summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--common/common.cpp14
-rw-r--r--common/sampling.cpp13
-rw-r--r--common/sampling.h3
-rw-r--r--include/llama.h8
-rw-r--r--src/llama-sampling.cpp34
-rw-r--r--src/llama-sampling.h1
-rw-r--r--src/llama.cpp5
7 files changed, 76 insertions, 2 deletions
diff --git a/common/common.cpp b/common/common.cpp
index 2df8d4d4..cefbf63f 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -649,6 +649,16 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
sparams.mirostat_tau = std::stof(argv[i]);
return true;
}
+ if (arg == "--xtc-probability") {
+ CHECK_ARG
+ sparams.xtc_probability = std::stof(argv[i]);
+ return true;
+ }
+ if (arg == "--xtc-threshold") {
+ CHECK_ARG
+ sparams.xtc_threshold = std::stof(argv[i]);
+ return true;
+ }
if (arg == "--cfg-negative-prompt") {
CHECK_ARG
sparams.cfg_negative_prompt = argv[i];
@@ -1635,6 +1645,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat });
options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta });
options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau });
+ options.push_back({ "*", " --xtc-probability p", "xtc probability (default: %.1f, 0.0 = disabled)", (double)sparams.xtc_probability });
+ options.push_back({ "*", " --xtc-threshold t", "xtc threshold (default: %.1f, 0.0 = disabled)", (double)sparams.xtc_threshold});
options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
"i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
"or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
@@ -3396,6 +3408,8 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
+ fprintf(stream, "xtc_probability: %f # default: 0.0\n", sparams.xtc_probability);
+ fprintf(stream, "xtc_threshold: %f # default: 0.0\n", sparams.xtc_threshold);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
diff --git a/common/sampling.cpp b/common/sampling.cpp
index 079e4051..84691d93 100644
--- a/common/sampling.cpp
+++ b/common/sampling.cpp
@@ -121,10 +121,12 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
- "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
+ "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f\n"
+ "\txtc_probability = %.3f, xtc_threshold = %.3f",
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
- params.mirostat, params.mirostat_eta, params.mirostat_tau);
+ params.mirostat, params.mirostat_eta, params.mirostat_tau,
+ params.xtc_probability, params.xtc_threshold);
return std::string(result);
}
@@ -153,6 +155,7 @@ std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMPERATURE: return "temperature";
+ case llama_sampler_type::XTC : return "xtc";
default : return "";
}
}
@@ -164,6 +167,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vecto
{"typical_p", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
+ {"xtc", llama_sampler_type::XTC},
{"temperature", llama_sampler_type::TEMPERATURE}
};
@@ -178,6 +182,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vecto
{"min-p", llama_sampler_type::MIN_P},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
+ {"xtc", llama_sampler_type::XTC},
{"temp", llama_sampler_type::TEMPERATURE}
};
@@ -212,6 +217,7 @@ std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::strin
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
+ {'x', llama_sampler_type::XTC},
{'t', llama_sampler_type::TEMPERATURE}
};
@@ -240,6 +246,8 @@ static void sampler_queue(
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
+ const float xtc_probability = params.xtc_probability;
+ const float xtc_threshold = params.xtc_threshold;
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
for (auto sampler_type : samplers_sequence) {
@@ -249,6 +257,7 @@ static void sampler_queue(
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
+ case llama_sampler_type::XTC : llama_sample_xtc (ctx_main, &cur_p, xtc_probability, xtc_threshold, min_keep); break;
case llama_sampler_type::TEMPERATURE:
if (dynatemp_range > 0) {
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
diff --git a/common/sampling.h b/common/sampling.h
index eeaa53b8..163cdfca 100644
--- a/common/sampling.h
+++ b/common/sampling.h
@@ -15,6 +15,7 @@ enum class llama_sampler_type : char {
TOP_P = 'p',
MIN_P = 'm',
TFS_Z = 'f',
+ XTC = 'x',
TYPICAL_P = 'y',
TEMPERATURE = 't'
};
@@ -39,6 +40,8 @@ typedef struct llama_sampling_params {
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
+ float xtc_probability = 0.0f; // xtc probability
+ float xtc_threshold = 1.0f; // xtc threashold, disabled if > 0.5
bool penalize_nl = false; // consider newlines as a repeatable token
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
diff --git a/include/llama.h b/include/llama.h
index 607a590d..89526276 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -1208,6 +1208,14 @@ extern "C" {
llama_token_data_array * candidates,
float temp);
+ /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
+ LLAMA_API void llama_sample_xtc(
+ struct llama_context * ctx,
+ llama_token_data_array * candidates_p,
+ float probability,
+ float threshold,
+ size_t min_keep);
+
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp
index 8910f6d6..06f44b02 100644
--- a/src/llama-sampling.cpp
+++ b/src/llama-sampling.cpp
@@ -434,6 +434,40 @@ void llama_sample_temp_impl(struct llama_sampling * smpl, llama_token_data_array
}
}
+void llama_sample_xtc_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, float probability, float threshold, size_t min_keep) {
+ if (probability < 0 || threshold > 0.5f || candidates->size < 2) {
+ return;
+ }
+ GGML_ASSERT(smpl);
+ const int64_t t_start_sample_us = ggml_time_us();
+ if (probability < 1) {
+ std::uniform_real_distribution<float> distribution(0.0f, 1.0f);
+ float chance = distribution(smpl->rng);
+ if (chance > probability) return;
+ }
+
+ llama_sample_softmax_impl(nullptr, candidates);
+
+ auto cur_size = candidates->size;
+
+ int pos_last = 0;
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ if (candidates->data[i].p >= threshold) {
+ pos_last = i;
+ } else break;
+ }
+
+ if (candidates->size - pos_last >= min_keep && pos_last > 0) {
+ candidates->data += pos_last;
+ candidates->size -= pos_last;
+ }
+
+ smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
+ smpl->n_sample++;
+
+}
+
void llama_sample_repetition_penalties_impl(
struct llama_sampling * smpl,
llama_token_data_array * candidates,
diff --git a/src/llama-sampling.h b/src/llama-sampling.h
index f7f8e3ef..c2a9e45f 100644
--- a/src/llama-sampling.h
+++ b/src/llama-sampling.h
@@ -32,6 +32,7 @@ void llama_sample_tail_free_impl(struct llama_sampling * smpl, llama_token_data_
void llama_sample_typical_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float p, size_t min_keep);
void llama_sample_entropy_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float min_temp, float max_temp, float exponent_val);
void llama_sample_temp_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float temp);
+void llama_sample_xtc_impl (struct llama_sampling * smpl, llama_token_data_array * candidates, float probability, float threshold, size_t min_keep);
void llama_sample_repetition_penalties_impl(
struct llama_sampling * smpl,
diff --git a/src/llama.cpp b/src/llama.cpp
index 18c7cd0f..90e342e1 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -23265,6 +23265,11 @@ void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * cand
llama_sample_temp_impl(ctx ? &ctx->sampling : nullptr, candidates_p, temp);
}
+void llama_sample_xtc(struct llama_context * ctx, llama_token_data_array * candidates_p,
+ float probability, float threshold, size_t min_keep) {
+ llama_sample_xtc_impl(ctx ? &ctx->sampling : nullptr, candidates_p, probability, threshold, min_keep);
+}
+
void llama_sample_repetition_penalties(
struct llama_context * ctx,
llama_token_data_array * candidates,