diff options
-rw-r--r-- | examples/quantize-stats/quantize-stats.cpp | 127 | ||||
-rw-r--r-- | examples/quantize/quantize.cpp | 1 | ||||
-rw-r--r-- | ggml/include/ggml.h | 2 | ||||
-rw-r--r-- | ggml/src/ggml-common.h | 7 | ||||
-rw-r--r-- | ggml/src/ggml-cuda.cu | 1 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/common.cuh | 7 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/convert.cu | 48 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/iqk_mmvq.cu | 69 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/iqk_mmvq.cuh | 4 | ||||
-rw-r--r-- | ggml/src/ggml-cuda/mmvq.cu | 3 | ||||
-rw-r--r-- | ggml/src/ggml-metal.m | 32 | ||||
-rw-r--r-- | ggml/src/ggml-metal.metal | 175 | ||||
-rw-r--r-- | ggml/src/ggml-quants.c | 50 | ||||
-rw-r--r-- | ggml/src/ggml-quants.h | 4 | ||||
-rw-r--r-- | ggml/src/ggml.c | 30 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_mul_mat.cpp | 190 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.cpp | 417 | ||||
-rw-r--r-- | ggml/src/iqk/iqk_quantize.h | 6 | ||||
-rw-r--r-- | include/llama.h | 1 | ||||
-rw-r--r-- | src/llama.cpp | 13 |
20 files changed, 1130 insertions, 57 deletions
diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 88a7d2b9..34d05bf2 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -3,6 +3,10 @@ #include "ggml.h" #include "llama.h" +#define GGML_COMMON_DECL_C +#define GGML_COMMON_IMPL_C +#include "../ggml/src/ggml-common.h" + #include <algorithm> #include <cassert> #include <cinttypes> @@ -21,6 +25,20 @@ #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data +#include <intrin.h> +#include <ammintrin.h> +#include <nmmintrin.h> +#include <immintrin.h> +#include <stdlib.h> +inline int popcount(uint8_t x) { return __popcnt(x); } +inline int popcount(uint16_t x) { return __popcnt(x); } +inline int popcount(uint32_t x) { return __popcnt(x); } +inline int popcount(uint64_t x) { return _mm_popcnt_u64(x); } +#else +constexpr int popcount(uint8_t x) { return __builtin_popcount(x); } +constexpr int popcount(uint16_t x) { return __builtin_popcount(x); } +constexpr int popcount(uint32_t x) { return __builtin_popcount(x); } +constexpr int popcount(uint64_t x) { return __builtin_popcountll(x); } #endif struct quantize_stats_params { @@ -228,6 +246,97 @@ static void test_roundtrip_on_layer( } } +static void analyze_iq4ks(const char * name, int nrows, int n_per_row, const float * values, float& tot_mse, float& tot_elements) { + int row_size = ggml_row_size(GGML_TYPE_IQ4_KS, n_per_row); + int nblock = n_per_row/QK_K; + int nthread = std::max(1, int(std::thread::hardware_concurrency()/2)); + int chunk = (nrows + 8*nthread - 1)/(8*nthread); + std::mutex mutex; + int counter = 0; + float mse0 = 0, mse = 0; + auto compute = [&mutex, &counter, &mse0, &mse, values, row_size, nblock, nrows, n_per_row, chunk] () { + std::vector<char> Q(row_size); + float lmse0 = 0, lmse = 0; + while (true) { + std::unique_lock<std::mutex> lock(mutex); + int first = counter; counter += chunk; + if (first >= nrows) { + mse += lmse; mse0 += lmse0; + return; + } + lock.unlock(); + int last = std::min(first + chunk, nrows); + for (int row = first; row < last; ++row) { + auto xr = values + row*n_per_row; + ggml_quantize_chunk(GGML_TYPE_IQ4_KS, xr, (void *)Q.data(), 0, 1, n_per_row, nullptr); + const float * dptr = (const float *)Q.data(); + const float d = *dptr; + const block_iq4_ks * iq4 = (const block_iq4_ks *)(dptr + 1); + for (int ibl = 0; ibl < nblock; ++ibl) { + const float * xbl = xr + ibl*QK_K; + auto qs = iq4[ibl].qs; + for (int ib = 0; ib < QK_K/32; ++ib) { + const float * xb = xbl + 32*ib; + const float dl = d * ((iq4[ibl].scales[ib] & 254) - 127); + const int8_t * values = iq4k_values + ((iq4[ibl].scales[ib] & 1) << 4); + for (int j = 0; j < 16; j += 2) { + uint16_t v0 = *(const uint16_t *)(qs + j); + int non = popcount(v0); + float diff1 = xb[j+ 0] - dl*values[qs[j+0] & 0xf]; + float diff2 = xb[j+16] - dl*values[qs[j+0] >> 4]; + float diff3 = xb[j+ 1] - dl*values[qs[j+1] & 0xf]; + float diff4 = xb[j+17] - dl*values[qs[j+1] >> 4]; + lmse0 += diff1*diff1 + diff2*diff2 + diff3*diff3 + diff4*diff4; + if (non%2 == 0) { + lmse += diff1*diff1 + diff2*diff2 + diff3*diff3 + diff4*diff4; + } else { + float best = std::numeric_limits<float>::max(); + for (int k = 0; k < 16; k += 4) { + uint16_t v = v0 ^ (1 << k); + uint8_t v1 = v; + uint8_t v2 = v >> 8; + diff1 = xb[j+ 0] - dl*values[v1 & 0xf]; + diff2 = xb[j+16] - dl*values[v1 >> 4]; + diff3 = xb[j+ 1] - dl*values[v2 & 0xf]; + diff4 = xb[j+17] - dl*values[v2 >> 4]; + float score = diff1*diff1 + diff2*diff2 + diff3*diff3 + diff4*diff4; + if (score < best) best = score; + } + lmse += best; + } + } + qs += 16; + } + } + } + } + }; + std::vector<std::thread> workers(nthread-1); + for (auto& w : workers) w = std::thread(compute); + compute(); + for (auto& w : workers) w.join(); + tot_mse += mse; + tot_elements += n_per_row*nrows; + printf("%s: %g %g %g\n", name, sqrt(mse0/(n_per_row*nrows)), sqrt(mse/(n_per_row*nrows)), sqrt(tot_mse/tot_elements)); +} + +static void analyze_iq4ks(const ggml_tensor * t, float& tot_mse, float& tot_elements) { + if (!ggml_is_contiguous(t) || (t->type != GGML_TYPE_F32 && t->type != GGML_TYPE_F16 && t->type != GGML_TYPE_BF16)) { + return; + } + if (t->type == GGML_TYPE_F32) { + analyze_iq4ks(t->name, t->ne[1], t->ne[0], (const float *)t->data, tot_mse, tot_elements); + } else { + std::vector<float> aux(t->ne[0]*t->ne[1]); + if (t->type == GGML_TYPE_F16) { + ggml_fp16_to_fp32_row((const ggml_fp16_t *)t->data, aux.data(), aux.size()); + } else { + ggml_bf16_to_fp32_row((const ggml_bf16_t *)t->data, aux.data(), aux.size()); + } + analyze_iq4ks(t->name, t->ne[1], t->ne[0], aux.data(), tot_mse, tot_elements); + } +} + static void print_fp_stats(const char * msg, const uint64_t * counts) { printf("===== %s\n", msg); uint64_t tot = 0; for (int i = 0; i < 32; ++i) tot += counts[i]; @@ -263,6 +372,7 @@ int main(int argc, char ** argv) { int max_thread = 0; bool invalid_param = false; bool analyze_fp = false; + bool analyze = false; std::string arg; for (int i = 1; i < argc; i++) { arg = argv[i]; @@ -278,6 +388,8 @@ int main(int argc, char ** argv) { params.per_layer_stats = true; } else if (arg == "-afp" || arg == "--analyze-fp") { analyze_fp = true; + } else if (arg == "-a" || arg == "--analyze") { + analyze = true; } else if (arg == "--histogram") { params.print_histogram = true; } else if (arg == "-m" || arg == "--model") { @@ -404,6 +516,21 @@ int main(int argc, char ** argv) { std::vector<char> quantized_scratch; std::vector<float> output_scratch; + if (analyze) { + float tot_mse = 0, tot_elements = 0; + for (const auto& kv_tensor : tensors) { + if (!layer_included(params, kv_tensor.first)) { + continue; + } + if (kv_tensor.second->ne[0] == 1 || kv_tensor.second->ne[1] == 1) { + // we never quantize those + continue; + } + analyze_iq4ks(kv_tensor.second, tot_mse, tot_elements); + } + return 0; + } + if (analyze_fp) { for (const auto& kv_tensor : tensors) { if (!layer_included(params, kv_tensor.first)) { diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 3cc19f70..1ace5720 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -45,6 +45,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = { { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", }, { "IQ4_KS", LLAMA_FTYPE_MOSTLY_IQ4_KS, " 4.25 bpw non-linear quantization", }, { "IQ2_K", LLAMA_FTYPE_MOSTLY_IQ2_K, " 2.375 bpw non-linear quantization",}, + { "IQ2_KS", LLAMA_FTYPE_MOSTLY_IQ2_KS, " 2.1875 bpw non-linear quantization",}, { "IQ3_K", LLAMA_FTYPE_MOSTLY_IQ3_K, " 3.44 bpw non-linear quantization", }, { "IQ3_KL", LLAMA_FTYPE_MOSTLY_IQ3_KL, " 4 bpw non-linear quantization mix",}, { "IQ4_K", LLAMA_FTYPE_MOSTLY_IQ4_K, " 4.5 bpw non-linear quantization", }, diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 3054dabd..fd7c23b9 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -404,6 +404,7 @@ extern "C" { GGML_TYPE_IQ2_TN = 142, GGML_TYPE_IQ1_TN = 143, GGML_TYPE_IQ4_KS = 144, + GGML_TYPE_IQ2_KS = 145, GGML_TYPE_COUNT, }; @@ -460,6 +461,7 @@ extern "C" { GGML_FTYPE_MOSTLY_IQ2_TN = 135, // except 1d tensors GGML_FTYPE_MOSTLY_IQ1_TN = 136, // except 1d tensors GGML_FTYPE_MOSTLY_IQ4_KS = 137, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ2_KS = 138, // except 1d tensors }; // available tensor operations: diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index 7eaf7437..3a7b8989 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -456,6 +456,13 @@ typedef struct { static_assert(sizeof(block_iq2_k) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/32 + QK_K/4, "wrong iq2_k block size/padding"); typedef struct { + uint16_t extra; + uint8_t scales[QK_K/64]; + uint8_t qs[QK_K/4]; +} block_iq2_ks; +static_assert(sizeof(block_iq2_ks) == sizeof(uint16_t) + QK_K/64 + QK_K/4, "wrong iq2_ks block size/padding"); + +typedef struct { ggml_half d; uint16_t extra; uint16_t scales_h; diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 0657252d..6648b7f8 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -2830,6 +2830,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index c00cef29..a6a9c3d3 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -516,6 +516,13 @@ struct ggml_cuda_type_traits<GGML_TYPE_IQ2_K> { }; template<> +struct ggml_cuda_type_traits<GGML_TYPE_IQ2_KS> { + static