ] = true;
p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
p[GGML_OP_FLASH_ATTN_BACK ] = true;
p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
@@ -5128,82 +5130,6 @@ static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p,
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
}
-// im2col: [N, IC, IL] => [N, OL, IC*K]
-// a: [OC,IC, K]
-// b: [N, IC, IL]
-// result: [N, OL, IC*K]
-static struct ggml_tensor * ggml_conv_1d_stage_0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- GGML_ASSERT(a->ne[1] == b->ne[1]);
- bool is_node = false;
-
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
-
- const int64_t ne[4] = {
- a->ne[1] * a->ne[0],
- OL,
- b->ne[2],
- 1,
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
-
- int32_t params[] = { s0, p0, d0 };
- ggml_set_op_params(result, params, sizeof(params));
-
- result->op = GGML_OP_CONV_1D_STAGE_0;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_conv_1d_stage_1
-
-// gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
-// a: [OC, IC, K]
-// b: [N, OL, IC * K]
-// result: [N, OC, OL]
-static struct ggml_tensor * ggml_conv_1d_stage_1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t ne[4] = {
- b->ne[1],
- a->ne[2],
- b->ne[2],
- 1,
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- result->op = GGML_OP_CONV_1D_STAGE_1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-}
-
-// ggml_conv_1d
-
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -5211,43 +5137,17 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
int s0,
int p0,
int d0) {
- struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
- result = ggml_conv_1d_stage_1(ctx, a, result);
- return result;
-}
-
-// GGML_API struct ggml_tensor * ggml_conv_1d(
-// struct ggml_context * ctx,
-// struct ggml_tensor * a,
-// struct ggml_tensor * b,
-// int s0,
-// int p0,
-// int d0) {
-// GGML_ASSERT(ggml_is_matrix(b));
-// GGML_ASSERT(a->ne[1] == b->ne[1]);
-// bool is_node = false;
-
-// if (a->grad || b->grad) {
-// GGML_ASSERT(false); // TODO: implement backward
-// is_node = true;
-// }
-
-// const int64_t ne[4] = {
-// ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
-// a->ne[2], 1, 1,
-// };
-// struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+ struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
-// int32_t params[] = { s0, p0, d0 };
-// ggml_set_op_params(result, params, sizeof(params));
+ struct ggml_tensor * result =
+ ggml_mul_mat(ctx,
+ ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
+ ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
-// result->op = GGML_OP_CONV_1D;
-// result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-// result->src[0] = a;
-// result->src[1] = b;
+ result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
-// return result;
-// }
+ return result;
+}
// ggml_conv_1d_ph
@@ -5310,7 +5210,7 @@ GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
// a: [OC,IC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OH, OW, IC*KH*KW]
-static struct ggml_tensor * ggml_conv_2d_stage_0(
+struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
@@ -5319,9 +5219,14 @@ static struct ggml_tensor * ggml_conv_2d_stage_0(
int p0,
int p1,
int d0,
- int d1) {
+ int d1,
+ bool is_2D) {
- GGML_ASSERT(a->ne[2] == b->ne[2]);
+ if(is_2D) {
+ GGML_ASSERT(a->ne[2] == b->ne[2]);
+ } else {
+ GGML_ASSERT(a->ne[1] == b->ne[1]);
+ }
bool is_node = false;
if (a->grad || b->grad) {
@@ -5329,81 +5234,51 @@ static struct ggml_tensor * ggml_conv_2d_stage_0(
is_node = true;
}
- const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
- const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
+ const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
+ const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
const int64_t ne[4] = {
- a->ne[2] * a->ne[1] * a->ne[0],
+ is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
OW,
- OH,
- b->ne[3],
+ is_2D ? OH : b->ne[2],
+ is_2D ? b->ne[3] : 1,
};
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
- int32_t params[] = { s0, s1, p0, p1, d0, d1 };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
+ int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CONV_2D_STAGE_0;
+ result->op = GGML_OP_IM2COL;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
-
-}
-
-// gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
-// a: [OC, IC, KH, KW]
-// b: [N, OH, OW, IC * KH * KW]
-// result: [N, OC, OH, OW]
-static struct ggml_tensor * ggml_conv_2d_stage_1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
-
- bool is_node = false;
-
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
-
- const int64_t ne[4] = {
- b->ne[1],
- b->ne[2],
- a->ne[3],
- b->ne[3],
