summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--examples/quantize/quantize.cpp7
-rw-r--r--ggml/src/ggml-quants.c45
-rw-r--r--include/llama.h1
-rw-r--r--src/llama.cpp6
4 files changed, 55 insertions, 4 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp
index 0b4c3444..bae071ce 100644
--- a/examples/quantize/quantize.cpp
+++ b/examples/quantize/quantize.cpp
@@ -255,6 +255,8 @@ int main(int argc, char ** argv) {
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
params.quantize_output_tensor = false;
+ } else if (strcmp(argv[arg_idx], "--ignore-imatrix-rules") == 0) {
+ params.ignore_imatrix_rules = true;
} else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
if (arg_idx < argc-1) {
params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
@@ -409,11 +411,12 @@ int main(int argc, char ** argv) {
}
}
- if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
+ if (!params.ignore_imatrix_rules && imatrix_data.empty() &&
+ (params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
- params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
+ params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M)) {
fprintf(stderr, "\n==========================================================================================================\n");
fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
fprintf(stderr, "==========================================================================================================\n\n\n");
diff --git a/ggml/src/ggml-quants.c b/ggml/src/ggml-quants.c
index c2c66f38..415249fb 100644
--- a/ggml/src/ggml-quants.c
+++ b/ggml/src/ggml-quants.c
@@ -1995,7 +1995,52 @@ void quantize_row_q2_K_ref(const float * restrict x, block_q2_K * restrict y, in
const float q4scale = 15.f;
+ // Detect TriNet
+ {
+ int n = k;
+ float max = 0;
+ for (int j = 0; j < n; ++j) {
+ float ax = fabsf(x[j]);
+ max = MAX(max, ax);
+ }
+ float mse0 = 0, mse = 0;
+ for (int j = 0; j < n; ++j) {
+ int l = x[j] < -0.5f*max ? -1 : x[j] < 0.5f*max ? 0 : 1;
+ mse0 += x[j]*x[j];
+ float diff = x[j] - max*l;
+ mse += diff*diff;
+ }
+ if (mse < 0.1f*mse0) {
+ // yes, most likely trinet
+ for (int ibl = 0; ibl < nb; ++ibl) {
+ y[ibl].d = GGML_FP32_TO_FP16(max);
+ y[ibl].dmin = GGML_FP32_TO_FP16(max);
+ for (int ib = 0; ib < QK_K/16; ++ib) y[ibl].scales[ib] = 1 | (1 << 4);
+ const float * xb = x + QK_K * ibl;
+ for (int j = 0; j < QK_K; ++j) {
+ L[j] = xb[j] < -0.5f*max ? 0 : xb[j] < 0.5f*max ? 1 : 2;
+ }
+ uint8_t * qs = y[ibl].qs;
+ for (int j = 0; j < QK_K; j += 128) {
+ for (int l = 0; l < 32; ++l) {
+ qs[l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
+ }
+ qs += 32;
+ }
+ }
+ return;
+ }
+ }
+
for (int i = 0; i < nb; i++) {
+ //{
+ // float max = x[0], min = x[0];
+ // for (int j = 1; j < 256; ++j) {
+ // max = MAX(x[j], max);
+ // min = MIN(x[j], min);
+ // }
+ // printf("%s: max = %g, min = %g\n", __func__, (double)max, (double)min);
+ //}
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/16; ++j) {
diff --git a/include/llama.h b/include/llama.h
index 88d82958..15ff915b 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -359,6 +359,7 @@ extern "C" {
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // quantize all tensors to the default type
bool keep_split; // quantize to the same number of shards
+ bool ignore_imatrix_rules; // If set to true, the built-in rules for refusing to quantize into certain quants without imatrix are ignored
void * imatrix; // pointer to importance matrix data
void * kv_overrides; // pointer to vector containing overrides
} llama_model_quantize_params;
diff --git a/src/llama.cpp b/src/llama.cpp
index 2caaf7d0..e530f528 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -16071,12 +16071,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
}
}
}
- if ((new_type == GGML_TYPE_IQ2_XXS ||
+ if (!params->ignore_imatrix_rules && !imatrix &&
+ (new_type == GGML_TYPE_IQ2_XXS ||
new_type == GGML_TYPE_IQ2_XS ||
new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ1_S ||
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
- (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
+ (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0))) {
LLAMA_LOG_ERROR("\n\n============================================================\n");
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
@@ -16441,6 +16442,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
/*.only_copy =*/ false,
/*.pure =*/ false,
/*.keep_split =*/ false,
+ /*.ignore_imatrix_rules =*/ false,
/*.imatrix =*/ nullptr,
/*.kv_overrides =*/ nullptr,
};