constexpr int qk = QK_K; + static constexpr int qr = QR4_XS; + static constexpr int qi = QI4_XS; +}; + +template<> struct ggml_cuda_type_traits<GGML_TYPE_IQ3_K> { static constexpr int qk = QK_K; static constexpr int qr = QR4_XS; diff --git a/ggml/src/ggml-cuda/convert.cu b/ggml/src/ggml-cuda/convert.cu index 62dd52a2..1e4421b1 100644 --- a/ggml/src/ggml-cuda/convert.cu +++ b/ggml/src/ggml-cuda/convert.cu @@ -729,10 +729,10 @@ static __global__ void dequantize_block_iq2_k(const void * __restrict__ vx, dst_ int il = tid%16; // 0...15 dst_t * y = yy + i*QK_K + 128*ib128 + 2*il; const float d = (float)x[i].d; - const float dl1 = d * (2*((x[i].scales[4*ib128+0] >> 4*(il/8)) & 0xf) - 15); - const float dl2 = d * (2*((x[i].scales[4*ib128+1] >> 4*(il/8)) & 0xf) - 15); - const float dl3 = d * (2*((x[i].scales[4*ib128+2] >> 4*(il/8)) & 0xf) - 15); - const float dl4 = d * (2*((x[i].scales[4*ib128+3] >> 4*(il/8)) & 0xf) - 15); + const float dl1 = d * (((x[i].scales[4*ib128+0] >> 4*(il/8)) & 0xf) - 8); + const float dl2 = d * (((x[i].scales[4*ib128+1] >> 4*(il/8)) & 0xf) - 8); + const float dl3 = d * (((x[i].scales[4*ib128+2] >> 4*(il/8)) & 0xf) - 8); + const float dl4 = d * (((x[i].scales[4*ib128+3] >> 4*(il/8)) & 0xf) - 8); const uint8_t * qs = x[i].qs + 32*ib128 + 2*il; const int16_t extra = x[i].extra >> (8*ib128 + (il/8)); for (int j = 0; j < 2; ++j) { @@ -744,6 +744,34 @@ static __global__ void dequantize_block_iq2_k(const void * __restrict__ vx, dst_ } template<typename dst_t> +static __global__ void dequantize_block_iq2_ks(const void * __restrict__ vx, dst_t * __restrict__ yy, int64_t n_per_row, int64_t row_size) { + + int64_t ii = blockIdx.x; + int64_t row = (QK_K * ii) / n_per_row; + const char * cx = (const char *)vx + row * row_size; + const float d = (float)*(const half *)cx; + const block_iq2_ks * x = (const block_iq2_ks *)(cx + sizeof(half)); + const int64_t i = ii - (row*n_per_row)/QK_K; + + const int tid = threadIdx.x; + int ib128 = tid/16; // 0 or 1 + int il = tid%16; // 0...15 + dst_t * y = yy + ii*QK_K + 128*ib128 + 2*il; + const int16_t extra = x[i].extra >> 4*ib128; + const float dl1 = d * (((x[i].scales[2*ib128+0] & 0xf) | ((extra >> 4) & 0x10)) - 16); + const float dl2 = d * (((x[i].scales[2*ib128+0] >> 4) | ((extra >> 5) & 0x10)) - 16); + const float dl3 = d * (((x[i].scales[2*ib128+1] & 0xf) | ((extra >> 6) & 0x10)) - 16); + const float dl4 = d * (((x[i].scales[2*ib128+1] >> 4) | ((extra >> 7) & 0x10)) - 16); + const uint8_t * qs = x[i].qs + 32*ib128 + 2*il; + for (int j = 0; j < 2; ++j) { + y[j+ 0] = dl1 * iq2nl_values[((qs[j] >> 0) & 0x03) + ((extra << 2) & 4)]; + y[j+32] = dl2 * iq2nl_values[((qs[j] >> 2) & 0x03) + ((extra << 1) & 4)]; + y[j+64] = dl3 * iq2nl_values[((qs[j] >> 4) & 0x03) + ((extra >> 0) & 4)]; + y[j+96] = dl4 * iq2nl_values[((qs[j] >> 6) & 0x03) + ((extra >> 1) & 4)]; + } +} + +template<typename dst_t> static __global__ void dequantize_block_iq3_k(const void * __restrict__ vx, dst_t * __restrict__ yy) { const int i = blockIdx.x; @@ -953,6 +981,14 @@ static void dequantize_row_iq4_ks_cuda(const void * vx, dst_t * y, const int64_t } template<typename dst_t> +static void dequantize_row_iq2_ks_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { + const int64_t k = nrows * n_per_row; + const int64_t row_size = ggml_row_size(GGML_TYPE_IQ2_KS, n_per_row); + const int nb = (k + QK_K - 1) / QK_K; + dequantize_block_iq2_ks<<<nb, 32, 0, stream>>>(vx, y, n_per_row, row_size); +} + +template<typename dst_t> static void dequantize_row_iq2_k_cuda(const void * vx, dst_t * y, const int64_t nrows, const int64_t n_per_row, cudaStream_t stream) { const int64_t k = nrows * n_per_row; const int nb = (k + QK_K - 1) / QK_K; @@ -1116,6 +1152,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { return dequantize_row_iq4_xs_cuda; case GGML_TYPE_IQ4_KS: return dequantize_row_iq4_ks_cuda; + case GGML_TYPE_IQ2_KS: + return dequantize_row_iq2_ks_cuda; case GGML_TYPE_IQ2_K: return dequantize_row_iq2_k_cuda; case GGML_TYPE_IQ3_K: @@ -1187,6 +1225,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { return dequantize_row_iq4_xs_cuda; case GGML_TYPE_IQ4_KS: return dequantize_row_iq4_ks_cuda; + case GGML_TYPE_IQ2_KS: + return dequantize_row_iq2_ks_cuda; case GGML_TYPE_IQ2_K: return dequantize_row_iq2_k_cuda; case GGML_TYPE_IQ3_K: diff --git a/ggml/src/ggml-cuda/iqk_mmvq.cu b/ggml/src/ggml-cuda/iqk_mmvq.cu index a1f2d28c..9ca219e4 100644 --- a/ggml/src/ggml-cuda/iqk_mmvq.cu +++ b/ggml/src/ggml-cuda/iqk_mmvq.cu @@ -217,7 +217,6 @@ __device__ __forceinline__ float vec_dot_iq4_k_q8_1( #define VDR_IQ4_KS_Q8_1_MMVQ 4 #define VDR_IQ4_KS_Q8_1_MMQ 4 -// TODO __device__ __forceinline__ float vec_dot_iq4_ks_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { @@ -425,7 +424,7 @@ __device__ __forceinline__ float vec_dot_iq2_k_q8_1( // -> scales_l[4*(i4/4) + k] >> 4*(((i4%4)/2)%2) const uint32_t * scales = (const uint32_t *)bq2->scales; - uint32_t s32 = __vsub4(((scales[i4/4] >> 4*(((i4%4)/2)%2)) & 0x0f0f0f0f) << 1, 0x0f0f0f0f); + uint32_t s32 = __vsub4((scales[i4/4] >> 4*(((i4%4)/2)%2)) & 0x0f0f0f0f, 0x08080808); const int8_t * s8 = (const int8_t *)&s32; aux32[0] = ((val1 >> 0) & 0x03030303); aux32[1] = ((val2 >> 0) & 0x03030303); values = all_values + ((extra & 0x01) << 8); @@ -455,6 +454,65 @@ __device__ __forceinline__ float vec_dot_iq2_k_q8_1( } +#define VDR_IQ2_KS_Q8_1_MMVQ 4 +#define VDR_IQ2_KS_Q8_1_MMQ 4 + +__device__ __forceinline__ float vec_dot_iq2_ks_q8_1( + const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { + + float scale = *(const half *)vbq; + const block_iq2_ks * bq2 = (const block_iq2_ks *)((const char *)vbq + sizeof(half)) + kbx; + + int i4 = iqs/4; // 0...7. We will process q8 blocks 4*(i4/4), 4*(i4/4)+1, 4*(i4/4)+2, 4*(i4/4)+3 + const int32_t * q8_1 = (const int *)bq8_1[4*(i4/4)+0].qs + 2*(i4%4); + const int32_t * q8_2 = (const int *)bq8_1[4*(i4/4)+1].qs + 2*(i4%4); + const int32_t * q8_3 = (const int *)bq8_1[4*(i4/4)+2].qs + 2*(i4%4); + const int32_t * q8_4 = (const int *)bq8_1[4*(i4/4)+3].qs + 2*(i4%4); + + const uint16_t * q2 = (const uint16_t *)bq2->qs + 16*(i4/4) + 4*(i4%4); + const uint16_t extra = bq2->extra >> 4*(i4/4); + + const int * all_values = (const int *)iq2k_table; + const int * values; + + uint32_t val1 = q2[0] | (q2[1] << 16), val2 = q2[2] | (q2[3] << 16); + + uint32_t aux32[2]; + const uint8_t * a8 = (const uint8_t *)&aux32; + int v1, v2; + + int8_t s8[4]; + s8[0] = ((bq2->scales[2*(i4/4)+0] & 0xf) | ((extra >> 4) & 0x10)) - 16; + s8[1] = ((bq2->scales[2*(i4/4)+0] >> 4) | ((extra >> 5) & 0x10)) - 16; + s8[2] = ((bq2->scales[2*(i4/4)+1] & 0xf) | ((extra >> 6) & 0x10)) - 16; + s8[3] = ((bq2->scales[2*(i4/4)+1] >> 4) | ((extra >> 7) & 0x10)) - 16; + + aux32[0] = ((val1 >> 0) & 0x03030303); aux32[1] = ((val2 >> 0) & 0x03030303); values = all_values + ((extra & 0x01) << 8); + v1 = int_from_table_4(a8 + 0, values); + v2 = int_from_table_4(a8 + 4, values); + int sumi1 = ggml_cuda_dp4a(v2, q8_1[1], ggml_cuda_dp4a(v1, q8_1[0], 0)) * s8[0]; + + aux32[0] = ((val1 >> 2) & 0x03030303); aux32[1] = ((val2 >> 2) & 0x03030303); values = all_values + ((extra & 0x02) << 7); + v1 = int_from_table_4(a8 + 0, values); + v2 = int_from_table_4(a8 + 4, values); + int sumi2 = ggml_cuda_dp4a(v2, q8_2[1], ggml_cuda_dp4a(v1, q8_2[0], 0)) * s8[1]; + + aux32[0] = ((val1 >> 4) & 0x03030303); aux32[1] = ((val2 >> 4) & 0x03030303); values = all_values + ((extra & 0x04) << 6); + v1 = int_from_table_4(a8 + 0, values); + v2 = int_from_table_4(a8 + 4, values); + int sumi3 = ggml_cuda_dp4a(v2, q8_3[1], ggml_cuda_dp4a(v1, q8_3[0], 0)) * s8[2]; + + aux32[0] = ((val1 >> 6) & 0x03030303); aux32[1] = ((val2 >> 6) & 0x03030303); values = all_values + ((extra & 0x08) << 5); + v1 = int_from_table_4(a8 + 0, values); + v2 = int_from_table_4(a8 + 4, values); + int sumi4 = ggml_cuda_dp4a(v2, q8_4[1], ggml_cuda_dp4a(v1, q8_4[0], 0)) * s8[3]; + + return scale * (__low2float(bq8_1[4*(i4/4)+0].ds) * sumi1 + + __low2float(bq8_1[4*(i4/4)+1].ds) * sumi2 + + __low2float(bq8_1[4*(i4/4)+2].ds) * sumi3 + + __low2float(bq8_1[4*(i4/4)+3].ds) * sumi4); +} + #define VDR_IQ3_K_Q8_1_MMVQ 4 #define VDR_IQ3_K_Q8_1_MMQ 4 @@ -645,6 +703,13 @@ void mul_mat_vec_iq4_ks_q8_1_cuda( iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ4_KS, VDR_IQ4_KS_Q8_1_MMVQ, vec_dot_iq4_ks_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } +void mul_mat_vec_iq2_ks_q8_1_cuda( + const void * vx, const void * vy, float * dst, + const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { + + iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ2_KS, VDR_IQ2_KS_Q8_1_MMVQ, vec_dot_iq2_ks_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); +} + void mul_mat_vec_iq5_k_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { diff --git a/ggml/src/ggml-cuda/iqk_mmvq.cuh b/ggml/src/ggml-cuda/iqk_mmvq.cuh index 8d76be1d..3a93a1b6 100644 --- a/ggml/src/ggml-cuda/iqk_mmvq.cuh +++ b/ggml/src/ggml-cuda/iqk_mmvq.cuh @@ -32,3 +32,7 @@ void mul_mat_vec_iq4_ks_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream); +void mul_mat_vec_iq2_ks_q8_1_cuda( + const void * vx, const void * vy, float * dst, + const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream); + diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu index 8e3c4aa4..e312b266 100644 --- a/ggml/src/ggml-cuda/mmvq.cu +++ b/ggml/src/ggml-cuda/mmvq.cu @@ -462,6 +462,9 @@ void ggml_cuda_op_mul_mat_vec_q( case GGML_TYPE_IQ4_KS: mul_mat_vec_iq4_ks_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; + case GGML_TYPE_IQ2_KS: + mul_mat_vec_iq2_ks_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); + break; case GGML_TYPE_IQ5_K: mul_mat_vec_iq5_k_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m index a326a36f..d5e8d6ae 100644 --- a/ggml/src/ggml-metal.m +++ b/ggml/src/ggml-metal.m @@ -108,6 +108,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KS, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K, GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_K, @@ -150,6 +151,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ5_K_F32, @@ -186,6 +188,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ5_K_F32, @@ -219,6 +222,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32, @@ -252,6 +256,7 @@ enum ggml_metal_kernel_type { GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_K_F32, @@ -646,6 +651,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS, get_rows_iq4_ks, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K, get_rows_iq2_k, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KS, get_rows_iq2_ks, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_K, get_rows_iq3_k, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K, get_rows_iq4_k, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_K, get_rows_iq5_k, true); @@ -688,6 +694,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_KS_F32, mul_mv_iq4_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_K_F32, mul_mv_iq2_k_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_KS_F32, mul_mv_iq2_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_K_F32, mul_mv_iq3_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_K_F32, mul_mv_iq4_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ5_K_F32, mul_mv_iq5_k_f32, ctx->support_simdgroup_reduction); @@ -724,6 +731,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_KS_F32, mul_mv_id_iq4_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_K_F32, mul_mv_id_iq2_k_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_KS_F32, mul_mv_id_iq2_ks_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_K_F32, mul_mv_id_iq3_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_K_F32, mul_mv_id_iq4_k_f32, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ5_K_F32, mul_mv_id_iq5_k_f32, ctx->support_simdgroup_reduction); @@ -757,6 +765,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32, mul_mm_iq4_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32, mul_mm_iq2_k_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F32, mul_mm_iq2_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32, mul_mm_iq3_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32, mul_mm_iq4_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32, mul_mm_iq5_k_f32, ctx->support_simdgroup_mm); @@ -790,6 +799,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32, mul_mm_id_iq4_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32, mul_mm_id_iq2_k_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KS_F32, mul_mm_id_iq2_ks_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32, mul_mm_id_iq3_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32, mul_mm_id_iq4_k_f32, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_K_F32, mul_mm_id_iq5_k_f32, ctx->support_simdgroup_mm); @@ -1988,6 +1998,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_KS_F32 ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_K_F32 ].pipeline; break; + case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_KS_F32 ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_K_F32 ].pipeline; break; case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_K_F32 ].pipeline; break; case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ5_K_F32 ].pipeline; break; @@ -2217,6 +2228,12 @@ static enum ggml_status ggml_metal_graph_compute( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_K_F32].pipeline; } break; + case GGML_TYPE_IQ2_KS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_KS_F32].pipeline; + } break; case GGML_TYPE_IQ3_K: { nth0 = 4; @@ -2276,6 +2293,11 @@ static enum ggml_status ggml_metal_graph_compute( src0t == GGML_TYPE_IQ3_K || src0t == GGML_TYPE_IQ2_TN|| src0t == GGML_TYPE_IQ1_TN) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } + else if (src0t == GGML_TYPE_IQ2_KS) { + const int mem_size = 64*sizeof(float); + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; @@ -2384,6 +2406,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_KS_F32 ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_K_F32 ].pipeline; break; + case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_KS_F32 ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_K_F32 ].pipeline; break; case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_K_F32 ].pipeline; break; case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ5_K_F32 ].pipeline; break; @@ -2601,6 +2624,12 @@ static enum ggml_status ggml_metal_graph_compute( nth1 = 16; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_K_F32].pipeline; } break; + case GGML_TYPE_IQ2_KS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_KS_F32].pipeline; + } break; case GGML_TYPE_IQ3_K: { nth0 = 4; @@ -2667,7 +2696,7 @@ static enum ggml_status ggml_metal_graph_compute( if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q6_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S|| - src0t == GGML_TYPE_IQ1_BN|| src0t == GGML_TYPE_IQ2_BN|| src0t == GGML_TYPE_IQ2_K|| + src0t == GGML_TYPE_IQ1_BN|| src0t == GGML_TYPE_IQ2_BN|| src0t == GGML_TYPE_IQ2_K|| src0t == GGML_TYPE_IQ2_KS || src0t == GGML_TYPE_IQ3_K || src0t == GGML_TYPE_IQ2_TN|| src0t == GGML_TYPE_IQ1_TN) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } @@ -2737,6 +2766,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break; case GGML_TYPE_IQ4_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_KS ].pipeline; break; case GGML_TYPE_IQ2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_K ].pipeline; break; + case GGML_TYPE_IQ2_KS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_KS ].pipeline; break; case GGML_TYPE_IQ3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_K ].pipeline; break; case GGML_TYPE_IQ4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_K ].pipeline; break; case GGML_TYPE_IQ5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ5_K ].pipeline; break; diff --git a/ggml/src/ggml-metal.metal b/ggml/src/ggml-metal.metal index ea0cda99..5ed424d3 100644 --- a/ggml/src/ggml-metal.metal +++ b/ggml/src/ggml-metal.metal @@ -3685,6 +3685,7 @@ constexpr constant static float kvalues_iq6k_f[128] = { }; constexpr constant static float kvalues_iq2k_f[8] = { -31.f, -13.f, 1.f, 17.f, -26.f, -8.f, 6.f, 22.f }; +constexpr constant static half kvalues_iq2k_h[8] = { -31.h, -13.h, 1.h, 17.h, -26.h, -8.h, 6.h, 22.h }; constexpr constant static float kvalues_iq3k_f[16] = { -63.f, -40.f, -23.f, -10.f, 1.f, 13.f, 28.f, 47.f, -59.f, -36.f, -19.f, -6.f, 5.f, 17.f, 32.f, 51.f }; constexpr constant static half kvalues_iq3k_h[16] = { -63.h, -40.h, -23.h, -10.h, 1.h, 13.h, 28.h, 47.h, -59.h, -36.h, -19.h, -6.h, 5.h, 17.h, 32.h, 51.h }; @@ -6260,6 +6261,156 @@ kernel void kernel_mul_mv_iq2_k_f32( kernel_mul_mv_iq2_k_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); } +void kernel_mul_mv_iq2_ks_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const uint row_size = 2 + nb*sizeof(block_iq2_ks); + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(ne01) + (i13/r3)*(ne01*ne02); + + device const char * cx = (device const char *) src0 + (first_row + offset0)*row_size; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}; + + const int ix = tiisg/8; // 0...3 + const int it = tiisg%8; // 0...7 + const int iq = it/4; // 0 or 1 + const int ir = it%4; // 0...3 + + device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir; + + threadgroup float * all_values = (threadgroup float *)shared_values + 32*sgitg; + { + //int row = tiisg%N_DST; + //device const half * dptr = (device const half *)(cx + row*row_size); + //const float d = *dptr; + //all_values[8*row + tiisg/N_DST] = d*iq2nl_values[tiisg/N_DST]; + //threadgroup_barrier(mem_flags::mem_threadgroup); + int row = tiisg/8; + int pos = tiisg%8; + device const half * dptr = (device const half *)(cx + row*row_size); + const float d = *dptr; + all_values[8*row + pos] = d*kvalues_iq2k_f[pos]; + simdgroup_barrier(mem_flags::mem_none); + //threadgroup_barrier(mem_flags::mem_threadgroup); + } + + cx += sizeof(half); + + uint32_t q32[2]; + uint32_t aux32[2]; + thread const uint8_t * aux8 = (thread const uint8_t *)aux32; + + for (int ib = ix; ib < nb; ib += 4) { + + for (int i = 0; i < 8; ++i) { + yl[i+ 0] = y4[i+ 0]; + yl[i+ 8] = y4[i+32]; + yl[i+16] = y4[i+64]; + yl[i+24] = y4[i+96]; + } + + device const block_iq2_ks * x = (device const block_iq2_ks *)cx + ib; + device const uint16_t * q16 = (device const uint16_t *)x->qs + 16*iq + 4*ir; + device const uint16_t * sc = (device const uint16_t *)x->scales; + device const uint16_t * ex = (device const uint16_t *)&x->extra; + + for (int row = 0; row < N_DST; row++) { + + threadgroup const float * row_values = all_values + 8*row; + + uint32_t sc32 = (sc[iq] | (sc[iq] << 12)) & 0x0f0f0f0f; + thread const int8_t * s8 = (thread const int8_t *)&sc32; + + q32[0] = q16[0] | (q16[1] << 16); + q32[1] = q16[2] | (q16[3] << 16); + + uint8_t extra = ex[0] << 4*(1-iq); + + float4 acc = {0.f}; + for (int l = 0; l < 4; ++l) { + threadgroup const float * values = row_values + ((extra >> (2 + l)) & 4); + aux32[0] = (q32[0] >> 2*l) & 0x03030303; + aux32[1] = (q32[1] >> 2*l) & 0x03030303; + for (int j = 0; j < 8; ++j) acc[l] += yl[8*l+j] * values[aux8[j]]; + } + extra = ex[0] >> (8 + 4*iq); + sumf[row] += acc[0] * (s8[0] - (extra & 1 ? 