diff options
-rw-r--r-- | README.md | 17 |
1 files changed, 7 insertions, 10 deletions
@@ -24,28 +24,26 @@ Information and the original CUDA implementation in [PR 113](https://github.com/ Information can be found in [Discussion 8](https://github.com/ikawrakow/ik_llama.cpp/discussions/8). -`IQ5_KS_R4` [PR 426](https://github.com/ikawrakow/ik_llama.cpp/pull/426), `IQ5_KS` [PR 422](https://github.com/ikawrakow/ik_llama.cpp/pull/422), `IQ4_KS_R4` [PR 150](https://github.com/ikawrakow/ik_llama.cpp/pull/150), `IQ5_K_R4` [PR 149](https://github.com/ikawrakow/ik_llama.cpp/pull/149), `IQ2_K_R4` [PR 146](https://github.com/ikawrakow/ik_llama.cpp/pull/146), `IQ3_K_R4` [PR 145](https://github.com/ikawrakow/ik_llama.cpp/pull/145), `IQ4_K_R4` [PR 138](https://github.com/ikawrakow/ik_llama.cpp/pull/138), `IQ4_KSS` [PR 89](https://github.com/ikawrakow/ik_llama.cpp/pull/89), `IQ2_KS` [PR 85](https://github.com/ikawrakow/ik_llama.cpp/pull/85), `IQ4_KS` [PR 83](https://github.com/ikawrakow/ik_llama.cpp/pull/83), `IQ6_K` [PR 14](https://github.com/ikawrakow/ik_llama.cpp/pull/14), `IQ2_K, IQ3_K and IQ5_K` [PR 7](https://github.com/ikawrakow/ik_llama.cpp/pull/7), `IQ4_K` [PR 6](https://github.com/ikawrakow/ik_llama.cpp/pull/6) +Initial implementations (Zen4, AVX2, NEON): `IQ5_KS_R4` [PR 426](https://github.com/ikawrakow/ik_llama.cpp/pull/426), `IQ5_KS` [PR 422](https://github.com/ikawrakow/ik_llama.cpp/pull/422), `IQ4_KS_R4` [PR 150](https://github.com/ikawrakow/ik_llama.cpp/pull/150), `IQ5_K_R4` [PR 149](https://github.com/ikawrakow/ik_llama.cpp/pull/149), `IQ2_K_R4` [PR 146](https://github.com/ikawrakow/ik_llama.cpp/pull/146), `IQ3_K_R4` [PR 145](https://github.com/ikawrakow/ik_llama.cpp/pull/145), `IQ4_K_R4` [PR 138](https://github.com/ikawrakow/ik_llama.cpp/pull/138), `IQ4_KSS` [PR 89](https://github.com/ikawrakow/ik_llama.cpp/pull/89), `IQ2_KS` [PR 85](https://github.com/ikawrakow/ik_llama.cpp/pull/85), `IQ4_KS` [PR 83](https://github.com/ikawrakow/ik_llama.cpp/pull/83), `IQ6_K` [PR 14](https://github.com/ikawrakow/ik_llama.cpp/pull/14), `IQ2_K, IQ3_K and IQ5_K` [PR 7](https://github.com/ikawrakow/ik_llama.cpp/pull/7), `IQ4_K` [PR 6](https://github.com/ikawrakow/ik_llama.cpp/pull/6) + +Cuda implementations: `IQ4_KS_R4` and `IQ5_KS_R4` [PR 493](https://github.com/ikawrakow/ik_llama.cpp/pull/493), `IQ1_S_R4` [PR 492](https://github.com/ikawrakow/ik_llama.cpp/pull/492), `IQ1_M_R4` [PR 494](https://github.com/ikawrakow/ik_llama.cpp/pull/494). `IQ4_KS_R4` and `IQ5_KS_R4` [PR 462](https://github.com/ikawrakow/ik_llama.cpp/pull/462), `IQ2_K_R4`, `IQ3_K_R4`, `IQ4_K_R4`, `IQ5_K_R4` [PR 461](https://github.com/ikawrakow/ik_llama.cpp/pull/461), `IQ4_K, IQ5_K, IQ6_K` [PR 417](https://github.com/ikawrakow/ik_llama.cpp/pull/417), `IQ2_KS, IQ2_K, IQ3_K` [PR 418](https://github.com/ikawrakow/ik_llama.cpp/pull/417) #### Quantization improvements `IQ1_M` [PR 327](https://github.com/ikawrakow/ik_llama.cpp/pull/327), `IQ2_XS` [PR 312](https://github.com/ikawrakow/ik_llama.cpp/pull/312), `Q2_K, Q4_K, Q5_K, Q4_1, Q5_1` [PR 302](https://github.com/ikawrakow/ik_llama.cpp/pull/302), `Q4_0, Q5_0, Q6_0, Q3_K, Q6_K, IQ4_XS, IQ4_NL` [PR 295](https://github.com/ikawrakow/ik_llama.cpp/pull/295) -#### Quantization performance and support improvements and fixes +#### Quantization performance improvements -* MMQ implementation for `IQ4_KS_R4` and `IQ5_KS_R4` [PR 493](https://github.com/ikawrakow/ik_llama.cpp/pull/493) -* CUDA implementation for `IQ1_S_R4` [PR 492](https://github.com/ikawrakow/ik_llama.cpp/pull/492), `IQ1_M_R4` [PR 494](https://github.com/ikawrakow/ik_llama.cpp/pull/494) * Faster CPU prompt processing for Trellis quants and MoE models. [PR 488](https://github.com/ikawrakow/ik_llama.cpp/pull/488) * Trellis quants: faster CPU prompt processing [PR 482](https://github.com/ikawrakow/ik_llama.cpp/pull/482). * Minor (~2%) `iq2_ks` TG performance improvement on CUDA [PR 468](https://github.com/ikawrakow/ik_llama.cpp/pull/468) -* CUDA GEMM and GEMV for `IQ4_KS_R4` and `IQ5_KS_R4` [PR 462](https://github.com/ikawrakow/ik_llama.cpp/pull/462) -* CUDA implementation for `IQ2_K_R4`, `IQ3_K_R4`, `IQ4_K_R4`, `IQ5_K_R4` [PR 461](https://github.com/ikawrakow/ik_llama.cpp/pull/461) * Faster `IQ3_KT` and `IQ4_KT` [PR 453](https://github.com/ikawrakow/ik_llama.cpp/pull/453) -* Legacy quants conversion schemes in `convert_hf_to_gguf.py` [PR 449](https://github.com/ikawrakow/ik_llama.cpp/pull/449), `Q6_0` in [PR 483](https://github.com/ikawrakow/ik_llama.cpp/pull/483) * Zen4: Faster PP for `IQ2_KS, IQ4_KS, IQ5_KS` [PR 428](https://github.com/ikawrakow/ik_llama.cpp/pull/428) -* CUDA: quantized GEMMs `IQ4_K, IQ5_K, IQ6_K` [PR 417](https://github.com/ikawrakow/ik_llama.cpp/pull/417), `IQ2_KS, IQ2_K, IQ3_K` [PR 418](https://github.com/ikawrakow/ik_llama.cpp/pull/417) +* Fast GEMM/GEMV for `IQ1_S` [PR 212](https://github.com/ikawrakow/ik_llama.cpp/pull/212) ### Features +* Legacy quants conversion schemes in `convert_hf_to_gguf.py` [PR 449](https://github.com/ikawrakow/ik_llama.cpp/pull/449), `Q6_0` in [PR 483](https://github.com/ikawrakow/ik_llama.cpp/pull/483) * June 8 2025: Webui updated (legacy still available when `--path ./examples/server/public_legacy` is passed) [PR 481](https://github.com/ikawrakow/ik_llama.cpp/pull/481) * June 8 2025: RPC improvements [PR 480](https://github.com/ikawrakow/ik_llama.cpp/pull/480) * June 7 2025: Add an endpoint that lists all the saved prompt caches to server [PR 502](https://github.com/ikawrakow/ik_llama.cpp/pull/502) @@ -66,7 +64,6 @@ Information can be found in [Discussion 8](https://github.com/ikawrakow/ik_llama * May 13 2025: Better CPU FA performance for DeepSeek-Lite. [PR 410](https://github.com/ikawrakow/ik_llama.cpp/pull/410) * May 11 2025: Slightly faster flash attention for DeepSeek models on CUDA, along with extending compatibility to Touring or newer GPUs. [PR 408](https://github.com/ikawrakow/ik_llama.cpp/pull/408) -* May 7 2025: Faster TG for DeepSeek models with GPU or hybrid GPU/CPU inference. [PR 386](https://github.com/ikawrakow/ik_llama.cpp/pull/386). Caveat: Ampere or newer Nvidia GPU required * May 4 2025: Significant token generation performance improvement on CUDA with Flash Attention for GQA models. For details and benchmarks. [PR 370](https://github.com/ikawrakow/ik_llama.cpp/pull/370) * April 17 2025: Better CPU Flash Attention token generation performance. [PR 332](https://github.com/ikawrakow/ik_llama.cpp/pull/332) * April 3 2025: Much faster MoE implementation on Metal. [PR 307](https://github.com/ikawrakow/ik_llama.cpp/pull/307) @@ -75,10 +72,10 @@ Information can be found in [Discussion 8](https://github.com/ikawrakow/ik_llama * March 18 2025: Reduce compute buffer size [PR 237](https://github.com/ikawrakow/ik_llama.cpp/pull/237) * March 10 2025: Better TG performance for MoE models on CUDA [PR 248](https://github.com/ikawrakow/ik_llama.cpp/pull/248) * Feb 23 2025: Fused FFN ops for faster MoE inference [PR 229](https://github.com/ikawrakow/ik_llama.cpp/pull/229) -* Feb 20 2025: Fast GEMM/GEMV for `IQ1_S` [PR 212](https://github.com/ikawrakow/ik_llama.cpp/pull/212) ### Flash-MLA +* May 7 2025: 🚀 FlashMLA-3 for DeepSeek models on CUDA. [PR 386](https://github.com/ikawrakow/ik_llama.cpp/pull/386). Caveat: Ampere or newer Nvidia GPU required * March 21 2025: 🚀 FlashMLA-3: fastest CPU-only inference for DeepSeek models [PR 273](https://github.com/ikawrakow/ik_llama.cpp/pull/273) * March 17 2025: 🚀 FlashMLA-2 performance improvements [PR 253](https://github.com/ikawrakow/ik_llama.cpp/pull/253) * March 12 2025: Allow `Q8_0` KV cache with FlashMLA-2 on CUDA [PR 265](https://github.com/ikawrakow/ik_llama.cpp/pull/265) |