summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ggml/src/CMakeLists.txt2
-rw-r--r--ggml/src/ggml-cuda/cp-async.cuh10
-rw-r--r--ggml/src/ggml-cuda/fattn-new-mma.cu451
-rw-r--r--src/llama.cpp23
4 files changed, 356 insertions, 130 deletions
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index 74ac5374..4f4337c2 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -986,7 +986,7 @@ endif()
set(CUDA_CXX_FLAGS "")
if (GGML_CUDA)
- set(CUDA_FLAGS -use_fast_math)
+ set(CUDA_FLAGS -use_fast_math -extended-lambda)
if (GGML_FATAL_WARNINGS)
list(APPEND CUDA_FLAGS -Werror all-warnings)
diff --git a/ggml/src/ggml-cuda/cp-async.cuh b/ggml/src/ggml-cuda/cp-async.cuh
index ecb65999..a87dc247 100644
--- a/ggml/src/ggml-cuda/cp-async.cuh
+++ b/ggml/src/ggml-cuda/cp-async.cuh
@@ -2,6 +2,16 @@
#include "common.cuh"
+static __device__ __forceinline__ unsigned int ggml_cuda_cvta_generic_to_shared(void * generic_ptr) {
+#ifdef CP_ASYNC_AVAILABLE
+ return __cvta_generic_to_shared(generic_ptr);
+#else
+ GGML_UNUSED(generic_ptr);
+ NO_DEVICE_CODE;
+ return 0;
+#endif // CP_ASYNC_AVAILABLE
+}
+
// Copies data from global to shared memory, cg == cache global.
// Both the src and dst pointers must be aligned to 16 bit.
// Shared memory uses 32 bit addressing, the pointer is passed as unsigned int.
diff --git a/ggml/src/ggml-cuda/fattn-new-mma.cu b/ggml/src/ggml-cuda/fattn-new-mma.cu
index d1484451..630baf33 100644
--- a/ggml/src/ggml-cuda/fattn-new-mma.cu
+++ b/ggml/src/ggml-cuda/fattn-new-mma.cu
@@ -1,15 +1,16 @@
-// Adapted from https://github.com/ggml-org/llama.cpp/pull/13306
+// Adapted from https://github.com/ggml-org/llama.cpp/pull/13435
//
-// Copyright (C) 2023-2024 The ggml authors
-// Copyright (C) 2024 Iwan Kawrakow
+// Copyright (C) 2025 The ggml authors
+// Copyright (C) 2025 Iwan Kawrakow
// MIT license
// SPDX-License-Identifier: MIT
//
-#include "fattn-new-mma.cuh"
+#include "common.cuh"
#include "cp-async.cuh"
#include "mma_new.cuh"
#include "fattn-common.cuh"
+#include "fattn-new-mma.cuh"
using namespace ggml_cuda_mma;
@@ -39,6 +40,8 @@ struct fattn_mma_f16_config;
// The previous MMA version is better (faster)
// I'm keeping these around commented out for now,
// and only using the 576, 512 case.
+// Perhaps the 256 head size needs a closer look
+// to see if this implementation is better.
//
//template <>
//struct fattn_mma_f16_config< 64, 64> {
@@ -46,9 +49,30 @@ struct fattn_mma_f16_config;
// static constexpr int nwarps_max = 4;
// static constexpr bool Q_in_reg = true;
// static constexpr int nstages_target = 2;
-// static constexpr int nbatch_K2 = 32;
-// static constexpr int nbatch_V2 = 32;
-// static constexpr int nbatch_combine = 32;
+//
+// static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
+// return 32;
+// }
+//
+// static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
+// return 32;
+// }
+//
+// static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
+// return 32;
+// }
+//
+// static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
+// return 32;
+// }
+//
+// static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
+// return 32;
+// }
+//
+// static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
+// return 32;
+// }
//};
//
//template <>
@@ -57,9 +81,30 @@ struct fattn_mma_f16_config;
// static constexpr int nwarps_max = 4;
// static constexpr bool Q_in_reg = true;
// static constexpr int nstages_target = 2;
-// static constexpr int nbatch_K2 = 40;
-// static constexpr int nbatch_V2 = 40;
-// static constexpr int nbatch_combine = 40;
+//
+// static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
+// return 40;
+// }
+//
+// static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
+// return 40;
+// }
+//
+// static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
+// return 40;
+// }
+//
+// static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
+// return 40;
+// }
+//
+// static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
+// return 40;
+// }
+//
+// static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
+// return 40;
+// }
//};
//
//template <>
@@ -68,9 +113,30 @@ struct fattn_mma_f16_config;
// static constexpr int nwarps_max = 4;
// static constexpr bool Q_in_reg = true;
// static constexpr int nstages_target = 2;
-// static constexpr int nbatch_K2 = 48;
-// static constexpr int nbatch_V2 = 48;
-// static constexpr int nbatch_combine = 48;
+//
+// static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
+// return 48;
+// }
+//
+// static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
+// return 48;
+// }
+//
+// static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
+// return 48;
+// }
+//
+// static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
+// return 48;
+// }
+//
+// static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
+// return 48;
+// }
+//