0 : 16)) + acc[1] * (s8[2] - (extra & 2 ? 0 : 16)) + + acc[2] * (s8[1] - (extra & 4 ? 0 : 16)) + acc[3] * (s8[3] - (extra & 8 ? 0 : 16)); + + q16 += row_size/2; + sc += row_size/2; + ex += row_size/2; + + } + + y4 += 4 * QK_K; + } + + for (int row = 0; row < N_DST; row += 2) { + float2 tmp = {sumf[row], sumf[row+1]}; + tmp = simd_sum(tmp); + if (tiisg < 2) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row + tiisg] = tmp[tiisg]; + } + } +} + +[[host_name("kernel_mul_mv_iq2_ks_f32")]] +kernel void kernel_mul_mv_iq2_ks_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq2_ks_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + void kernel_mul_mv_iq3_k_f32_impl( device const void * src0, device const float * src1, @@ -7569,6 +7720,26 @@ void dequantize_iq2_k(device const block_iq2_k * xb, short il, thread type4x4 & } template <typename type4x4> +void dequantize_iq2_ks(device const block_iq2_ks * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 + device const uint16_t * q16 = (device const uint16_t *)xb->qs + 16*(il/8) + 8*(il&1); + const short ib32 = il/2; + half d = (((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf) - ((xb->extra >> (8 + ib32)) & 1 ? 0 : 16)); + + constant half4 * half_values = (constant half4 *)kvalues_iq2k_h; + half4 values = half_values[(xb->extra >> ib32) & 1] * d; + + const int shift = 2*((il%8)/2); + thread uint16_t aux16[2]; + thread const uint8_t * aux8 = (thread const uint8_t *)aux16; + for (int i = 0; i < 4; ++i) { + aux16[0] = (q16[2*i+0] >> shift) & 0x0303; + aux16[1] = (q16[2*i+1] >> shift) & 0x0303; + for (int j = 0; j < 4; ++j) reg[i][j] = values[aux8[j]]; + } +} + +template <typename type4x4> void dequantize_iq3_k(device const block_iq3_k * xb, short il, thread type4x4 & reg) { // il is 0...15 for QK_K = 256 device const uint16_t * q16l = (device const uint16_t *)xb->qs + 16*(il/8) + 8*(il&1); @@ -8194,6 +8365,7 @@ template [[host_name("kernel_get_rows_iq2_bn")]] kernel get_rows_q_t kernel_get template [[host_name("kernel_get_rows_iq1_tn")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq1_bn, half, 4, dequantize_iq1_bn>>; template [[host_name("kernel_get_rows_iq2_tn")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq2_tn, float, 16, dequantize_iq2_tn>>; template [[host_name("kernel_get_rows_iq4_ks")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; +template [[host_name("kernel_get_rows_iq2_ks")]] kernel get_rows_q_t kernel_get_rows_q2<DequantizerRS<float4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>>; // // matrix-matrix multiplication @@ -8237,6 +8409,7 @@ template [[host_name("kernel_mul_mm_iq2_bn_f32")]] kernel mat_mm_t kernel_mul_m template [[host_name("kernel_mul_mm_iq1_tn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn>>; template [[host_name("kernel_mul_mm_iq2_tn_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_tn, float, 16, dequantize_iq2_tn>>; template [[host_name("kernel_mul_mm_iq4_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; +template [[host_name("kernel_mul_mm_iq2_ks_f32")]] kernel mat_mm_t kernel_mul_mm<half, simdgroup_half8x8, DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>>; // // indirect matrix-matrix multiplication @@ -8277,6 +8450,7 @@ template [[host_name("kernel_mul_mm_id_iq6_k_f32")]] kernel mat_mm_id_t kernel template [[host_name("kernel_mul_mm_id_iq1_tn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq1_bn, half, 4, dequantize_iq1_bn>>; template [[host_name("kernel_mul_mm_id_iq2_tn_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq2_tn, float, 16, dequantize_iq2_tn>>; template [[host_name("kernel_mul_mm_id_iq4_ks_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq4_ks, float, 16, dequantize_iq4_ks>>; +template [[host_name("kernel_mul_mm_id_iq2_ks_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<DequantizerRS<half4x4, block_iq2_ks, half, 16, dequantize_iq2_ks>>; // // matrix-vector multiplication @@ -8494,6 +8668,7 @@ template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq4_ks_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_ks_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq2_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_k_f32_impl>>; +template [[host_name("kernel_mul_mv_id_iq2_ks_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_ks_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq3_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_k_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq4_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_k_f32_impl>>; template [[host_name("kernel_mul_mv_id_iq5_k_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq5_k_f32_impl>>; diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c index 40978ac0..a845eaf5 100644 --- a/ggml/src/ggml-quants.c +++ b/ggml/src/ggml-quants.c @@ -12873,7 +12873,6 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict const int * kmap_q2xs = iq2_data[gindex].map; const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; - GGML_ASSERT(quant_weights && "missing quantization weights"); GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); @@ -12908,8 +12907,12 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict for (int ib = 0; ib < QK_K/32; ++ib) { const float * xb = xbl + 32*ib; - const float * qw = quant_weights + QK_K*ibl + 32*ib; - for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + 32*ib; + for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < 32; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i]; + } for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]); for (int k = 0; k < 4; ++k) { int nflip = 0; @@ -13046,7 +13049,6 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v const int * kmap_q2xs = iq2_data[gindex].map; const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; - GGML_ASSERT(quant_weights && "missing quantization weights"); GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); @@ -13084,8 +13086,12 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v for (int ib = 0; ib < QK_K/16; ++ib) { const float * xb = xbl + 16*ib; - const float * qw = quant_weights + QK_K*ibl + 16*ib; - for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + 16*ib; + for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i]; + } for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]); for (int k = 0; k < 2; ++k) { int nflip = 0; @@ -13230,6 +13236,17 @@ size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t return nrow * nblock * sizeof(block_iq2_xxs); } +void quantize_row_iq2_xxs(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_iq2_xxs * restrict y = vy; + quantize_row_iq2_xxs_ref(x, y, k); +} + +void quantize_row_iq2_xxs_ref(const float * restrict x, block_iq2_xxs * restrict y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq2_xxs(x, y, 1, k, NULL); +} + size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { GGML_ASSERT(n_per_row%QK_K == 0); int64_t nblock = n_per_row/QK_K; @@ -13242,6 +13259,17 @@ size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t return nrow * nblock * sizeof(block_iq2_xs); } +void quantize_row_iq2_xs(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_iq2_xs * restrict y = vy; + quantize_row_iq2_xs_ref(x, y, k); +} + +void quantize_row_iq2_xs_ref(const float * restrict x, block_iq2_xs * restrict y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq2_xs(x, y, 1, k, NULL); +} + // // ============================================= 3-bit using D4 lattice // @@ -14947,10 +14975,11 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte return false; } - if (type != GGML_TYPE_IQ2_TN && type != GGML_TYPE_IQ1_TN && type != GGML_TYPE_IQ4_KS && nbytes % ggml_type_size(type) != 0) { - fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, ggml_type_name(type), ggml_type_size(type)); - return false; - } + // Who needs this? + //if (type != GGML_TYPE_IQ2_TN && type != GGML_TYPE_IQ1_TN && type != GGML_TYPE_IQ4_KS && nbytes % ggml_type_size(type) != 0) { + // fprintf(stderr, "%s: invalid size %zu for type %s (type size = %zu)\n", __func__, nbytes, ggml_type_name(type), ggml_type_size(type)); + // return false; + //} const size_t nb = nbytes/ggml_type_size(type); @@ -15160,6 +15189,7 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte } break; case GGML_TYPE_Q6_0: break; case GGML_TYPE_IQ2_K: break; + case GGML_TYPE_IQ2_KS: break; case GGML_TYPE_IQ3_K: break; case GGML_TYPE_IQ4_K: break; case GGML_TYPE_IQ5_K: break; diff --git a/ggml/src/ggml-quants.h b/ggml/src/ggml-quants.h index bad7e9d9..a40a6d37 100644 --- a/ggml/src/ggml-quants.h +++ b/ggml/src/ggml-quants.h @@ -35,6 +35,8 @@ void quantize_row_q6_K_ref(const float * GGML_RESTRICT x, block_q6_K * GGML_REST void quantize_row_q8_K_ref(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k); void quantize_row_q8_K64_ref(const float * GGML_RESTRICT x, block_q8_K64 * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_xxs_ref(const float * GGML_RESTRICT x, block_iq2_xxs * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_xs_ref (const float * GGML_RESTRICT x, block_iq2_xs * GGML_RESTRICT y, int64_t k); void quantize_row_iq3_xxs_ref(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_nl_ref (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_xs_ref (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k); @@ -59,6 +61,8 @@ void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); void quantize_row_q8_K64(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 97fa81b1..a9f795ae 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -920,8 +920,8 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .type_size = sizeof(block_iq2_xxs), .