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
- result->op = GGML_OP_CONV_2D_STAGE_1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
-
- return result;
-
}
// a: [OC,IC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OC, OH, OW]
struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1) {
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1) {
+ struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
- struct ggml_tensor * result = ggml_conv_2d_stage_0(ctx, a, b, s0, s1, p0, p1, d0, d1); // [N, OH, OW, IC * KH * KW]
- result = ggml_conv_2d_stage_1(ctx, a, result);
+ struct ggml_tensor * result =
+ ggml_mul_mat(ctx,
+ ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
+ ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
- return result;
+ result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
+ return result;
}
// ggml_conv_2d_sk_p0
@@ -9498,6 +9373,8 @@ static bool ggml_compute_forward_mul_mat_use_blas(
// TODO: find the optimal values for these
if (ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
+ src0->type == GGML_TYPE_F32 &&
+ src1->type == GGML_TYPE_F32 &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
@@ -9536,7 +9413,7 @@ static void ggml_compute_forward_mul_mat(
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == sizeof(float));
+ GGML_ASSERT(nb10 == ggml_type_size(src1->type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
@@ -11434,416 +11311,6 @@ static void ggml_compute_forward_rope_back(
}
}
-// ggml_compute_forward_conv_1d
-
-static void ggml_compute_forward_conv_1d_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00;
-
- // size of the convolution row - the kernel size unrolled across all input channels
- const int ew0 = nk*ne01;
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_INIT) {
- memset(params->wdata, 0, params->wsize);
-
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- ggml_fp16_t * dst_data = wdata;
-
- for (int64_t i0 = 0; i0 < ne0; i0++) {
- for (int64_t ik = 0; ik < nk; ik++) {
- const int idx0 = i0*s0 + ik*d0 - p0;
-
- if(!(idx0 < 0 || idx0 >= ne10)) {
- dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
- }
- }
- }
- }
-
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- // total rows in dst
- const int nr = ne2;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
- for (int i2 = 0; i2 < ne2; i2++) {
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
-
- for (int i0 = 0; i0 < ne0; i0++) {
- ggml_vec_dot_f16(ew0, dst_data + i0,
- (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
- (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
- }
- }
- }
-}
-
-static void ggml_compute_forward_conv_1d_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int nk = ne00;
-
- const int ew0 = nk*ne01;
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
-
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_INIT) {
- memset(params->wdata, 0, params->wsize);
-
- float * const wdata = (float *) params->wdata + 0;
-
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- float * dst_data = wdata;
-
- for (int64_t i0 = 0; i0 < ne0; i0++) {
- for (int64_t ik = 0; ik < nk; ik++) {
- const int idx0 = i0*s0 + ik*d0 - p0;
-
- if(!(idx0 < 0 || idx0 >= ne10)) {
- dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
- }
- }
- }
- }
-
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- // total rows in dst
- const int nr = ne02;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- float * const wdata = (float *) params->wdata + 0;
-
- for (int i2 = 0; i2 < ne2; i2++) {
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
-
- for (int i0 = 0; i0 < ne0; i0++) {
- ggml_vec_dot_f32(ew0, dst_data + i0,
- (float *) ((char *) src0->data + i1*nb02),
- (float *) wdata + i2*nb2 + i0*ew0);
- }
- }
- }
-}
-
-// TODO: reuse ggml_mul_mat or implement ggml_im2col and remove stage_0 and stage_1
-static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
- ggml_fp16_t * A,
- ggml_fp16_t * B,
- float * C,
- const int ith, const int nth) {
- // does not seem to make a difference
- int64_t m0, m1, n0, n1;
- // patches per thread
- if (m > n) {
- n0 = 0;
- n1 = n;
-
- // total patches in dst
- const int np = m;
-
- // patches per thread
- const int dp = (np + nth - 1)/nth;
-
- // patch range for this thread
- m0 = dp*ith;
- m1 = MIN(m0 + dp, np);
- } else {
- m0 = 0;
- m1 = m;
-
- // total patches in dst
- const int np = n;
-
- // patches per thread
- const int dp = (np + nth - 1)/nth;
-
- // patch range for this thread
- n0 = dp*ith;
- n1 = MIN(n0 + dp, np);
- }
-
- // block-tiling attempt
- int64_t blck_n = 16;
- int64_t blck_m = 16;
-
- // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
- // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