+// static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
+// return 48;
+// }
//};
//
//template <>
@@ -79,9 +145,30 @@ struct fattn_mma_f16_config;
// static constexpr int nwarps_max = 4;
// static constexpr bool Q_in_reg = true;
// static constexpr int nstages_target = 2;
-// static constexpr int nbatch_K2 = 56;
-// static constexpr int nbatch_V2 = 56;
-// static constexpr int nbatch_combine = 56;
+//
+// static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
+// return 56;
+// }
+//
+// static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
+// return 56;
+// }
+//
+// static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
+// return 56;
+// }
+//
+// static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
+// return 56;
+// }
+//
+// static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
+// return 56;
+// }
+//
+// static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
+// return 56;
+// }
//};
//
//template <>
@@ -90,20 +177,30 @@ struct fattn_mma_f16_config;
// static constexpr int nwarps_max = 4;
// static constexpr bool Q_in_reg = true;
// static constexpr int nstages_target = 2;
-// static constexpr int nbatch_K2 = 64;
-// static constexpr int nbatch_V2 = 64;
-// static constexpr int nbatch_combine = 64;
-//};
//
-//template <>
-//struct fattn_mma_f16_config<192, 128> {
-// static constexpr int nbatch_fa = 64;
-// static constexpr int nwarps_max = 4;
-// static constexpr bool Q_in_reg = true;
-// static constexpr int nstages_target = 2;
-// static constexpr int nbatch_K2 = 96;
-// static constexpr int nbatch_V2 = 64;
-// static constexpr int nbatch_combine = 64;
+// static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
+// return 64;
+// }
+//
+// static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
+// return 64;
+// }
+//
+// static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
+// return 64;
+// }
+//
+// static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
+// return 64;
+// }
+//
+// static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
+// return 64;
+// }
+//
+// static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
+// return 64;
+// }
//};
//
//template <>
@@ -112,9 +209,38 @@ struct fattn_mma_f16_config;
// static constexpr int nwarps_max = 4;
// static constexpr bool Q_in_reg = true;
// static constexpr int nstages_target = 2;
-// static constexpr int nbatch_K2 = 128;
-// static constexpr int nbatch_V2 = 128;
-// static constexpr int nbatch_combine = 128;
+//
+// static int get_nbatch_K2_host(const int /*cc*/, const int /*ncols*/) {
+// return 128;
+// }
+//
+// static constexpr __device__ int get_nbatch_K2_device(int /*ncols*/) {
+// return 128;
+// }
+//
+// static int get_nbatch_V2_host(const int /*cc*/, const int /*ncols*/) {
+// return 128;
+// }
+//
+// static constexpr __device__ int get_nbatch_V2_device(int /*ncols*/) {
+// return 128;
+// }
+//
+// static int get_nbatch_combine_host(const int cc, const int ncols) {
+// if (ggml_cuda_highest_compiled_arch(cc) == CC_TURING) {
+// return ncols <= 16 ? 128 : 64;
+// }
+// return 64;
+// }
+//
+// static constexpr __device__ int get_nbatch_combine_device(int ncols) {
+//#if __CUDA_ARCH__ == CC_TURING
+// return ncols <= 16 ? 128 : 64;
+//#else
+// GGML_UNUSED(ncols);
+// return 128;
+//#endif // __CUDA_ARCH__ == CC_TURING
+// }
//};
template <>
@@ -123,9 +249,65 @@ struct fattn_mma_f16_config<576, 512> {
static constexpr int nwarps_max = 8;
static constexpr bool Q_in_reg = false;
static constexpr int nstages_target = 1;
- static constexpr int nbatch_K2 = 160;
- static constexpr int nbatch_V2 = 128;
- static constexpr int nbatch_combine = 128;
+
+ static int get_nbatch_K2_host(const int cc, const int ncols) {
+ if (ggml_cuda_highest_compiled_arch(cc) == CC_TURING) {
+ return ncols <= 16 ? 96 : 160;
+ }
+ return ncols <= 16 ? 288 : 160;
+ }
+
+ static constexpr __device__ int get_nbatch_K2_device(int ncols) {
+#if __CUDA_ARCH__ == CC_TURING
+ return ncols <= 16 ? 96 : 160;
+#else
+ return ncols <= 16 ? 288 : 160;
+#endif // __CUDA_ARCH__ == CC_TURING
+ }
+
+ static int get_nbatch_V2_host(const int cc, const int ncols) {
+ if (ggml_cuda_highest_compiled_arch(cc) == CC_TURING) {
+ return ncols <= 16 ? 64 : 128;
+ }
+ return ncols <= 16 ? 256 : 128;
+ }
+
+ static constexpr __device__ int get_nbatch_V2_device(int ncols) {
+#if __CUDA_ARCH__ == GML_CUDA_CC_TURING
+ return ncols <= 16 ? 64 : 128;
+#else
+ return ncols <= 16 ? 256 : 128;
+#endif // __CUDA_ARCH__ == GML_CUDA_CC_TURING
+ }
+
+ static int get_nbatch_combine_host(const int /*cc*/, const int /*ncols*/) {
+ return 128;
+ }
+
+ static constexpr __device__ int get_nbatch_combine_device(int /*ncols*/) {
+ return 128;
+ }
+};
+
+// ------------------------------------------------------------------------------------------------------------------
+
+// The compiler is always able to unroll loops if they contain continue expressions.