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs, - .from_float = NULL, - .from_float_ref = NULL, + .from_float = quantize_row_iq2_xxs, + .from_float_ref = (ggml_from_float_t)quantize_row_iq2_xxs_ref, .vec_dot = ggml_vec_dot_iq2_xxs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, @@ -933,8 +933,8 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .type_size = sizeof(block_iq2_xs), .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_iq2_xs, - .from_float = NULL, - .from_float_ref = NULL, + .from_float = quantize_row_iq2_xs, + .from_float_ref = (ggml_from_float_t)quantize_row_iq2_xs_ref, .vec_dot = ggml_vec_dot_iq2_xs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, @@ -1193,6 +1193,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .nrows = 1, .row_meta_size = 0, }, + [GGML_TYPE_IQ2_KS] = { + .type_name = "iq2_ks", + .blck_size = QK_K, + .type_size = sizeof(block_iq2_ks), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq2_ks, + .from_float = quantize_row_iq2_ks, + .from_float_ref = (ggml_from_float_t)quantize_row_iq2_ks_ref, + .vec_dot = vec_dot_iq2_ks_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + .row_meta_size = 2, + }, [GGML_TYPE_IQ3_K] = { .type_name = "iq3_k", .blck_size = QK_K, @@ -3906,6 +3919,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; case GGML_FTYPE_MOSTLY_IQ4_KS: wtype = GGML_TYPE_IQ4_KS; break; case GGML_FTYPE_MOSTLY_IQ2_K: wtype = GGML_TYPE_IQ2_K; break; + case GGML_FTYPE_MOSTLY_IQ2_KS: wtype = GGML_TYPE_IQ2_KS; break; case GGML_FTYPE_MOSTLY_IQ3_K: wtype = GGML_TYPE_IQ3_K; break; case GGML_FTYPE_MOSTLY_IQ4_K: wtype = GGML_TYPE_IQ4_K; break; case GGML_FTYPE_MOSTLY_IQ5_K: wtype = GGML_TYPE_IQ5_K; break; @@ -10406,6 +10420,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: @@ -10795,6 +10810,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: @@ -10934,6 +10950,7 @@ static void ggml_compute_forward_acc( case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: @@ -14119,6 +14136,7 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: @@ -14498,6 +14516,7 @@ static void ggml_compute_forward_set( case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: @@ -14771,6 +14790,7 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: @@ -15371,6 +15391,7 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_KS: case GGML_TYPE_IQ2_K: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ3_K: case GGML_TYPE_IQ4_K: case GGML_TYPE_IQ5_K: @@ -22188,6 +22209,7 @@ size_t ggml_quantize_chunk( case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_KS: result = quantize_iq4_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ2_K: result = quantize_iq2_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ2_KS: result = quantize_iq2_ks (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ3_K: result = quantize_iq3_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ4_K: result = quantize_iq4_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; case GGML_TYPE_IQ5_K: result = quantize_iq5_k (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; diff --git a/ggml/src/iqk/iqk_mul_mat.cpp b/ggml/src/iqk/iqk_mul_mat.cpp index dc457c2f..66d26a25 100644 --- a/ggml/src/iqk/iqk_mul_mat.cpp +++ b/ggml/src/iqk/iqk_mul_mat.cpp @@ -402,14 +402,20 @@ struct ScaleIQ4XS { const __m128i m32 = _mm_set1_epi16(-32); }; -template <typename Block, bool per_row_scale = false> +template <typename Block, bool per_row_scale = false, bool is_f16 = false> struct BaseDequantizer { BaseDequantizer(const void * vx, size_t bx) : vx(vx), bx(bx) {} inline void new_row(int ix) { if constexpr (per_row_scale) { - const float * dptr = (const float *)((const char *)vx + bx*ix); - d = *dptr; - x = (const Block *)(dptr + 1); + if constexpr (is_f16) { + const ggml_half * dptr = (const ggml_half *)((const char *)vx + bx*ix); + d = GGML_FP16_TO_FP32(*dptr); + x = (const Block *)(dptr + 1); + } else { + const float * dptr = (const float *)((const char *)vx + bx*ix); + d = *dptr; + x = (const Block *)(dptr + 1); + } } else { x = (const Block *)((const char *)vx + bx*ix); } @@ -889,13 +895,61 @@ struct DequantizerIQ2K final : public BaseDequantizer<block_iq2_k> { inline __m128i make_scales(const uint8_t * scales_l) const { uint64_t aux64; std::memcpy(&aux64, scales_l, 8); auto scl = _mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), _mm_set1_epi8(0xf)); - return _mm_add_epi8(_mm_slli_epi16(scl, 1), m15); + return _mm_add_epi8(scl, m8); } Q2Bits bits; const IQXKScales iqxk; const __m512i values; - const __m128i m15 = _mm_set1_epi8(-15); + const __m128i m8 = _mm_set1_epi8(-8); +}; + +struct DequantizerIQ2KS final : public BaseDequantizer<block_iq2_ks, true, true> { + DequantizerIQ2KS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_values()) {} + template <typename Q8> + inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) { + prepare(x[i].qs); + auto scales128 = make_scales(x[i].scales, x[i].extra >> 8); + auto shifts = _mm_and_si128(_mm_cmpeq_epi8(_mm_and_si128(_mm_set1_epi8(x[i].extra), hmask), hmask), m5); + auto scales_s = _mm_mullo_epi16(scales128, _mm_cvtepi8_epi16(_mm_add_epi8(m32, shifts))); + s8k.accum_mins(scales_s, q8, i, d, accm); + auto scales256 = MM256_SET_M128I(scales128, scales128); + auto all_scales = _mm512_inserti32x8(_mm512_castsi256_si512(scales256), scales256, 1); + scales[0] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[0]); + scales[1] = _mm512_shuffle_epi8(all_scales, s8k.shuffles512[1]); + } + inline void prepare(const uint8_t * q2) { + bits.prepare(q2); + bits.values[0] = _mm512_shuffle_epi8(values, bits.values[0]); + bits.values[1] = _mm512_shuffle_epi8(values, bits.values[1]); + bits.values[2] = _mm512_shuffle_epi8(values, bits.values[2]); + bits.values[3] = _mm512_shuffle_epi8(values, bits.values[3]); + } + static inline __m512i load_values() { + static const uint8_t kvalues_iq2nl[16] = {1, 19, 33, 49, 0, 0, 0, 0, 6, 24, 38, 54, 0, 0, 0, 0}; + auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq2nl); + auto val256 = MM256_SET_M128I(val128, val128); + return _mm512_inserti32x8(_mm512_castsi256_si512(val256), val256, 1); + } + inline __m128i make_scales(const uint8_t * scales_l, uint8_t scales_h) const { + const uint16_t * scales = (const uint16_t *)scales_l; + uint32_t aux32 = scales[0] | (uint32_t(scales[1]) << 16); + auto scl = _mm_srlv_epi32(_mm_set1_epi32(aux32), shift); + scl = _mm_and_si128(_mm_shuffle_epi8(scl, shuffle), _mm_set1_epi8(0xf)); + auto sch = _mm_set1_epi8(scales_h); + sch = _mm_and_si128(_mm_cmpeq_epi8(_mm_and_si128(sch, hmask), _mm_setzero_si128()), m16); + return _mm_cvtepi8_epi16(_mm_add_epi8(scl, sch)); + } + Q2Bits bits; + Scales8K s8k; + + const __m512i values; + const __m128i m16 = _mm_set1_epi8(-16); + const __m128i m5 = _mm_set1_epi8(5); + const __m128i m32 = _mm_set1_epi8(-32); + const __m128i hmask = _mm_set1_epi64x(0x8040201008040201); + const __m128i shuffle = _mm_set1_epi64x(0x0703060205010400); + const __m128i shift = _mm_set_epi32(0, 0, 4, 0); }; struct DequantizerIQ3K final : public BaseDequantizer<block_iq3_k> { @@ -1107,8 +1161,8 @@ struct DequantizerIQ6K final : public BaseDequantizer<block_iq6_k> { const __m512i permute2 = _mm512_set_epi64(15, 14, 13, 12, 7, 6, 5, 4); }; -struct DequantizerIQ4XXS final : public BaseDequantizer<block_iq4_ks, true> { - DequantizerIQ4XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_512()) {} +struct DequantizerIQ4KS final : public BaseDequantizer<block_iq4_ks, true> { + DequantizerIQ4KS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_512()) {} template <typename Q8> inline void new_block(int i, const Q8& q8, __m256 * accm, __m512i * scales) { auto scales128 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *)x[i].scales)); @@ -1555,13 +1609,13 @@ struct DequantizerIQ2K final : public BaseDequantizer<block_iq2_k> { inline __m128i make_scales(const uint8_t * scales_l) const { uint64_t aux64; std::memcpy(&aux64, scales_l, 8); auto scl = _mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), maskl); - return _mm_add_epi8(_mm_slli_epi16(scl, 1), m15); + return _mm_add_epi8(scl, m8); } Q2Bits bits; const IQXKScales iqxk; const __m256i values; - const __m128i m15 = _mm_set1_epi8(-15); + const __m128i m8 = _mm_set1_epi8(-8); const __m128i maskl = _mm_set1_epi8(0xf); }; @@ -1740,8 +1794,8 @@ struct DequantizerIQ6K final : public BaseDequantizer<block_iq6_k> { const __m256i mh = _mm256_set1_epi8(-128); // to avoid stupid warning about 