- // if (blck_size > 0) {
- // blck_0 = 4;
- // blck_1 = blck_size / blck_0;
- // if (blck_1 < 0) {
- // blck_1 = 1;
- // }
- // // blck_0 = (int64_t)sqrt(blck_size);
- // // blck_1 = blck_0;
- // }
- // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
-
- for (int j = n0; j < n1; j+=blck_n) {
- for (int i = m0; i < m1; i+=blck_m) {
- // printf("i j k => %d %d %d\n", i, j, K);
- for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
- for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
- ggml_vec_dot_f16(k,
- C + ii*n + jj,
- A + ii * k,
- B + jj * k);
- }
- }
- }
- }
-}
-
-// src0: kernel [OC, IC, K]
-// src1: signal [N, IC, IL]
-// dst: result [N, OL, IC*K]
-static void ggml_compute_forward_conv_1d_stage_0_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int64_t N = ne12;
- const int64_t IC = ne11;
- const int64_t IL = ne10;
-
- const int64_t K = ne00;
-
- const int64_t OL = ne1;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_INIT) {
- memset(dst->data, 0, ggml_nbytes(dst));
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- // im2col: [N, IC, IL] => [N, OL, IC*K]
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
-
- for (int64_t in = 0; in < N; in++) {
- for (int64_t iol = 0; iol < OL; iol++) {
- for (int64_t iic = ith; iic < IC; iic+=nth) {
-
- // micro kernel
- ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
- const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
-
- for (int64_t ik = 0; ik < K; ik++) {
- const int64_t iil = iol*s0 + ik*d0 - p0;
-
- if (!(iil < 0 || iil >= IL)) {
- dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
- }
- }
- }
- }
- }
- }
-}
-
-// gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
-// src0: [OC, IC, K]
-// src1: [N, OL, IC * K]
-// result: [N, OC, OL]
-static void ggml_compute_forward_conv_1d_stage_1_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- if (params->type == GGML_TASK_INIT) {
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb0 == sizeof(float));
-
- const int N = ne12;
- const int OL = ne11;
-
- const int OC = ne02;
- const int IC = ne01;
- const int K = ne00;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- int64_t m = OC;
- int64_t n = OL;
- int64_t k = IC * K;
-
- // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
- for (int i = 0; i < N; i++) {
- ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
- ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
- float * C = (float *)dst->data + i * m * n; // [m, n]
-
- gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
- }
-}
-
-static void ggml_compute_forward_conv_1d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch(src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-static void ggml_compute_forward_conv_1d_stage_0(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch(src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-static void ggml_compute_forward_conv_1d_stage_1(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch(src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
// ggml_compute_forward_conv_transpose_1d
static void ggml_compute_forward_conv_transpose_1d_f16_f32(
@@ -12055,12 +11522,10 @@ static void ggml_compute_forward_conv_transpose_1d(
}
}
-// ggml_compute_forward_conv_2d
-
// src0: kernel [OC, IC, KH, KW]
// src1: image [N, IC, IH, IW]
// dst: result [N, OH, OW, IC*KH*KW]
-static void ggml_compute_forward_conv_2d_stage_0_f32(
+static void ggml_compute_forward_im2col_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
@@ -12074,34 +11539,35 @@ static void ggml_compute_forward_conv_2d_stage_0_f32(
GGML_TENSOR_BINARY_OP_LOCALS;
- const int64_t N = ne13;
- const int64_t IC = ne12;
- const int64_t IH = ne11;
+ const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
+ const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t N = is_2D ? ne13 : ne12;
+ const int64_t IC = is_2D ? ne12 : ne11;
+ const int64_t IH = is_2D ? ne11 : 1;
const int64_t IW = ne10;
- // const int64_t OC = ne03;
- // const int64_t IC = ne02;
- const int64_t KH = ne01;
+ const int64_t KH = is_2D ? ne01 : 1;
const int64_t KW = ne00;
- const int64_t OH = ne2;
+ const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
- const int ith = params->ith;
- const int nth = params->nth;
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
+ int ofs0 = is_2D ? nb13 : nb12;
+ int ofs1 = is_2D ? nb12 : nb11;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
- memset(dst->data, 0, ggml_nbytes(dst));
return;
}
@@ -12114,20 +11580,22 @@ static void ggml_compute_forward_conv_2d_stage_0_f32(
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) {
+ for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic+=nth) {