+// In such cases loop unrolling can still be achieved via recursion:
+template <int n>
+struct ggml_cuda_unroll {
+ template <typename Func, typename... Args>
+ __device__ void operator()(const Func & f, Args... args) const {
+ f(n - 1, args...);
+ ggml_cuda_unroll<n - 1>{}(f, args...);
+ }
+};
+
+template <>
+struct ggml_cuda_unroll<1> {
+ template <typename Func, typename... Args>
+ __device__ void operator()(const Func & f, Args... args) const {
+ f(0, args...);
+ }
};
template<int stride_tile, int nwarps, int nbatch_fa, bool use_cp_async>
@@ -136,26 +318,25 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_tile(
// The minimum granularity with cp.async is 16 bytes, with synchronous data loading it's 4 bytes.
if constexpr (use_cp_async) {
- const unsigned int tile_KV_32 = __cvta_generic_to_shared(tile_KV);
-
constexpr int preload = 64;
constexpr int h2_per_chunk = 16/sizeof(half2);
-
const int chunks_per_row = D2 / h2_per_chunk;
- int k0_start = 0;
-#pragma unroll
- for (int stride_k = WARP_SIZE; stride_k > WARP_SIZE/32; stride_k >>= 1) {
+ const unsigned int tile_KV_32 = ggml_cuda_cvta_generic_to_shared(tile_KV);
+
+ auto load = [&] __device__ (auto n) {
+ const int stride_k = WARP_SIZE >> n;
+ const int k0_start = stride_k == WARP_SIZE ? 0 : chunks_per_row - chunks_per_row % (2*stride_k);
const int k0_stop = chunks_per_row - chunks_per_row % (1*stride_k);
+ const int stride_i = WARP_SIZE / stride_k;
if (k0_start == k0_stop) {
- continue;
+ return;
}
- const int stride_i = WARP_SIZE / stride_k;
#pragma unroll
for (int i0 = 0; i0 < nbatch_fa; i0 += nwarps*stride_i) {
- const int i = i0 + threadIdx.y*stride_i + threadIdx.x / stride_k;
+ const int i = i0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
if (i0 + nwarps*stride_i > nbatch_fa && i >= nbatch_fa) {
break;
@@ -168,18 +349,18 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_tile(
cp_async_cg_16<preload>(tile_KV_32 + i*(stride_tile*sizeof(half2)) + k*16, KV + i*stride_KV + k*h2_per_chunk);
}
}
- k0_start = k0_stop;
- }
+ };
+ ggml_cuda_unroll<5>{}(load);
} else {
static_assert(nbatch_fa % (4*nwarps) == 0, "out of bounds");
-#pragma unroll
- for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
+ auto load = [&] __device__ (const int n) {
+ const int stride_k = WARP_SIZE >> n;
const int k0_start = stride_k == WARP_SIZE ? 0 : D2 - D2 % (2*stride_k);
const int k0_stop = D2 - D2 % (1*stride_k);
const int stride_i = WARP_SIZE / stride_k;
- if (k0_start == k0_stop || k0_stop <= 0) {
- continue;
+ if (k0_start == k0_stop) {
+ return;
}
#pragma unroll
@@ -197,7 +378,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_tile(
tile_KV[i*stride_tile + k] = KV[i*stride_KV + k];
}
}
- }
+ };
+ ggml_cuda_unroll<3>{}(load);
}
}
@@ -211,7 +393,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_mask(
constexpr int cols_per_warp = 8*WARP_SIZE/nbatch_fa;
constexpr int stride_j = nwarps * cols_per_warp;
- const unsigned int tile_mask_32 = __cvta_generic_to_shared(tile_mask);
+ const unsigned int tile_mask_32 = ggml_cuda_cvta_generic_to_shared(tile_mask);
#pragma unroll
for (int j0 = 0; j0 < ncols1; j0 += stride_j) {
@@ -245,7 +427,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_mask(
}
}
-template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool needs_fixup, bool is_fixup, bool last_iter>
+template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup, bool last_iter>
static __device__ __forceinline__ void flash_attn_ext_f16_iter(
const float2 * const __restrict__ Q_f2,
const half2 * const __restrict__ K_h2,
@@ -283,10 +465,15 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
constexpr int cols_per_warp = ntiles * tile_B::I;
constexpr int cols_per_thread = ntiles == 1 ? 2 : ntiles;
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
+ constexpr int ncols = ncols1 * ncols2;
+ constexpr int nbatch_K2 = c::get_nbatch_K2_device(ncols);
+ constexpr int nbatch_V2 = c::get_nbatch_V2_device(ncols);
- constexpr int stride_tile_Q = DKQ/2 + 4;
- constexpr int stride_tile_K = c::nbatch_K2 + 4;
- constexpr int stride_tile_V = c::nbatch_V2 + 4;
+ constexpr int stride_tile_Q = DKQ/2 + 4;
+ constexpr int stride_tile_K = nbatch_K2 + 4;
+
+ static_assert(!mla || nbatch_K2 >= nbatch_V2, "bad nbatch_K2, nbatch_V2 for MLA");
+ constexpr int stride_tile_V = mla ? stride_tile_K : nbatch_V2 + 4;