0x80 overflowing }; -struct DequantizerIQ4XXS final : public BaseDequantizer<block_iq4_ks, true> { - DequantizerIQ4XXS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_256()) {} +struct DequantizerIQ4KS final : public BaseDequantizer<block_iq4_ks, true> { + DequantizerIQ4KS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_iq4nl_values_256()) {} template <typename Q8> inline __m256i new_block(int i, const Q8& q8, __m256 * accd) { auto scales128 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *)x[i].scales)); @@ -1771,6 +1825,49 @@ struct DequantizerIQ4XXS final : public BaseDequantizer<block_iq4_ks, true> { const __m256i shuff2 = _mm256_set_epi64x(0x0f0e0f0e0d0c0d0c, 0x0b0a0b0a09080908, 0x0f0e0f0e0d0c0d0c, 0x0b0a0b0a09080908); }; +struct DequantizerIQ2KS final : public BaseDequantizer<block_iq2_ks, true, true> { + DequantizerIQ2KS(const void * vx, size_t bx) : BaseDequantizer(vx, bx), values(load_values()) {} + template <typename Q8> + inline __m256i new_block(int i, const Q8& q8, __m256 * accm) { + auto scales128 = make_scales(x[i].scales, x[i].extra >> 8); + auto shifts = _mm_and_si128(_mm_cmpeq_epi8(_mm_and_si128(_mm_set1_epi8(x[i].extra), hmask), hmask), m5); + auto scales_s = _mm_mullo_epi16(scales128, _mm_cvtepi8_epi16(_mm_add_epi8(m32, shifts))); + s8k.accum_mins(scales_s, q8, i, d, accm); + return MM256_SET_M128I(scales128, scales128); + } + inline void prepare(int i, int j) { + bits.prepare(x[i].qs, j); + bits.values[0] = _mm256_shuffle_epi8(values, bits.values[0]); + bits.values[1] = _mm256_shuffle_epi8(values, bits.values[1]); + bits.values[2] = _mm256_shuffle_epi8(values, bits.values[2]); + bits.values[3] = _mm256_shuffle_epi8(values, bits.values[3]); + } + static inline __m256i load_values() { + static const uint8_t kvalues_iq2nl[16] = {1, 19, 33, 49, 0, 0, 0, 0, 6, 24, 38, 54, 0, 0, 0, 0}; + auto val128 = _mm_loadu_si128((const __m128i *)kvalues_iq2nl); + return MM256_SET_M128I(val128, val128); + } + inline __m128i make_scales(const uint8_t * scales_l, uint8_t scales_h) const { + const uint16_t * scales = (const uint16_t *)scales_l; + uint32_t aux32 = scales[0] | (uint32_t(scales[1]) << 16); + auto scl = _mm_srlv_epi32(_mm_set1_epi32(aux32), shift); + scl = _mm_and_si128(_mm_shuffle_epi8(scl, shuffle), _mm_set1_epi8(0xf)); + auto sch = _mm_set1_epi8(scales_h); + sch = _mm_and_si128(_mm_cmpeq_epi8(_mm_and_si128(sch, hmask), _mm_setzero_si128()), m16); + return _mm_cvtepi8_epi16(_mm_add_epi8(scl, sch)); + } + Q2Bits bits; + Scales8KBase s8k; + + const __m256i values; + const __m128i m16 = _mm_set1_epi8(-16); + const __m128i m5 = _mm_set1_epi8(5); + const __m128i m32 = _mm_set1_epi8(-32); + const __m128i hmask = _mm_set1_epi64x(0x8040201008040201); + const __m128i shuffle = _mm_set1_epi64x(0x0703060205010400); + const __m128i shift = _mm_set_epi32(0, 0, 4, 0); +}; + struct DequantizerQ5K final : public BaseDequantizer<block_q5_K> { DequantizerQ5K(const void * vx, size_t bx) : BaseDequantizer(vx, bx) {} template <typename Q8> @@ -3751,7 +3848,7 @@ template <typename Dequantizer> void MulMat::set_functions(MulMat& m) { std::is_same_v<Dequantizer, DequantizerIQ4K> || std::is_same_v<Dequantizer, DequantizerIQ3K> || std::is_same_v<Dequantizer, DequantizerIQ4XS>|| - std::is_same_v<Dequantizer, DequantizerIQ4XXS>) { + std::is_same_v<Dequantizer, DequantizerIQ4KS>) { m.funcs[0] = mul_mat_iqX_k_q8_K_AVX512<Dequantizer, 1>; m.funcs[1] = mul_mat_iqX_k_q8_K_AVX512<Dequantizer, 2>; m.funcs[2] = mul_mat_iqX_k_q8_K_AVX512<Dequantizer, 3>; @@ -3913,12 +4010,16 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) { break; case GGML_TYPE_IQ4_KS: assert (ne00 % QK_K == 0); - MulMat::set_functions<DequantizerIQ4XXS>(mm); + MulMat::set_functions<DequantizerIQ4KS>(mm); break; case GGML_TYPE_IQ2_K: assert (ne00 % QK_K == 0); MulMat::set_functions<DequantizerIQ2K>(mm); break; + case GGML_TYPE_IQ2_KS: + assert (ne00 % QK_K == 0); + MulMat::set_functions<DequantizerIQ2KS>(mm); + break; case GGML_TYPE_IQ3_K: assert (ne00 % QK_K == 0); MulMat::set_functions<DequantizerIQ3K>(mm); @@ -4224,14 +4325,20 @@ struct Q2bits { } }; -template <typename block_q, bool has_row_scale = false> +template <typename block_q, bool has_row_scale = false, bool scale_is_f16 = false> struct BaseDequantizer { BaseDequantizer(const void * vx, size_t bx, int nrc) : vx(vx), x(nullptr), bx(bx), nrc(nrc) {} inline void new_row(int ix) { if constexpr (has_row_scale) { - const float * dptr = (const float *)((const char *)vx + ix*bx); - d = *dptr; - x = (const block_q *)(dptr + 1); + if constexpr (scale_is_f16) { + const ggml_half * dptr = (const ggml_half *)((const char *)vx + ix*bx); + d = GGML_FP16_TO_FP32(*dptr); + x = (const block_q *)(dptr + 1); + } else { + const float * dptr = (const float *)((const char *)vx + ix*bx); + d = *dptr; + x = (const block_q *)(dptr + 1); + } } else { x = (const block_q *)((const char *)vx + ix*bx); } @@ -4683,7 +4790,7 @@ struct DequantizerIQ2K final : public BaseDequantizer<block_iq2_k> { inline int8x16_t make_scales(const uint8_t * scales_l) const { uint8x8_t aux = vld1_u8(scales_l); uint8x16_t scl8 = vandq_u8(vcombine_u8(aux, vshr_n_u8(aux, 4)), vdupq_n_u8(0xf)); - int8x16_t scales = vaddq_s8(vreinterpretq_s8_u8(vshlq_n_u8(scl8, 1)), vdupq_n_s8(-15)); + int8x16_t scales = vaddq_s8(vreinterpretq_s8_u8(scl8), vdupq_n_s8(-8)); return vqtbl1q_s8(scales, hshuff); } @@ -4809,9 +4916,9 @@ struct DequantizerIQ4XS final : public BaseDequantizer<block_iq4_xs> { }; -struct DequantizerIQ4XXS final : public BaseDequantizer<block_iq4_ks, true> { +struct DequantizerIQ4KS final : public BaseDequantizer<block_iq4_ks, true> { - DequantizerIQ4XXS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc), values(vld1q_s8_x2(iq4k_values)) {} + DequantizerIQ4KS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc), values(vld1q_s8_x2(iq4k_values)) {} constexpr static int num_blocks() { return 8; } constexpr static bool should_scale_quants() { return false; } @@ -4838,6 +4945,42 @@ struct DequantizerIQ4XXS final : public BaseDequantizer<block_iq4_ks, true> { const int16x8_t m127 = vdupq_n_s16(-127); }; +struct DequantizerIQ2KS final : public BaseDequantizer<block_iq2_ks, true, true> { + DequantizerIQ2KS(const void * vx, size_t bx, int nrc) : BaseDequantizer(vx, bx, nrc) {} + + constexpr static int num_blocks() { return 8; } + constexpr static bool should_scale_quants() { return false; } + + template <typename Q8> + inline int32x4x2_t new_block(int i, [[maybe_unused]] const Q8& q8, [[maybe_unused]] float32x4_t * acc) { + const uint16_t * sc16 = (const uint16_t *)x[i].scales; + uint32_t aux32 = sc16[0] | (sc16[1] << 16); + uint8x8_t scales8 = vreinterpret_u8_u32(vdup_n_u32(aux32)); + scales8 = vand_u8(vzip1_u8(scales8, vshr_n_u8(scales8, 4)), vdup_n_u8(0xf)); + uint8x8_t sh = vand_u8(vceq_u8(vand_u8(vdup_n_u8(x[i].extra >> 8), hmask), vdup_n_u8(0)), vdup_n_u8(16)); + int16x8_t scales16 = vmovl_s8(vsub_s8(vreinterpret_s8_u8(scales8), vreinterpret_s8_u8(sh))); + int32x4x2_t scales = {vmovl_s16(vget_low_s16(scales16)), vmovl_s16(vget_high_s16(scales16))}; + return scales; + } + inline void prepare(int i, int j) { + uint8_t extra = x[i].extra >> 4*j; + bits.prepare(x[i].qs+32*j); + bits.b1.val[0] = vqtbl1q_s8(values.val[extra & 1], bits.b1.val[0]); + bits.b1.val[1] = vqtbl1q_s8(values.val[extra & 1], bits.b1.val[1]); extra >>= 1; + bits.b1.val[2] = vqtbl1q_s8(values.val[extra & 1], bits.b1.val[2]); + bits.b1.val[3] = vqtbl1q_s8(values.val[extra & 1], bits.b1.val[3]); extra >>= 1; + bits.b2.val[0] = vqtbl1q_s8(values.val[extra & 1], bits.b2.val[0]); + bits.b2.val[1] = vqtbl1q_s8(values.val[extra & 1], bits.b2.val[1]); extra >>= 1; + bits.b2.val[2] = vqtbl1q_s8(values.val[extra & 1], bits.b2.val[2]); + bits.b2.val[3] = vqtbl1q_s8(values.val[extra & 1], bits.b2.val[3]); + } + + Q2bits bits; + const uint8x8_t hmask = vreinterpret_u8_u64(vdup_n_u64(0x8040201008040201)); + const int8x16x2_t values = { vreinterpretq_s8_u64(vdupq_n_u64(0x1101f3e1)), vreinterpretq_s8_u64(vdupq_n_u64(0x1606f8e6)) }; + +}; + struct SimpleBits { uint8x16x4_t b1; uint8x16x4_t b2; @@ -6571,7 +6714,10 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& m, int /*Ny*/) { MulMat::set_functions<DequantizerIQ4XS>(m); break; case GGML_TYPE_IQ4_KS: - MulMat::set_functions<DequantizerIQ4XXS>(m); + MulMat::set_functions<DequantizerIQ4KS>(m); + break; + case GGML_TYPE_IQ2_KS: + MulMat::set_functions<DequantizerIQ2KS>(m); break; case GGML_TYPE_IQ4_K: MulMat::set_functions<DequantizerIQ4K>(m); diff --git a/ggml/src/iqk/iqk_quantize.cpp b/ggml/src/iqk/iqk_quantize.cpp index 430b629f..984801be 100644 --- a/ggml/src/iqk/iqk_quantize.cpp +++ b/ggml/src/iqk/iqk_quantize.cpp @@ -30,6 +30,50 @@ inline int nearest_int(float fval) { return (i & 0x007fffff) - 0x00400000; } +float make_qx_quants(int n, int nmax, const float * x, int8_t * L, const float * qw) { + float max = 0; + float amax = 0; + for (int i = 0; i < n; ++i) { + float ax = fabsf(x[i]); + if (ax > amax) { amax = ax; max = x[i]; } + } + if (!amax) { // all zero + for (int i = 0; i < n; ++i) L[i] = 0; + return 0.f; + } + float iscale = -nmax / max; + float sumlx = 0; + float suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = std::max(-nmax, std::min(nmax-1, l)); + L[i] = l + nmax; + sumlx += qw[i]*x[i]*l; + suml2 += qw[i]*l*l; + } + float