+ for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
+ const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
- for (int64_t ikh = 0; ikh < KH; ikh++) {
+ for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
- if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
+ } else {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
}
}
@@ -12139,223 +11607,7 @@ static void ggml_compute_forward_conv_2d_stage_0_f32(
}
}
-// gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
-// src0: [OC, IC, KH, KW]
-// src1: [N, OH, OW, IC * KH * KW]
-// result: [N, OC, OH, OW]
-static void ggml_compute_forward_conv_2d_stage_1_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- if (params->type == GGML_TASK_INIT) {
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb0 == sizeof(float));
-
- const int N = ne13;
- const int OH = ne12;
- const int OW = ne11;
-
- const int OC = ne03;
- const int IC = ne02;
- const int KH = ne01;
- const int KW = ne00;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- int64_t m = OC;
- int64_t n = OH * OW;
- int64_t k = IC * KH * KW;
-
- // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
- for (int i = 0; i < N; i++) {
- ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
- ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
- float * C = (float *)dst->data + i * m * n; // [m, n]
-
- gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
- }
-}
-
-static void ggml_compute_forward_conv_2d_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS
-
- // src1: image [N, IC, IH, IW]
- // src0: kernel [OC, IC, KH, KW]
- // dst: result [N, OC, OH, OW]
- // ne12: IC
- // ne0: OW
- // ne1: OH
- // nk0: KW
- // nk1: KH
- // ne13: N
-
- const int N = ne13;
- const int IC = ne12;
- const int IH = ne11;
- const int IW = ne10;
-
- const int OC = ne03;
- // const int IC = ne02;
- const int KH = ne01;
- const int KW = ne00;
-
- const int OH = ne1;
- const int OW = ne0;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- // const int nk0 = ne00;
- // const int nk1 = ne01;
-
- // size of the convolution row - the kernel size unrolled across all channels
- // const int ew0 = nk0*nk1*ne02;
- // ew0: IC*KH*KW
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
-
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->type == GGML_TASK_INIT) {
- memset(params->wdata, 0, params->wsize);
-
- // prepare source data (src1)
- // im2col: [N, IC, IH, IW] => [N*OH*OW, IC*KH*KW]
-
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
- for (int in = 0; in < N; in++) {
- for (int iic = 0; iic < IC; iic++) {
- for (int ioh = 0; ioh < OH; ioh++) {
- for (int iow = 0; iow < OW; iow++) {
-
- // micro kernel
- ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
-
- for (int ikh = 0; ikh < KH; ikh++) {
- for (int ikw = 0; ikw < KW; ikw++) {
- const int iiw = iow*s0 + ikw*d0 - p0;
- const int iih = ioh*s1 + ikh*d1 - p1;
-
- if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
-
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- // wdata: [N*OH*OW, IC*KH*KW]
- // dst: result [N, OC, OH, OW]
- // src0: kernel [OC, IC, KH, KW]
-
- int64_t m = OC;
- int64_t n = OH * OW;
- int64_t k = IC * KH * KW;
-
- // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
- for (int i = 0; i < N; i++) {
- ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
- ggml_fp16_t * B = (ggml_fp16_t *)wdata + i * m * k; // [n, k]
- float * C = (float *)dst->data + i * m * n; // [m * k]
-
- gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
- }
-}
-
-static void ggml_compute_forward_conv_2d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
- GGML_ASSERT(false);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-static void ggml_compute_forward_conv_2d_stage_0(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_2d_stage_0_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(false);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
-static void ggml_compute_forward_conv_2d_stage_1(
+static void ggml_compute_forward_im2col(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
@@ -12363,7 +11615,7 @@ static void ggml_compute_forward_conv_2d_stage_1(
switch (src0->type) {
case GGML_TYPE_F16:
{
- ggml_compute_forward_conv_2d_stage_1_f16(params, src0, src1, dst);
+ ggml_compute_forward_im2col_f16(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
@@ -14580,33 +13832,13 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_clamp(params, tensor->src[0], tensor);
} break;
- case GGML_OP_CONV_1D:
- {
- ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CONV_1D_STAGE_0:
- {
- ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CONV_1D_STAGE_1:
- {
- ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