const int k_VKQ_0 = kb0 * c::nbatch_fa;
tile_C_KQ KQ_C[c::nbatch_fa/(np*tile_C_KQ::I) * ntiles];
@@ -297,29 +484,30 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
tile_C_KQ_16 * KQ_C_16 = (tile_C_KQ_16 *) KQ_C;
if constexpr (nstages > 1) {
- static_assert(c::nbatch_K2 == DKQ/2, "batching not implemented for multi stage loading");
+ static_assert(!mla, "multi-stage loading not implemented for MLA");
+ static_assert(nbatch_K2 == DKQ/2, "batching not implemented for multi stage loading");
constexpr bool use_cp_async = true;
cp_async_wait_all();
__syncthreads();
flash_attn_ext_f16_load_tile<stride_tile_V, nwarps, c::nbatch_fa, use_cp_async>
- (V_h2 + k_VKQ_0*stride_V, tile_V, c::nbatch_V2, stride_V);
+ (V_h2 + k_VKQ_0*stride_V, tile_V, nbatch_V2, stride_V);
} else {
constexpr bool use_cp_async = nstages == 1;
- if (ncols2 > 1 || mask_h2) {
+ if constexpr (ncols2 > 1 || mask_h2) {
flash_attn_ext_f16_load_mask<ncols1, nwarps, c::nbatch_fa, use_cp_async>(mask_h2 + k_VKQ_0/2, tile_mask, stride_mask);
}
}
#pragma unroll
- for (int k0_start = 0; k0_start < DKQ/2; k0_start += c::nbatch_K2) {
- const int k0_stop = k0_start + c::nbatch_K2 < DKQ/2 ? k0_start + c::nbatch_K2 : DKQ/2;
+ for (int k0_start = 0; k0_start < DKQ/2; k0_start += nbatch_K2) {
+ const int k0_stop = k0_start + nbatch_K2 < DKQ/2 ? k0_start + nbatch_K2 : DKQ/2;
const int k0_diff = k0_stop - k0_start;
- if (nstages <= 1) {
+ if constexpr (nstages <= 1) {
constexpr bool use_cp_async = nstages == 1;
flash_attn_ext_f16_load_tile<stride_tile_K, nwarps, c::nbatch_fa, use_cp_async>
(K_h2 + k_VKQ_0*stride_K + k0_start, tile_K, k0_diff, stride_K);
- if (use_cp_async) {
+ if constexpr (use_cp_async) {
cp_async_wait_all();
}
__syncthreads();
@@ -334,7 +522,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += tile_A::J) {
tile_A K_A;
load_ldmatrix(K_A, tile_K + i_KQ_0*stride_tile_K + (k_KQ_0 - k0_start), stride_tile_K);
- if (ntiles == 1) {
+ if constexpr (ntiles == 1) {
mma(KQ_C[i_KQ_00/(np*tile_A::I)], K_A, Q_B[k_KQ_0/tile_A::J]);
} else {
#pragma unroll
@@ -364,12 +552,12 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
}
}
- if (nstages <= 1) {
+ if constexpr (nstages <= 1) {
__syncthreads(); // Only needed if tile_K == tile_V.
}
}
- if (use_logit_softcap) {
+ if constexpr (use_logit_softcap) {
static_assert(c::nbatch_fa % (np*tile_C_KQ::I) == 0, "bad loop size");
#pragma unroll
for (int i = 0; i < c::nbatch_fa/(np*tile_C_KQ::I) * ntiles; ++i) {
@@ -387,8 +575,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
}
float KQ_rowsum_add[cols_per_thread] = {0.0f};
- if (ntiles == 1) {
- if (ncols2 > 1 || mask_h2) {
+ if constexpr (ntiles == 1) {
+ if constexpr (ncols2 > 1 || mask_h2) {
#pragma unroll
for (int i00 = 0; i00 < c::nbatch_fa; i00 += np*tile_C_KQ::I) {
const int i0 = i00 + (threadIdx.y % np)*tile_C_KQ::I;
@@ -506,7 +694,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
KQ_rowsum[col] = KQ_max_scale[col]*KQ_rowsum[col] + KQ_rowsum_add[col];
}
- if (ntiles == 1) {
+ if constexpr (ntiles == 1) {
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale[0], KQ_max_scale[1]);
#pragma unroll
for (int i = 0; i < DV/tile_C_VKQ::I; ++i) {
@@ -534,7 +722,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
tile_B B[c::nbatch_fa/(np*2*tile_B::J) * ntiles];
tile_B_16 * B_16 = (tile_B_16 *) B;
static_assert(c::nbatch_fa % (np*2*tile_B::J) == 0, "bad loop size");
- if (ntiles == 1) {
+ if constexpr (ntiles == 1) {
#pragma unroll
for (int k = 0; k < c::nbatch_fa/(np*2*tile_B::J); ++k) {
B[k] = get_transposed(get_half2(KQ_C[k]));
@@ -548,7 +736,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
}
}
- if (nstages > 1) {
+ if constexpr (nstages > 1) {
// Preload K tile for next iteration:
constexpr bool use_cp_async = true;
cp_async_wait_all();
@@ -559,24 +747,30 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
(mask_h2 + (k_VKQ_0 + c::nbatch_fa)/2, tile_mask, stride_mask);
}
flash_attn_ext_f16_load_tile<stride_tile_K, nwarps, c::nbatch_fa, use_cp_async>
- (K_h2 + (k_VKQ_0 + c::nbatch_fa)*stride_K, tile_K, c::nbatch_K2, stride_K);
+ (K_h2 + (k_VKQ_0 + c::nbatch_fa)*stride_K, tile_K, nbatch_K2, stride_K);
}
}
+
+ // For MLA K and V have the same data.
+ // Therefore, iterate over V in reverse and re-use the data if possible.