scale = suml2 ? sumlx/suml2 : 0.0f; + float best = scale * sumlx; + for (int is = -9; is <= 9; ++is) { + if (is == 0) continue; + iscale = -(nmax + 0.1f*is) / max; + sumlx = suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = std::max(-nmax, std::min(nmax-1, l)); + sumlx += qw[i]*x[i]*l; + suml2 += qw[i]*l*l; + } + if (suml2 > 0 && sumlx*sumlx > best*suml2) { + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + L[i] = nmax + std::max(-nmax, std::min(nmax-1, l)); + } + scale = sumlx/suml2; best = scale*sumlx; + } + } + return scale; +} + struct IQ1BNQuantizer { int8_t L[QK_IQ1BN]; void quantize_one_row_1bn(const float * src, block_iq1_bn * y, int n_per_row, const float * imatrix); @@ -507,6 +551,8 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl float scales[QK_K/kBlockSize]; float weight[kBlockSize]; float sumx[kBlockSize+1], sumw[kBlockSize+1]; + float sw[QK_K/kBlockSize]; + int8_t Ls[QK_K/kBlockSize]; std::array<std::pair<float,int>, kBlockSize> pairs; @@ -524,7 +570,7 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl uint16_t extra = 0; - float max_abs_scale = 0; + float max_abs_scale = 0, max_scale = 0; for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { const float * xb = xbl + kBlockSize*ib; @@ -534,7 +580,11 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl } else { for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; } - for (int j = 0; j < kBlockSize; ++j) pairs[j] = {xb[j], j}; + sw[ib] = 0; + for (int j = 0; j < kBlockSize; ++j) { + sw[ib] += weight[j]; + pairs[j] = {xb[j], j}; + } std::sort(pairs.begin(), pairs.end()); sumx[0] = sumw[0] = 0; for (int j = 0; j < kBlockSize; ++j) { @@ -583,21 +633,25 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl if (is_shifted) extra |= (1 << ib); float abs_scale = fabsf(scales[ib]); - max_abs_scale = MAX(max_abs_scale, abs_scale); + if (abs_scale > max_abs_scale) { + max_abs_scale = abs_scale; + max_scale = scales[ib]; + } } if (!max_abs_scale) continue; + float d = make_qx_quants(QK_K/kBlockSize, 8, scales, Ls, sw); + if (!d) continue; - float d = max_abs_scale/15; + //float d = -max_scale/8; y[ibl].extra = extra; float id = 1/d; float sumqx = 0, sumq2 = 0; for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { - int ls = nearest_int(0.5f*(id*scales[ib]+15)); - ls = MAX(0, MIN(15, ls)); - y[ibl].scales[ib/2] |= (ls << 4*(ib%2)); - ls = 2*ls - 15; + int ls = nearest_int(id*scales[ib]); + ls = std::max(-8, std::min(7, ls)); + y[ibl].scales[ib/2] |= ((ls + 8) << 4*(ib%2)); float dl = d * ls; if (dl) { const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values; @@ -623,7 +677,7 @@ void quantize_row_iq2_k_impl(const float * x, void * vy, int n_per_row, const fl } } } - y[ibl].d = GGML_FP32_TO_FP16(1.025f*(sumq2 > 0 ? sumqx/sumq2 : d)); + y[ibl].d = GGML_FP32_TO_FP16(1.030f*(sumq2 > 0 ? sumqx/sumq2 : d)); } } @@ -665,8 +719,8 @@ void dequantize_row_iq2_k(const block_iq2_k * GGML_RESTRICT x, float * GGML_RES int shift = 0; for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { - float dl1 = d * (2*(x[i].scales[ib32] & 0xf) - 15); - float dl2 = d * (2*(x[i].scales[ib32] >> 4) - 15); + float dl1 = d * ((x[i].scales[ib32] & 0xf) - 8); + float dl2 = d * ((x[i].scales[ib32] >> 4) - 8); const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; extra >>= 2; @@ -701,6 +755,347 @@ void vec_dot_iq2_k_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * } +namespace { +void quantize_row_iq2_ks_impl(const float * x, void * vy, int n_per_row, const float * quant_weights, float * all_scales, float * all_sw, int8_t * all_Ls) { + + constexpr int kBlockSize = 32; + constexpr int kMax_i1 = 3*kBlockSize/4; + constexpr int kMin_i3 = kBlockSize/4; + //constexpr int kNtry = 5; + //constexpr float kStep = 1.f; + + ggml_half * dptr = (ggml_half *)vy; + *dptr = GGML_FP32_TO_FP16(0.f); + + block_iq2_ks * y = (block_iq2_ks *)(dptr + 1); + + float weight[kBlockSize]; + float sumx[kBlockSize+1], sumw[kBlockSize+1]; + + std::array<std::pair<float,int>, kBlockSize> pairs; + + float val [4] = {float(iq2nl_values[0]), float(iq2nl_values[1]), float(iq2nl_values[2]), float(iq2nl_values[3])}; + float sval[4] = {float(iq2nl_values[4]), float(iq2nl_values[5]), float(iq2nl_values[6]), float(iq2nl_values[7])}; + + const int8_t * shifted_values = iq2nl_values + 4; + + const int nblock = n_per_row/QK_K; + + for (int ibl = 0; ibl < nblock; ++ibl) { + + memset(&y[ibl], 0, sizeof(block_iq2_ks)); + + auto scales = all_scales + ibl*(QK_K/kBlockSize); + auto sw = all_sw + ibl*(QK_K/kBlockSize); + + const float * xbl = x + ibl*QK_K; + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; + const float sigma2 = 1.5f*sumx2/QK_K; + + uint16_t extra = 0; + + for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { + const float * xb = xbl + kBlockSize*ib; + if (quant_weights) { + const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; + for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; + } + sw[ib] = 0; + for (int j = 0; j < kBlockSize; ++j) { + sw[ib] += weight[j]; + pairs[j] = {xb[j], j}; + } + //float amax = 0, max = 0; + //for (int j = 0; j < kBlockSize; ++j) { + // float ax = fabsf(xb[j]); + // if (ax > amax) { + // amax = ax; max = xb[j]; + // } + //} + //if (!amax) { + // scales[ib] = 0; + // continue; + //} + //float d = kNtry > 0 ? -max/iq2nl_values[0] : max/iq2nl_values[0]; + //float id = 1/d; + //float sumqx_p = 0, sumq2_p = 0; + //float sumqx_m = 0, sumq2_m = 0; + //for (int j = 0; j < kBlockSize; ++j) { + // float w = weight[j]; + // float al = id*xb[j]; + // int l = best_index_iq2nl(iq2nl_values, al); + // float q = iq2nl_values[l]; + // sumqx_p += w*q*xb[j]; + // sumq2_p += w*q*q; + // l = best_index_iq2nl(iq2nl_values, -al); + // q = iq2nl_values[l]; + // sumqx_m += w*q*xb[j]; + // sumq2_m += w*q*q; + //} + //d = sumqx_p/sumq2_p; + //float best = d*sumqx_p; + //if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + // d = sumqx_m/sumq2_m; best = d*sumqx_m; + //} + //bool is_shifted = false; + //for (int itry = -kNtry; itry <= kNtry; ++itry) { + // id = (kStep*itry + iq2nl_values[0])/max; + // sumqx_p = sumq2_p = 0; + // sumqx_m = sumq2_m = 0; + // for (int j = 0; j < kBlockSize; ++j) { + // float w = weight[j]; + // float al = id*xb[j]; + // int l = best_index_iq2nl(iq2nl_values, al); + // float q = iq2nl_values[l]; + // sumqx_p += w*q*xb[j]; + // sumq2_p += w*q*q; + // l = best_index_iq2nl(iq2nl_values, -al); + // q = iq2nl_values[l]; + // sumqx_m += w*q*xb[j]; + // sumq2_m += w*q*q; + // } + // if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + // d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = false; + // } + // if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + // d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = false; + // } + // id = (kStep*itry + shifted_values[0])/max; + // sumqx_p = sumq2_p = 0; + // sumqx_m = sumq2_m = 0; + // for (int j = 0; j < kBlockSize; ++j) { + // float w = weight[j]; + // float al = id*xb[j]; + // int l = best_index_iq2nl(shifted_values, al); + // float q = shifted_values[l]; + // sumqx_p += w*q*xb[j]; + // sumq2_p += w*q*q; + // l = best_index_iq2nl(shifted_values, -al); + // q = shifted_values[l]; + // sumqx_m += w*q*xb[j]; + // sumq2_m += w*q*q; + // } + // if (sumq2_p > 0 && sumqx_p*sumqx_p > best*sumq2_p) { + // d = sumqx_p/sumq2_p; best = d * sumqx_p; is_shifted = true; + // } + // if (sumq2_m > 0 && sumqx_m*sumqx_m > best*sumq2_m) { + // d = sumqx_m/sumq2_m; best = d * sumqx_m; is_shifted = true; + // } + //} + std::sort(pairs.begin(), pairs.end()); + sumx[0] = sumw[0] = 0; + for (int j = 0; j < kBlockSize; ++j) { + int jj = pairs[j].second; + sumw[j+1] = sumw[j] + weight[jj]; + sumx[j+1] = sumx[j] + weight[jj]*xb[jj]; + } + float best = 0, d = 0; + bool is_shifted = false; + float sumqx, sumq2; + for (int i1 = 0; i1 < kMax_i1; ++i1) { + for (int i2 = i1; i2 < kBlockSize; ++i2) { + for (int i3 = std::max(i2, kMin_i3); i3 < kBlockSize; ++i3) { + sumqx = (sumx[i1] - sumx[ 0])*val[0] + (sumx[i2] - sumx[i1])*val[1] + + (sumx[i3] - sumx[i2])*val[2] + (sumx[kBlockSize] - sumx[i3])*val[3]; + sumq2 = (sumw[i1] - sumw[ 0])*val[0]*val[0] + (sumw[i2] - sumw[i1])*val[1]*val[1] + + (sumw[i3] - sumw[i2])*val[2]*val[2] + (sumw[kBlockSize] - sumw[i3])*val[3]*val[3]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = false; + } + sumqx = (sumx[i1] - sumx[ 0])*sval[0] + (sumx[i2] - sumx[i1])*sval[1] + + (sumx[i3] - sumx[i2])*sval[2] + (sumx[kBlockSize] - sumx[i3])*sval[3]; + sumq2 = (sumw[i1] - sumw[ 0])*sval[0]*sval[0] + (sumw[i2] - sumw[i1])*sval[1]*sval[1] + + (sumw[i3] - sumw[i2])*sval[2]*sval[2] + (sumw[kBlockSize] - sumw[i3])*sval[3]*sval[3]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = true; + } + sumqx = (sumx[i1] - sumx[ 0])*val[3] + (sumx[i2 ] - sumx[i1])*val[2] + + (sumx[i3] - sumx[i2])*val[1] + (sumx[kBlockSize] - sumx[i3])*val[0]; + sumq2 = (sumw[i1] - sumw[ 0])*val[3]*val[3] + (sumw[i2 ] - sumw[i1])*val[2]*val[2] + + (sumw[i3] - sumw[i2])*val[1]*val[1] + (sumw[kBlockSize] - sumw[i3])*val[0]*val[0]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = false; + } + sumqx = (sumx[i1] - sumx[ 0])*sval[3] + (sumx[i2 ] - sumx[i1])*sval[2] + + (sumx[i3] - sumx[i2])*sval[1] + (sumx[kBlockSize] - sumx[i3])*sval[0]; + sumq2 = (sumw[i1] - sumw[ 0])*sval[3]*sval[3] + (sumw[i2 ] - sumw[i1])*sval[2]*sval[2] + + (sumw[i3] - sumw[i2])*sval[1]*sval[1] + (sumw[kBlockSize] - sumw[i3])*sval[0]*sval[0]; + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d*sumqx; is_shifted = true; + } + } + } + } + scales[ib] = d; + if (is_shifted) extra |= (1 << ib); + + } + y[ibl].extra = extra; + + } + + float d = make_qx_quants(nblock*(QK_K/kBlockSize), 16, all_scales, all_Ls, all_sw); + + if (!d) return; + + float sumqx = 0, sumq2 = 0; + for (int ibl = 0; ibl < nblock; ++ibl) { + auto xbl = x + ibl*QK_K; + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += xbl[j]*xbl[j]; + const float sigma2 = 1.5f*sumx2/QK_K; + auto Ls = all_Ls + ibl*(QK_K/kBlockSize); + for (int ib = 0; ib < QK_K/kBlockSize; ++ib) { + int ls = Ls[ib]; + y[ibl].scales[ib/2] |= ((ls & 0xf) << 4*(ib%2)); + y[ibl].extra |= ((ls >> 4) << (8 + ib)); + ls -= 16; + float dl = d * ls; + if (dl) { + const int8_t * block_values = y[ibl].extra & (1 << ib) ? shifted_values : iq2nl_values; + const float * xb = xbl + kBlockSize*ib; + if (quant_weights) { + const float * qw = quant_weights + ibl*QK_K + ib*kBlockSize; + for (int j = 0; j < kBlockSize; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < kBlockSize; ++j) weight[j] = 0.25f*sigma2 + xb[j]*xb[j]; + } + float idl = 1/dl; + uint8_t * qs = y[ibl].qs + 32*(ib/4); + for (int j = 0; j < 32; ++j) { + const float al = idl*xb[j]; + int ibest = best_index_iq2nl(block_values, al); + qs[j] |= (ibest << 2*(ib%4)); + float w = weight[j]; + float q = block_values[ibest]*ls; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + } + } + } + *dptr = GGML_FP32_TO_FP16(1.030f*(sumq2 > 0 ? sumqx/sumq2 : d)); +} +} + +void quantize_row_iq2_ks_ref(const float * GGML_RESTRICT x, block_iq2_ks * GGML_RESTRICT y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq2_ks(x, (void *)y, 1, k, nullptr); +} + +void quantize_row_iq2_ks(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) { + assert(k % QK_K == 0); + block_iq2_ks * y = (block_iq2_ks *)vy; + quantize_row_iq2_ks_ref(x, y, k); +} + +size_t quantize_iq2_ks(const float * src, void * dst, int64_t nrows, int64_t n_per_row, const float * imatrix) { + constexpr int kBlockSize = 32; + GGML_ASSERT(n_per_row%QK_K == 0); + auto row_size = ggml_row_size(GGML_TYPE_IQ2_KS, n_per_row); + int nblock = n_per_row/QK_K; + std::vector<float> all_scales(nblock*(QK_K/kBlockSize)), all_sw(nblock*(QK_K/kBlockSize)); + std::vector<int8_t> all_Ls(nblock*(QK_K/kBlockSize)); + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrows; ++row) { + quantize_row_iq2_ks_impl(src, (void *)qrow, n_per_row, imatrix, all_scales.data(), all_sw.data(), all_Ls.data()); + src += n_per_row; + qrow += row_size; + } + return nrows * row_size; +} + +void dequantize_row_iq2_ks(const block_iq2_ks * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + const ggml_half * dptr = (const ggml_half *)x; + const float d = GGML_FP16_TO_FP32(*dptr); + x = (const block_iq2_ks *)(dptr + 1); + + for (int i = 0; i < nb; i++) { + + const uint8_t * qs = x[i].qs; + + uint16_t extra = x[i].extra; + + int shift = 0; + for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { + float dl1 = d * (((x[i].scales[ib64] & 0xf) | ((extra >> 4) & 0x10)) - 16); + float dl2 = d * (((x[i].scales[ib64] >> 4) | ((extra >> 5) & 0x10)) - 16); + const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; + const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; + extra >>= 2; + for (int j = 0; j < 32; ++j) { + y[j+ 0] = dl1 * values1[(qs[j] >> (shift+0)) & 3]; + y[j+32] = dl2 * values2[(qs[j] >> (shift+2)) & 3]; + } + y += 64; + shift += 4; + if (shift == 8) { qs += 32; shift = 0; } + } + + } + +} + +void vec_dot_iq2_ks_q8_k(int n, float * s, size_t bs, const void * vx, size_t bx, const void * vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + GGML_UNUSED(nrc); + GGML_UNUSED(bx); + GGML_UNUSED(by); + GGML_UNUSED(bs); + +#if GGML_USE_IQK_MULMAT + if (iqk_mul_mat(1, 1, n, GGML_TYPE_IQ2_KS, vx, 0, GGML_TYPE_Q8_K, vy, 0, s, 0, 0, 1)) { + return; + } +#endif + + const ggml_half * dptr = (const ggml_half *)vx; + const float d = GGML_FP16_TO_FP32(*dptr); + const block_iq2_ks * x = (const block_iq2_ks *)(dptr + 1); + const block_q8_K * y = (const block_q8_K *)vy; + + const int nb = n / QK_K; + float sumf = 0; + for (int i = 0; i < nb; i++) { + const uint8_t * qs = x[i].qs; + const int8_t * q8 = y[i].qs; + uint16_t extra = x[i].extra; + int sumi = 0; + for (int ib128 = 0; ib128 < QK_K/128; ++ib128) { + int d1 = (((x[i].scales[2*ib128+0] & 0xf) | ((extra >> 4) & 0x10)) - 16); + int d2 = (((x[i].scales[2*ib128+0] >> 4) | ((extra >> 5) & 0x10)) - 16); + int d3 = (((x[i].scales[2*ib128+1] & 0xf) | ((extra >> 6) & 0x10)) - 16); + int d4 = (((x[i].scales[2*ib128+1] >> 4) | ((extra >> 7) & 0x10)) - 16); + const int8_t * values1 = extra & 1 ? iq2nl_values + 4 : iq2nl_values; + const int8_t * values2 = extra & 2 ? iq2nl_values + 4 : iq2nl_values; + const int8_t * values3 = extra & 4 ? iq2nl_values + 4 : iq2nl_values; + const int8_t * values4 = extra & 8 ? iq2nl_values + 4 : iq2nl_values; + extra >>= 4; + int sumi1 = 0, sumi2 = 0, sumi3 = 0, sumi4 = 0; + for (int j = 0; j < 32; ++j) { + sumi1 += q8[j+ 0] * values1[(qs[j] >> 0) & 3]; + sumi2 += q8[j+32] * values2[(qs[j] >> 2) & 3]; + sumi3 += q8[j+64] * values3[(qs[j] >> 4) & 3]; + sumi4 += q8[j+96] * values4[(qs[j] >> 6) & 3]; + } + sumi += d1*sumi1 + d2*sumi2 + d3*sumi3 + d4*sumi4; + q8 += 128; + qs += 32; + } + sumf += y[i].d * sumi; + } + + *s = d * sumf; + +} + // // ============================================== iq3_k // diff --git a/ggml/src/iqk/iqk_quantize.h b/ggml/src/iqk/iqk_quantize.h index a3623963..eb562779 100644 --- a/ggml/src/iqk/iqk_quantize.h +++ b/ggml/src/iqk/iqk_quantize.h @@ -61,6 +61,12 @@ size_t quantize_iq4_ks(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst void dequantize_row_iq4_ks(const block_iq4_ks * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); void vec_dot_iq4_ks_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void quantize_row_iq2_ks_ref(const float * GGML_RESTRICT x, block_iq2_ks * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_ks(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +size_t quantize_iq2_ks(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +void dequantize_row_iq2_ks(const block_iq2_ks * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void vec_dot_iq2_ks_q8_k(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + void iqk_quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k); #ifdef __cplusplus diff --git a/include/llama.h b/include/llama.h index 9fb4af53..c9387e6b 100644 --- a/include/llama.h +++ b/include/llama.h @@ -179,6 +179,7 @@ extern "C" { LLAMA_FTYPE_MOSTLY_IQ1_TN = 144, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ4_KS = 145, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ3_KL = 146, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_KS = 147, // except 1d tensors LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file }; diff --git a/src/llama.cpp b/src/llama.cpp index c338452b..b356f7bc 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -3783,6 +3783,7 @@ struct llama_model_loader { case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; + case GGML_TYPE_IQ2_KS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_KS; break; case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; @@ -4487,6 +4488,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_KS: return "IQ2_KS - 2.1875 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; @@ -15645,7 +15647,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || - ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K) { + ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_K || + ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS) { new_type = !qs.has_output ? GGML_TYPE_IQ4_K : GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_KS) && !qs.has_output) { @@ -15681,7 +15684,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n } } } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || - ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { + ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || + ftype == LLAMA_FTYPE_MOSTLY_IQ2_KS) { if (name.find("attn_v.weight") != std::string::npos) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_IQ4_K; else if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_IQ3_K; @@ -15905,7 +15909,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S || new_type == GGML_TYPE_IQ1_M || new_type == GGML_TYPE_IQ4_K || new_type == GGML_TYPE_IQ2_K || new_type == GGML_TYPE_IQ5_K || new_type == GGML_TYPE_IQ3_K || new_type == GGML_TYPE_IQ2_TN || - new_type == GGML_TYPE_IQ6_K || new_type == GGML_TYPE_IQ1_TN || new_type == GGML_TYPE_IQ4_KS) { + new_type == GGML_TYPE_IQ6_K || new_type == GGML_TYPE_IQ1_TN || new_type == GGML_TYPE_IQ4_KS || + new_type == GGML_TYPE_IQ2_KS) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; if (nx % QK_K != 0) { @@ -15925,6 +15930,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n switch (new_type) { case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_KS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: @@ -16036,6 +16042,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_KS: default_type = GGML_TYPE_IQ2_KS; break; case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; |