- } break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
} break;
- case GGML_OP_CONV_2D:
- {
- ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CONV_2D_STAGE_0:
- {
- ggml_compute_forward_conv_2d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CONV_2D_STAGE_1:
+ case GGML_OP_IM2COL:
{
- ggml_compute_forward_conv_2d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
+ ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
@@ -15588,31 +14820,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
GGML_ASSERT(false); // TODO: not implemented
} break;
- case GGML_OP_CONV_1D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_1D_STAGE_0:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_1D_STAGE_1:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
- case GGML_OP_CONV_2D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_2D_STAGE_0:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_2D_STAGE_1:
+ case GGML_OP_IM2COL:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
@@ -16341,31 +15553,11 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{
n_tasks = 1; //TODO
} break;
- case GGML_OP_CONV_1D:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CONV_1D_STAGE_0:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CONV_1D_STAGE_1:
- {
- n_tasks = n_threads;
- } break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
n_tasks = n_threads;
} break;
- case GGML_OP_CONV_2D:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CONV_2D_STAGE_0:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CONV_2D_STAGE_1:
+ case GGML_OP_IM2COL:
{
n_tasks = n_threads;
} break;
@@ -16450,6 +15642,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
} break;
default:
{
+ printf("%s: op %s not implemented\n", __func__, ggml_op_name(node->op));
GGML_ASSERT(false);
} break;
}
@@ -16652,38 +15845,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
} break;
- case GGML_OP_CONV_1D:
- {
- GGML_ASSERT(node->src[0]->ne[3] == 1);
- GGML_ASSERT(node->src[1]->ne[2] == 1);
- GGML_ASSERT(node->src[1]->ne[3] == 1);
-
- const int64_t ne00 = node->src[0]->ne[0];
- const int64_t ne01 = node->src[0]->ne[1];
- const int64_t ne02 = node->src[0]->ne[2];
-
- const int64_t ne10 = node->src[1]->ne[0];
- const int64_t ne11 = node->src[1]->ne[1];
-
- const int64_t ne0 = node->ne[0];
- const int64_t ne1 = node->ne[1];
- const int64_t nk = ne00;
- const int64_t ew0 = nk * ne01;
-
- UNUSED(ne02);
- UNUSED(ne10);
- UNUSED(ne11);
-
- if (node->src[0]->type == GGML_TYPE_F16 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
- } else if (node->src[0]->type == GGML_TYPE_F32 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*(ne0*ne1*ew0);
- } else {
- GGML_ASSERT(false);
- }
- } break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
GGML_ASSERT(node->src[0]->ne[3] == 1);
@@ -16709,37 +15870,9 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
GGML_ASSERT(false);
}
} break;
- case GGML_OP_CONV_2D:
+ case GGML_OP_IM2COL:
{
- const int64_t ne00 = node->src[0]->ne[0]; // W
- const int64_t ne01 = node->src[0]->ne[1]; // H
- const int64_t ne02 = node->src[0]->ne[2]; // C
- const int64_t ne03 = node->src[0]->ne[3]; // N
-
- const int64_t ne10 = node->src[1]->ne[0]; // W
- const int64_t ne11 = node->src[1]->ne[1]; // H
- const int64_t ne12 = node->src[1]->ne[2]; // C
-
- const int64_t ne0 = node->ne[0];
- const int64_t ne1 = node->ne[1];
- const int64_t ne2 = node->ne[2];
- const int64_t ne3 = node->ne[3];
- const int64_t nk = ne00*ne01;
- const int64_t ew0 = nk * ne02;
-
- UNUSED(ne03);
- UNUSED(ne2);
-
- if (node->src[0]->type == GGML_TYPE_F16 &&
- node->src[1]->type == GGML_TYPE_F32) {
- // im2col: [N*OH*OW, IC*KH*KW]
- cur = sizeof(ggml_fp16_t)*(ne3*ne0*ne1*ew0);
- } else if (node->src[0]->type == GGML_TYPE_F32 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)* (ne10*ne11*ne12);
- } else {
- GGML_ASSERT(false);
- }
+ n_tasks = n_threads;
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
diff --git a/ggml.h b/ggml.h
index 0118c99d..8e6b6460 100644
--- a/ggml.h
+++ b/ggml.h
@@ -403,13 +403,8 @@ extern "C" {
GGML_OP_ROPE_BACK,
GGML_OP_ALIBI,
GGML_OP_CLAMP,
- GGML_OP_CONV_1D,
- GGML_OP_CONV_1D_STAGE_0, // internal
- GGML_OP_CONV_1D_STAGE_1, // internal
GGML_OP_CONV_TRANSPOSE_1D,
- GGML_OP_CONV_2D,
- GGML_OP_CONV_2D_STAGE_0, // internal
- GGML_OP_CONV_2D_STAGE_1, // internal
+ GGML_OP_IM2COL,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
@@ -1403,6 +1398,18 @@ extern "C" {
float min,
float max);
+ GGML_API struct ggml_tensor * ggml_im2col(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ int s0,
+ int s1,
+ int p0,
+ int p1,
+ int d0,
+ int d1,
+ bool is_2D);
+
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,