+ static_assert(!mla || nstages <= 1, "combination of MLA and multi-stage loading not implemented");
+ constexpr int reusable_cutoff = mla ? (DKQ - 1) - (DKQ - 1) % (2*nbatch_K2) - (DKQ - DV) : DV;
#pragma unroll
- for (int i0_start = 0; i0_start < DV; i0_start += 2*c::nbatch_V2) {
- const int i0_stop = i0_start + 2*c::nbatch_V2 < DV ? i0_start + 2*c::nbatch_V2 : DV;
- const int i0_diff = i0_stop - i0_start;
+ for (int i0_stop = DV; i0_stop > 0; i0_stop -= 2*nbatch_V2) {
+ const int i0_start = i0_stop - 2*nbatch_V2 > 0 ? i0_stop - 2*nbatch_V2 : 0;
+ const int i0_diff = i0_stop - i0_start;
- if (nstages == 1) {
+ if (nstages <= 1 && i0_start < reusable_cutoff) {
constexpr bool use_cp_async = nstages == 1;
flash_attn_ext_f16_load_tile<stride_tile_V, nwarps, c::nbatch_fa, use_cp_async>
(V_h2 + k_VKQ_0*stride_V + i0_start/2, tile_V, i0_diff/2, stride_V);
- if (use_cp_async) {
+ if constexpr (use_cp_async) {
cp_async_wait_all();
}
__syncthreads();
}
+ const half2 * tile_V_i = i0_start < reusable_cutoff ? tile_V : tile_V + (i0_start - reusable_cutoff)/2;
// Calculate VKQ tile:
#pragma unroll
@@ -587,8 +781,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
const int k0 = k00 + (threadIdx.y % np)*tile_A::J;
tile_A A;
- load_ldmatrix_trans(A, tile_V + 2*k0*stride_tile_V + (i_VKQ_0 - i0_start)/2, stride_tile_V);
- if (ntiles == 1) {
+ load_ldmatrix_trans(A, tile_V_i + 2*k0*stride_tile_V + (i_VKQ_0 - i0_start)/2, stride_tile_V);
+ if constexpr (ntiles == 1) {
mma(VKQ_C[i_VKQ_0/tile_C_VKQ::I], A, B[k00/(np*tile_A::J)]);
} else {
#pragma unroll
@@ -600,7 +794,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
}
}
- if (nstages <= 1) {
+ if constexpr (nstages <= 1) {
__syncthreads(); // Only needed if tile_K == tile_V.
}
}
@@ -618,7 +812,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
#endif // INT8_MMA_AVAILABLE
}
-template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool needs_fixup, bool is_fixup>
+template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup>
static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
const float2 * const __restrict__ Q_f2,
const half2 * const __restrict__ K_h2,
@@ -654,13 +848,16 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
constexpr int cols_per_warp = ntiles * tile_B::I;
constexpr int cols_per_thread = ntiles == 1 ? 2 : ntiles;
constexpr int np = nwarps * (cols_per_warp/ncols2) / ncols1; // Number of parallel CUDA warps per Q column.
+ constexpr int nbatch_K2 = c::get_nbatch_K2_device(ncols);
+ constexpr int nbatch_V2 = c::get_nbatch_V2_device(ncols);
static_assert(nwarps * (cols_per_warp/ncols2) % ncols1 == 0, "bad nwarps");
- constexpr int stride_tile_Q = DKQ/2 + 4;
- constexpr int stride_tile_K = c::nbatch_K2 + 4;
- constexpr int stride_tile_V = c::nbatch_V2 + 4;
+ constexpr int stride_tile_Q = DKQ/2 + 4;
+ constexpr int stride_tile_K = nbatch_K2 + 4;
+ static_assert(!mla || nbatch_K2 >= nbatch_V2, "bad nbatch_K2, nbatch_V2 for MLA");
+ constexpr int stride_tile_V = mla ? stride_tile_K : nbatch_V2 + 4;
constexpr int stride_tile_KV_max = stride_tile_K > stride_tile_V ? stride_tile_K : stride_tile_V;
extern __shared__ half2 tile_Q[];
@@ -727,12 +924,12 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
__syncthreads();
- if (c::Q_in_reg) {
+ if constexpr (c::Q_in_reg) {
const int j0 = (threadIdx.y / np) * cols_per_warp;
#pragma unroll
for (int k0 = 0; k0 < DKQ/2; k0 += tile_B::J) {
- if (ntiles == 1) {
+ if constexpr (ntiles == 1) {
load_ldmatrix(Q_B[k0/tile_B::J], tile_Q + j0*stride_tile_Q + k0, stride_tile_Q);
} else {
#pragma unroll
@@ -748,33 +945,33 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
// Preload mask and K data for first iteration when using cp_async with multiple stages:
if constexpr (nstages > 1) {
- static_assert(c::nbatch_K2 == DKQ/2, "batching not implemented for multi-stage pipeline");
+ static_assert(nbatch_K2 == DKQ/2, "batching not implemented for multi-stage pipeline");
constexpr bool use_cp_async = true;
if (ncols2 > 1 || mask_h2) {
flash_attn_ext_f16_load_mask<ncols1, nwarps, c::nbatch_fa, use_cp_async>
(mask_h2 + kb0_start*c::nbatch_fa/2, tile_mask, stride_mask);
}
flash_attn_ext_f16_load_tile<stride_tile_K, nwarps, c::nbatch_fa, use_cp_async>
- (K_h2 + kb0_start*c::nbatch_fa*stride_K, tile_K, c::nbatch_K2, stride_K);
+ (K_h2 + kb0_start*c::nbatch_fa*stride_K, tile_K, nbatch_K2, stride_K);
}
// Iterate over ne11 == previous tokens:
for (int kb0 = kb0_start; kb0 < kb0_stop-1; ++kb0) {
constexpr bool last_iter = false;
- flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup, last_iter>
+ flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
ne01, ne02, stride_K, stride_V, stride_mask, jt, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0);
}
{ // kb0_start is always < kb0_stop so the last iter can be executed unconditionally.
constexpr bool last_iter = true;
- flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup, last_iter>
+ flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
ne01, ne02, stride_K, stride_V, stride_mask, jt, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1);
}
// With multi-stage loading there is no __syncthreads at the end of the iter,
// there can be a race condition on shared memory access for combining/writing back results.
- if (nstages > 1 && nwarps*cols_per_warp > c::nbatch_fa) {
+ if constexpr (nstages > 1 && nwarps*cols_per_warp > c::nbatch_fa) {
__syncthreads();
}
@@ -796,7 +993,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
// It's also faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM.
// So also write VKQ accumulators to shared memory in column-major format if np == 1.
- constexpr int nbatch_combine = c::Q_in_reg ? DV/2 : DV/4;
+ constexpr int nbatch_combine = c::get_nbatch_combine_device(ncols);
constexpr int tile_stride = nbatch_combine + 4;
static_assert((DV/2) % nbatch_combine == 0, "bad nbatch_combine");
@@ -873,10 +1070,9 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
}
#pragma unroll
for (int offset = np*cols_per_warp/2; offset >= cols_per_warp; offset >>= 1) {
- if (offset >= WARP_SIZE) {
- continue;
+ if (offset < WARP_SIZE) {
+ KQ_cmn = fmaxf(KQ_cmn, __shfl_xor_sync(0xFFFFFFFF, KQ_cmn, offset, WARP_SIZE));
}
- KQ_cmn = fmaxf(KQ_cmn, __shfl_xor_sync(0xFFFFFFFF, KQ_cmn, offset, WARP_SIZE));
}
float KQ_cms[nmeta]; // KQ combine max scale per warp.
@@ -892,10 +1088,9 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
}
#pragma unroll
for (int offset = np*cols_per_warp/2; offset >= cols_per_warp; offset >>= 1) {
- if (offset >= WARP_SIZE) {
- continue;
+ if (offset < WARP_SIZE) {
+ KQ_crs += __shfl_xor_sync(0xFFFFFFFF, KQ_crs, offset, WARP_SIZE);
}
- KQ_crs += __shfl_xor_sync(0xFFFFFFFF, KQ_crs, offset, WARP_SIZE);
}
// Write back combined meta data:
@@ -921,7 +1116,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
#pragma unroll
for (int k00 = 0; k00 < DV/2; k00 += nbatch_combine) {
- if (ntiles == 1) {
+ if constexpr (ntiles == 1) {
const int jc_cwd = threadIdx.y*tile_B::I + tile_B::get_i(-1); // jc combine write data
#pragma unroll
for (int k0 = 0; k0 < nbatch_combine; k0 += tile_B::J) {
@@ -1029,7 +1224,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
#endif // INT8_MMA_AVAILABLE
}
-template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap>
+template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla>
__launch_bounds__(nwarps*WARP_SIZE, 1)
static __global__ void flash_attn_ext_f16(
const char * __restrict__ Q,
@@ -1070,10 +1265,18 @@ static __global__ void flash_attn_ext_f16(
#if defined(INT8_MMA_AVAILABLE)
// Skip unused kernel variants for faster compilation:
- if (use_logit_softcap && !(DKQ == 128 || DKQ == 256)) {
+ if constexpr (use_logit_softcap && !(DKQ == 128 || DKQ == 256)) {
+ NO_DEVICE_CODE;
+ return;
+ }
+#if __CUDA_ARCH__ == CC_TURING
+ if constexpr (ncols1*ncols2 > 32) {
NO_DEVICE_CODE;
return;
}
+#endif __CUDA_ARCH__ == CC_TURING
+
+ static_assert(!mla || DKQ >= DV, "MLA needs DKQ >= DV");
typedef fattn_mma_f16_config<DKQ, DV> c;
@@ -1084,9 +1287,10 @@ static __global__ void flash_attn_ext_f16(
const int stride_Q1 = nb01 / sizeof(float2);
const int stride_Q2 = nb02 / sizeof(float2);
const int stride_K = nb11 / sizeof(half2);
- const int stride_V = nb21 / sizeof(half2);
const int stride_mask = nb31 / sizeof(half2);
+ const int stride_V = mla ? stride_K : nb21 / sizeof(half2);
+
const int iter_k = ne11 / FATTN_KQ_STRIDE;
const int iter_j = (ne01 + (ncols1 - 1)) / ncols1;
@@ -1109,10 +1313,11 @@ static __global__ void flash_attn_ext_f16(
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
- const half2 * V_h2 = (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
const half2 * mask_h2 = ncols2 > 1 || mask ? (const half2 *) mask + (nb31/sizeof(half2))*jt*ncols1 : nullptr;
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
+ const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
+
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
@@ -1121,12 +1326,12 @@ static __global__ void flash_attn_ext_f16(
constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
if (kb0_start == 0) {
constexpr bool needs_fixup = false; // CUDA block is working on an entire tile.
- flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup>
+ flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
} else {
constexpr bool needs_fixup = true; // CUDA block is working on the beginning of a tile.
- flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup>
+ flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
}
@@ -1147,10 +1352,11 @@ static __global__ void flash_attn_ext_f16(
const float2 * Q_f2 = (const float2 *) (Q + nb02* channel*ncols2);
const half2 * K_h2 = (const half2 *) (K + nb12*(channel*ncols2 / gqa_ratio));
- const half2 * V_h2 = (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio)); // K and V have same shape
const half2 * mask_h2 = ncols2 > 1 || mask ? (const half2 *) mask + (nb31/sizeof(half2))*jt*ncols1 : nullptr;
float2 * dstk = ((float2 *) dst) + channel*(ncols2 * DV/2);
+ const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb22*(channel*ncols2 / gqa_ratio));
+
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, channel, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
@@ -1158,7 +1364,7 @@ static __global__ void flash_attn_ext_f16(
constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
constexpr bool needs_fixup = false;
- flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, needs_fixup, is_fixup>
+ flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
#else
@@ -1176,6 +1382,7 @@ static __global__ void flash_attn_ext_f16(
#endif // defined(INT8_MMA_AVAILABLE)
}
+
template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
@@ -1310,7 +1517,7 @@ static __global__ void flash_attn_combine_results_new(
}
template <int DV, int ncols1, int ncols2>
-void launch_fattn_new_mma(
+static void launch_fattn_new_mma(
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
) {
@@ -1495,7 +1702,7 @@ void launch_fattn_new_mma(
V_data,
mask ? ((const char *) mask->data) : nullptr,
!stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
- scale, max_bias, m0, m1, n_head_log2, logit_softcap,
+ scale, max_bias, m0, m1, logit_softcap, n_head_log2,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
@@ -1529,17 +1736,13 @@ void launch_fattn_new_mma(
template <int DKQ, int DV, int ncols1, int ncols2>
-void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+static void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
typedef fattn_mma_f16_config<DKQ, DV> c;
- constexpr int nbatch_K2 = c::nbatch_K2 < 1 ? DKQ/2 : c::nbatch_K2;
- constexpr int nbatch_V2 = c::nbatch_V2 < 1 ? DV /2 : c::nbatch_V2;
- constexpr int nbatch_combine = c::nbatch_combine < 1 ? DV /2 : c::nbatch_combine;
-
const int nstages = cp_async_available(cc) ? c::nstages_target : 0;
constexpr int ncols = ncols1 * ncols2;
@@ -1549,15 +1752,21 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
constexpr int nwarps_max_y = c::nbatch_fa / tile_A::I;
constexpr int nwarps = nwarps_max_x*nwarps_max_y <= c::nwarps_max ? nwarps_max_x*nwarps_max_y : c::nwarps_max;
+ constexpr bool mla = DKQ == 576;
+
+ const int nbatch_K2 = c::get_nbatch_K2_host (cc, ncols);
+ const int nbatch_V2 = c::get_nbatch_K2_host (cc, ncols);
+ const int nbatch_combine = c::get_nbatch_combine_host(cc, ncols);
+
static_assert(DKQ % tile_B::J == 0, "bad DKQ");
static_assert(DV % tile_A::J == 0, "bad DV");
static_assert(ncols % cols_per_warp == 0, "bad ncols");
- const size_t nbytes_shared_KV_1stage = c::nbatch_fa * std::max(c::nbatch_K2 + 4, c::nbatch_V2 + 4) * sizeof(half2);
- const size_t nbytes_shared_KV_2stage = c::nbatch_fa * (c::nbatch_K2 + 4 + c::nbatch_V2 + 4) * sizeof(half2);
- const size_t nbytes_shared_Q = ncols * (DKQ/2 + 4) * sizeof(half2);
- const size_t nbytes_shared_mask = ncols1 * (c::nbatch_fa/2 + 4) * sizeof(half2);
- const size_t nbytes_shared_combine = nwarps*cols_per_warp * (nbatch_combine + 4) * sizeof(half2);
+ const size_t nbytes_shared_KV_1stage = c::nbatch_fa * std::max(nbatch_K2 + 4, nbatch_V2 + 4) * sizeof(half2);
+ const size_t nbytes_shared_KV_2stage = c::nbatch_fa * (nbatch_K2 + 4 + nbatch_V2 + 4) * sizeof(half2);
+ const size_t nbytes_shared_Q = ncols * (DKQ/2 + 4) * sizeof(half2);
+ const size_t nbytes_shared_mask = ncols1 * (c::nbatch_fa/2 + 4) * sizeof(half2);
+ const size_t nbytes_shared_combine = nwarps*cols_per_warp * (nbatch_combine + 4) * sizeof(half2);
const size_t nbytes_shared_KV = nstages <= 1 ? nbytes_shared_KV_1stage : nbytes_shared_KV_2stage;
@@ -1571,7 +1780,7 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
- fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap>;
+ fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
@@ -1582,7 +1791,7 @@ void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
} else {
constexpr bool use_logit_softcap = true;
- fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap>;
+ fattn_kernel = flash_attn_ext_f16<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla>;
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
diff --git a/src/llama.cpp b/src/llama.cpp
index 38a2b299..b4d42c84 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -15224,7 +15224,8 @@ struct llm_build_context {
cb(kv_cache_trans, "kv_cache_trans", il);
}
- ggml_tensor * kvr = ggml_concat(ctx0, kv_compressed, ggml_permute(ctx0, k_rope, 0, 2, 1, 3), 0);
+ //ggml_tensor * kvr = ggml_concat(ctx0, kv_compressed, ggml_permute(ctx0, k_rope, 0, 2, 1, 3), 0);
+ ggml_tensor * kvr = ggml_concat(ctx0, ggml_permute(ctx0, k_rope, 0, 2, 1, 3), kv_compressed, 0);
cb(kvr, "kvr", il);
auto row_size = ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank + n_embd_head_qk_rope);
@@ -15240,7 +15241,8 @@ struct llm_build_context {
if (lctx.cparams.mla_attn > 1 && lctx.cparams.flash_attn && pp_opt) { // PP for mla=2,3
- auto kv_cache_nope = ggml_view_2d(ctx0, kv_self.kv_l[il], kv_lora_rank, n_kv, kv_self.kv_l[il]->nb[1], 0);
+ auto kv_cache_nope = ggml_view_2d(ctx0, kv_self.kv_l[il], kv_lora_rank, n_kv, kv_self.kv_l[il]->nb[1],
+ ggml_row_size(kv_self.kv_l[il]->type, n_embd_head_qk_rope));
auto kv_f32_size = model.layers[il].wkv_b->ne[1] * kv_cache_nope->ne[1] * sizeof(float) / (1024*1024);
int n_max_head = n_head;
@@ -15254,7 +15256,7 @@ struct llm_build_context {
auto n_per_head = model.layers[il].wkv_b->ne[1] / n_head;
auto kv_cache_rope = ggml_view_3d(ctx0, kv_self.kv_l[il], n_embd_head_qk_rope, n_kv, 1,
- kv_self.kv_l[il]->nb[1], kv_self.kv_l[il]->nb[2], ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank));
+ kv_self.kv_l[il]->nb[1], kv_self.kv_l[il]->nb[2], 0); //ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank));
// There is still an issue with one or more of the ops GGML_OP_REPEAT, GGML_OP_CONCAT, GGML_OP_CPY on CUDA when
// the KV cache is quantized. Hence, in that case we will simply use fp16 for now.
@@ -15273,7 +15275,8 @@ struct llm_build_context {
}
cb(k_rope, "k_rope", il);
- auto q = ggml_concat(ctx0, q_nope, q_rope, 0);
+ //auto q = ggml_concat(ctx0, q_nope, q_rope, 0);
+ auto q = ggml_concat(ctx0, q_rope, q_nope, 0);
q = ggml_permute(ctx0, q, 0, 2, 1, 3);
cb(q, "q_concat", il);
@@ -15307,7 +15310,8 @@ struct llm_build_context {
ggml_build_forward_expand(gf, k_nope);
ggml_build_forward_expand(gf, v);
- auto k = ggml_concat(ctx0, k_nope, k_rope, 0);
+ //auto k = ggml_concat(ctx0, k_nope, k_rope, 0);
+ auto k = ggml_concat(ctx0, k_rope, k_nope, 0);
cb(k, "k", il);
ggml_build_forward_expand(gf, k);
@@ -15344,13 +15348,15 @@ struct llm_build_context {
struct ggml_tensor * q_nope2 = ggml_mul_mat(ctx0, wk_b, q_nope);
cb(q_nope2, "q_nope2", il);
- ggml_tensor * q = ggml_concat(ctx0, q_nope2, ggml_permute(ctx0, q_rope, 0, 2, 1, 3), 0);
+ //ggml_tensor * q = ggml_concat(ctx0, q_nope2, ggml_permute(ctx0, q_rope, 0, 2, 1, 3), 0);
+ ggml_tensor * q = ggml_concat(ctx0, ggml_permute(ctx0, q_rope, 0, 2, 1, 3), q_nope2, 0);
cb(q, "q", il);
if (lctx.cparams.flash_attn && (lctx.cparams.mla_attn == 1 || lctx.cparams.mla_attn == 3)) {
ggml_tensor * kv_cache_lora = ggml_view_2d(ctx0, kv_self.kv_l[il],
kv_lora_rank, n_kv,
- ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank + n_embd_head_qk_rope), 0);
+ ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank + n_embd_head_qk_rope),
+ ggml_row_size(kv_self.kv_l[il]->type, n_embd_head_qk_rope));
cb(kv_cache_lora, "kv_cache_lora", il);
kqv_compressed = ggml_flash_attn_ext(ctx0, q, kv_cache, kv_cache_lora, KQ_mask, kq_scale, hparams.f_max_alibi_bias, 0.f);
@@ -15363,7 +15369,8 @@ struct llm_build_context {
if (lctx.cparams.mla_attn > 1) {
ggml_tensor * kv_cache_lora = ggml_view_2d(ctx0, kv_self.kv_l[il],
kv_lora_rank, n_kv,
- ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank + n_embd_head_qk_rope), 0);
+ ggml_row_size(kv_self.kv_l[il]->type, kv_lora_rank + n_embd_head_qk_rope),
+ ggml_row_size(kv_self.kv_l[il]->type, n_embd_head_qk_rope));
cb(kv_cache, "kv_cache_lora", il);
kv_cache_trans = ggml_cont(ctx0, ggml_transpose(ctx0, kv_cache_lora));